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Abstract:  
In this paper, the author established some new integral conditions for the oscillation of 

all solutions of nonlinear first order neutral delay differential equations. Examples are 

inserted to illustrate the results. 

 

Introduction:  
    
Consider the first order nonlinear neutral 

delay differential equation: 

  )1(0)))((()())(()()( 


 txftqtxtptx 

 

 Subject to the conditions: 

  )(,,)()1( tRRCtpc  and )(t are 

positive nondecreasing continuous  

functions, such that    




)(lim)(lim tt
tt

  

Rtqc ),[:)2( 0  is continuous function. 

RRfc :)3(  is continuous function 

with 0)( uuf  for ,0u  

and there is a positive constant M such 

that 0/)(  Muuf 
where   is a 

ratio of odd positive integers. 

    If we let  )(),(max)( tttp  and 

0tT   then by a solution of equation (1), 

we mean a continuous function 

Rtx ),[: 0 such that 

))(()()( txtptx   is continuously 

differentiable for  0tt  , and )(tx  

satisfies equation (1) for all 0tt  . A 

solution of equation (1) is said to be 

oscillatory if it has arbitrary large zero and  

nonoscillatory otherwise. 

 

 

    In [4], Gopasamy, Lalli, and Zhang 

considered the linear equation  

)2(0)()())()((   txtqtpxtx    

Where 01  p  and proved that if  

,1)(inflim 





t

t
t

pdssq


    

then all solutions of equation (2) are 

oscillatory. For additional results on the 

oscillatory behavior of solutions of the 

linear equation (2), we refer the reader to 

the monographs by Bainow and Mishev 

[2], Erbe, Kong, and Zhang [3], and Gyǒri 

and Ladas [8] as well as the papers of 

Agarwal and Saker [1], Pahri [15], Saker 

and Elabbasy [17], Tanaka [18], and Zhou 

[21] And the references contained therein. 

    In [5], Graef et al. considered the 

nonlinear equation  
)3(,0))(()())()((   txftqtpxtx

 

with f  nondecreasing, sublinear,  

,01  p    and they proved that if  






0

)(
t

dttq , 

then every solution of equation (3) is 

oscillatory. They also proved a similar 

result for equation (3) where f is 

superlinear and .1p  
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     Section 2, continuous some basic 

lemmas that are needed to prove my main      

results, in Section 3, there are some new 

integral conditions for the oscillation of all 

solutions of equation (1). This research 

includes examples to illustrate the main 

theorem. 

 

Some Basic Lemmas 
In this section, established some 

lemmas for the case 1 . These lemmas 

will be used to proved the main results. 

Lemma 1 Suppose that 

)4(0)(suplim
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dssqand

ttforttptpptttttq





if )(tx is an eventually positive solution of 

equation (1) then  

   

)5(
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)))(((
inflim

1




 tz

tz

t


. 

Proof Let )(tx is an eventually positive 

solution of equation (1) for 0tt   then 

  ))(()()()( txtptxtz    

     Which means, 0)( tz  and so 

0)(  tz  and hence )(tz  is decreasing, 

we have                                                                                                       

)()())(())((

)())(())(())((

)()())(()(

1

11

111

txptxtptz

txtptxtz

txtztxtp
















      

on the other hand  
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Or     
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from (1) and the last inequality we get  
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by lemma (1) in [10] follow that   
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Lemma 2 
Assume that 

012 1)(),()(,0)( ttforptpptttq  

 if )(tx is an eventually positive 

solution of equation (1) then  
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for sufficiently large t . 

Proof We have 0)( tx  and 0)( tq , 

then ,0)(  tz and ,0)( tz  if we 

integrating (6) from t  to ))((1 t 
 we 

obtain  
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(7) follow directly from the last inequality. 

 

Oscillation Results 
    In this section, get integral conditions 

for the oscillation of all solutions of 

equation (1).  Consider the case 1 . 

Theorem1 Assume that 

;1)(),()(,0)( 12  ptpptttq    
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and (4) holds, then every solution of (1) is 

oscillatory. 

Proof For the sake of contradiction we 

may suppose that )(tx  is an eventually 
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positive solution of equation (1) then 

0)( tz  and 0)(  tz  for 0tt  , from 

(6) we get  
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using the integral identity 
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inequality we get  
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it follows that  
 

))(
)1(

ln()(
)(

)(
)()(

)(

)(
))((

21

1

))((

))(( 1

1

1


















t

t

t

t

t

t

dssq
pp

peM
tqds

sz

sz
tqdssq

tz

tz




  

for ))((, 1 uTutT    we have  
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from the increasing of order of integrating 

we can conclude that  
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use the last inequality in (10) we obtain   
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using lemma 2 we have  
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according to (8) we must have 
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  which contradict 

lemma 1. 

Example1 
,0,0)

2

3
())cos(2)1((])())cos(()([  ttxtatxtatx




such that 1a ,  a sample verification 

yields that the conditions of theorem 1 are 

met. Hence all solutions of above equation 

oscillate for instance )cos()( ttx  is 

such solution. 

Theorem2 Assume that 

1)(0),()(,0)( 12  ptpptttq   

and there exists 0k  such that  
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then every solution of equation (1) is 

oscillatory. 

Proof Suppose that equation (1) has an 

eventually positive solution )(tx , then 

from (9)  
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using the inequality 1,0,1
2
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the last inequality will be  
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which is contradict lemma 1. 

Example 2 Consider the equation  
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  which satisfies all conditions of theorem 

2, therefore  each solution of above 

equation oscillate for example 

)sin()( ttx  is an oscillatory solution. 

Theorem 3 Suppose that 
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Then every solution of equation (1) is 

oscillatory. 

Proof For the sake of contradiction we 

may suppose that )(tx  is an eventually 

positive solution of equation (1) then 

0)(  tz  and 0)( tz  and we have  
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Which is contradict lemma 1.3.2 in [14]. 

Example 3 Consider the neutral equation 
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 all that the conditions of theorem 3 are 

satisfied, hence each solutions of the above 

equation oscillate for example 

)2cos()( ttx  is an oscillatory  solution. 
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Theorem 4 Assume that 

fttptptq ,)(,1)(0,0)(  
is an increasing function and    
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then all bounded solutions of equation (1) 

are oscillatory. 

Proof We suppose that )(tx is bounded 

and positive solution of equation (1) for 

0tt   which implies to 
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then from equation (1) and the last 

inequality we obtain  
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then if t  we get contradiction. 

Example 4 Consider the neutral equation 
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2
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1
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all that the conditions of theorem 3 are 

satisfied, hence each solutions of the above 

equation oscillate for example 

)cos()( ttx  is an oscillatory  solution. 

Theorem 5 Assume that 

ftttptq ,)(,0)(,0)(   is an 

increasing function and   
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then all bounded solutions of equation (1) 

are oscillatory. 

Proof Suppose that )(tx is an eventually 

positive solution of equation (1) then 

0,0)(  ztz   for 0tt   and by (1) we 

have  
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by integrating this equation from 0t  to 
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which is contradiction since 0)( tz . 

Example 5 Consider the neutral equation 

,0,0)
2

3
())cos(25(])())cos(6()([  ttxttxttx




 all that the conditions of theorem 3 are 

satisfied, hence each solutions of the above 

equation oscillate for example 

)cos()( ttx  is an oscillatory  solution. 
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 الأولىتذبذب المعادلات التفاضلية المحايدة غير الخطية ذات الرتبة 
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 الخلاصة:  
 بالصيغة الأولى تم في هذا البحث دراسة المعادلة التفاضلية المحايدة غير الخطية من الرتبة 

                    )1(0)))((()(]))(()()([  txftqtxtptx  

 أو( وتعتبر هذه النتائج تحسين 1شروط ضرورية جديدة تضمن تذبذب جميع حلول المعادلة ) يجادإ إلىحيث توصلنا 
  . tيمثلون دوال مستمرة لكل  tp)(و    t)(و   t)([ لأن1في البحث ]  إليهاديل   للنتائج التي تم التوصل تع

 .نظريات معززة بأمثلة لتأكيد وجود الحل لهذه المعادلة 5تضمن البحث   حيث


