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Forest ecosystems of the Russian Federation are expected to face high risks under

environmental dynamics related to climate change. Analyzing the likely impacts of climate

change on forest ecosystems is crucial in order to understand the potential adaptation of

forests, to guidemanagement strategies, as well as to preserve ecosystem services. With

the aim to provide information on the possible modifications of geographic ranges, in the

medium to long-term, for some Russian dominant forest species under climate change,

we applied a Cascade Ensemble System (CES) approach. This consists of combining

Ensemble Platform for Species Distribution Models (SDMs) to six bias-corrected Earth

System Model (ESM) projections, driven in turn by two Representative Concentration

Pathways (RCPs) proxies of greenhouse gas emission scenarios, in order to obtain

area maps of the future suitability for forest species. The suitability information is then

flagged with information about its “likelihood,” adopting the IPCC terminology based on

a consensus among projections. Maps of aggregated changes were created in order

to identify areas potentially more vulnerable to climate change. Results showed that

possible impacts of climate change (either gain or loss) were diversified across species

with a pronounced Northward shift of the ranges. Further analyses were performed at

sub-regional levels revealing the potential for the Arctic Circle to become a refuge area

for some conifer species. Species-aggregated change analyses spotted two distinct

areas as more vulnerable to habitat change, in the central and south-east portions

of the Russian territory. Our findings represent useful and immediate biogeographical

information available to Russian policy makers to delineate conservation strategies and

forest management plans.

Keywords: The Russian Federation, forests, climate change, SDM, BIOMOD, impacts, geographic ranges,

biogeography

1. INTRODUCTION

The concept of biogeography, which studies the distribution of species and ecosystems in
a geographic space, plays a fundamental role when analyzing feedback between climate
change and forests (Dale et al., 2001; Bonan, 2008; Allen et al., 2010). First, forest
ecosystems have different carbon sequestration/stock performances in function of the species
and/or the climate zone considered; consequently, forests influence the terrestrial carbon
budget and the climate mitigation potential in multiple ways (Piovesan and Adams,
2000; Valentini et al., 2000; Houghton, 2005; Schaphoff et al., 2006; Jones et al., 2014).
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Besides these biogeochemical impacts of forests on the climate,
biophysical effects also differ according to the ecological zone
(boreal, temperate, tropical) considered, due to the dominance of
albedo, evapotranspiration or the roughness processes (Perugini
et al., 2017). Thus, understanding and projecting the impacts
of climate change on forest ecosystems, in terms of either
spatial range or productivity, become crucial in order to guide
adaptation strategies and plans, e.g., to increase resilience and
to maintain ecosystem services of forests (Millar et al., 2007). As
Yalcin and Leroux (2017) clearly states, successful approaches to
conserve biodiversity should consider where species were in the
past, where they are at present, and mainly where they will be in
the future.

Even if forest ecosystems are able to evolve their resilience and
adaptation capacity under both long-term changes and short-
term disturbances (Thompson et al., 2009; Trumbore et al.,
2015), the feedback between climate change and forests is
increasingly complex and accelerating in almost all regions of
the world, so that the impact of climate change is occurring
much faster than the natural adaptation of forests (Loarie et al.,
2009; Gauthier et al., 2015). The impact of climate change on
forest ecosystems is expected to be important, especially at the
Northernmost latitudes (IPCC, 2013; Knutti and Sedláček, 2013;
Xu et al., 2013), where a considerable forest loss was recently
registered, mainly due to climate-related hazards such as fires,
pests and windstorms (Hansen et al., 2013; Gauthier et al.,
2015).

In this context, the forest ecosystems of the Russian Federation
(or simply Russia hereafter) raise particular interest. The
estimated forested surface in Russia ranges from 556 to 910
million hectares Schepaschenko et al., 2015 (815 Mha in 2015
according to the latest Forest Resource Assessment by FAO
(2016)). Similar to Canada and Brazil, Russia contains areas of
about 64% of the world’s occupied and intact forests (Potapov
et al., 2008). In 2015, the surface of primary forests was 273
million ha (33.5% of total) with an annual increase of 0.5%
along the 1990/2015 period (FAO, 2016). Some authors (Dolman
et al., 2012; Schaphoff et al., 2016) state that about half of the
estimated terrestrial global carbon sink is located in Russian
forests for a total of 20–25% of the world’s stock of growing
timber (FAO, 2012; Komkov, 2014; Pogosov, 2015; Ivanter, 2016).
Moreover, together with Canada and Fennoscandia, Russia
hosts 90% of the world’s carbon sink in boreal forests (FAO,
2012). Nevertheless, the opportunities provided by the forestry
sector are currently underestimated by national economic and
environmental policy, and the colossal forest potential of the
country is essentially under-utilized (FAO, 2012). For example,
although a round-wood production of around 175 million
cubic meters was reached in 2010 (ranking second after United
States) (FAO, 2016), the share in the world’s forest product
trade is below 4% and even less in terms of Gross Domestic
Product (GDP), industrial production and employment (FAO,
2012).

Abbreviations: pp., projected presence; FDA, Flexible Discriminant Analysis;
GLM, Generalized Linear Model; GBM, Generalized Boosted Model; ANN,
Artificial Neural Networks; SRE, Surface Range Envelope; RF, Random Forest.

According to Huston (1994) and Tikhonova et al. (2017),
Russian forests have generally been shaped by a combination
of abiotic, biotic and anthropic factors, and the present-day
latitudinal gradient of tree species composition is determined
primarily by climate (Sykes et al., 1996; Körner et al.,
2016). Therefore, any decision aiming at appropriate forest
management must consider those trends in climate change
and variability is expected to modify the region’s vegetation
mosaic (Kicklighter et al., 2014). Analyses of future climate
simulations in Feng et al. (2014) and Santini and di Paola (2015)
show that changes in major climate types would be particularly
evident over high-latitudes (North of the 50◦N), e.g., with
transitions from polar to sub-polar climate, or from sub-polar to
temperate climate.

Climate modifications are expected to alter ecosystem
metabolism and lead to a redistribution of vegetation across
Northern Eurasia throughout the twenty-first century, with
further changes in the occurrence of fires and other disturbances
such as pests (Gauthier et al., 2015). In particular, the boreal
forests of the Russian Federation are projected to face the
highest risk of severe ecosystem changes (Warszawski et al.,
2013), with Siberian vegetation habitat markedly perturbed by
2080 (Tchebakova et al., 2010a).

In this evolving context, Species Distribution Models (SDMs)
are valuable tools to explore relationships and the hypothetical
equilibrium between the climate and the geographical (spatial
range of) species distribution, considering a set of environmental
and territorial predictors (either strictly bioclimatic factors or
other topographic, soil, and accessibility attributes) (Guisan
and Zimmermann, 2000; Naimi and Araújo, 2016). Despite
their known limitations, due to unavoidable assumptions and
uncertainties (Lexer and Hönninger, 2004; Guisan and Thuiller,
2005; Hijmans and Graham, 2006; Gavin et al., 2014; Watling
et al., 2015; Hannemann et al., 2016; Anderson, 2017; Noce
et al., 2017; Faurby and Araújo, 2018), if interpreted with caution
SDMs remain a powerful tool to project possible modifications
(expansion, reduction, shift) in species spatial ranges at global,
regional, and local levels (Franklin, 2013; Tchebakova et al.,
2016). SDMs should, in fact, “...be viewed as first approximations
that indicate the potential magnitude and broad pattern of future
impacts, rather than as accurate simulations of future species
distributions" (Pearson and Dawson, 2003).

Recently, such biogeographical modeling was applied under
the ensemble forecasting approach, i.e., addressing the variability
not only across multiple SDMs (Araújo and Luoto, 2007) but
also across future climate projections, to study likely climate-
driven modifications of vegetation spatial ranges in Europe
(Innangi et al., 2015; Marchi et al., 2016; Dyderski et al.,
2017; Noce et al., 2017), North America (Clark et al., 2014;
Scherrer et al., 2017), and Siberia (Tchebakova et al., 2009, 2011;
Tchebakova and Parfenova, 2012; Shuman et al., 2015). However,
to our knowledge, neither the assessments nor projections were
conducted for the whole of Russia, covering most of its forest
heritage. In this work, a set of SDMs was applied, forced
by the latest generation of climate projections, to simulate
how the combination of bioclimatic and territorial predictors
in the future would influence the composition, in terms of
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both regional arrangement and local diversity, of the dominant
tree species representing 98% of the Russian forest resources
(FAO, 2012). The Cascade Ensemble System (CES) approach,
previously formulated in Noce et al. (2017) for Southern Europe,
was adapted and applied over Russia to take into account the
variability in the species distribution projections, related both to
the spread of future climate outlooks generated by global models
(Goberville et al., 2015) and to the varying complexity of the
SDMs used to reproduce the relationships between predictors
and forest occurrence.

Projections are produced for two-time horizons (on the
medium- and long-term future) and under two greenhouse gas
emission scenarios (intermediate and highly pessimistic). From
this ensemble, the adoption of the “likelihood” terminology
formulated by the Intergovernmental Panel on Climate Change
(IPCC) (Mastrandrea et al., 2011) allows to easily treat the
compound variability across projections (i.e., due to both SDMs
and climate simulations) and to efficiently communicate it to the
main actors of the forest sector, such as stakeholders and policy
makers at various spatial levels.

First, the likelihood of the expected distribution for each
dominant forest was mapped across the whole Russian
Federation. Second, different sub-regions defined by latitude
and longitude boundaries were considered. Third, since several
studies suggest that future warming could promote forest
expansion along the Arctic Circle (Devi et al., 2008; MacDonald
et al., 2008; Berner et al., 2013), the potential of this region to act
as refuge area for some forest species under future climate change
pressures was also investigated. Finally, results were elaborated to
examine the statistical significance of changes in terms of regional
and local composition of dominant forest species.

2. MATERIALS AND METHODS

2.1. Study Area
The study area (Figure 1) covers the whole Russian territory for
a total surface of 17.1 Mkm2, extending for 41◦ latitude (from 40
to 81◦N) and 171◦ longitude (from 19◦E to−169◦W). According
to the Köppen-Geiger climate classification (Kottek et al., 2006;
Peel et al., 2007; Santini and di Paola, 2015), most of the national
surface is characterized by a cold (snow) climate, with humidity
all year-round (74%) or just in one season (2%). The snow
climate, with dry winters and the polar tundra zone, each occupy
around 11–12% of the territory, while the temperate and arid
climates reach just 1%. According to the FAOSTAT database
(FAO, 2018), the forests in Russia extend over almost 50% of
the national territory, against a coverage of agricultural lands of
around 13%. Still, according to FAOSTAT, a very small amount
of forests are planted (2.5%) while the majority are primary and
naturally regenerated forests covering around one third and two
thirds, respectively.

Most ecosystems are characterized by boreal forests, that
consist of hardy genera of larch (Larix) and pine (Pinus),
referred to as light-needled conifers, and of spruce (Picea), fir
(Abies), and cedar (Cedrus) as dark-needled species, interspersed
with deciduous hardwoods of birch (Betula), aspen (Populus),
willow (Salix), and alder (Alnus) (Shumilova, 1962; Soja et al.,

2007). The remaining part (exclusively in the Southernmost
latitudes) is composed by temperate forests (in particular over
the Southern Far East and Caucasus Mountains) and a forest
steppe (Houghton et al., 2007).

2.2. Species Distribution Modeling
The Species Distribution Model (SDM) simulations were
executed through the BIOMOD2 package v3.3- 7 (https://
cran.r-project.org/web/packages/biomod2/index.html; Thuiller
et al., 2016) implemented in R (R Core Team, 2015). The
BIOMOD2 platform uses individual species representation and
a community-based approach, enabling ensembles of models to
be evaluated (calibration phase, see later) under the historical
conditions (represented by predictors) and then re-applied
to project, along future time horizons, the potential spatial
distribution of species (Naimi and Araújo, 2016), to be intended
as “habitat suitability” driven by climate. Ten models are
embedded in BIOMOD2, ranging from simple regressions to
classification, artificial neural network and surface envelope
methods. The combined use of both simple and complex
methods is recommended as there is no clear better performance
of one or the other method, and it depends on the region
and/or the quality of the data (Ochoa-Ochoa et al., 2016). The
BIOMOD2 package, also, makes specific metrics available and
run configurations to assist themodels’ evaluation, whose settings
are explained later directly referring to the present application.

2.2.1. Forest Occurrence Database
To consider the spatial distribution of Russian forests, the
“Russian Forests & Forestry” dataset was accessed, distributed by
the International Institute for Applied Systems Analysis (IIASA,
Laxenmburg, Austria; https://webarchive.iiasa.ac.at/Research/
FOR/forest_cdrom/home_en.html) and based on Russian State
Forest Account data (Fomchenkov et al., 2003). This dataset,
available in shapefile format, consists of a map showing the
historical/current distribution of dominant forest species across
the Russian Federation (besides shrubs and minor deciduous):
Aspen, Birch, Cedar, Fir, Larch, Pine, and Spruce. When available
data are presence-only, as in this case, other locations can be
considered by BIOMOD2 as “pseudo-absences” (Thuiller et al.,
2009), also referred to as “not presence” hereafter. To derive a
geodatabase of the presence-not presence for every species, a
chain of spatial algorithms was applied in the GIS environment
(Suite ESRI ArcGis Desktop 10.1) (Figure 2). First, the forest map
was overlaid to a regular grid with 0.5 × 0.5◦ spacing, covering
the whole of Russia, whose extent was taken from the ESRI
ArcGIS Online database (http://www.esri.com/software/arcgis/
arcgisonline) (Figure 2A).

Second, for each species, the grid cells overlapping the related
polygons were flagged with “1” (presence). Conversely, cells
intersecting no polygon for the considered species were flagged
with “0” (not presence) (Figure 2B). Then, the binary “1-0”
grid layers for each of the seven species have been converted
in separated point layers (Figure 2C) and finally merged in the
overall Occurrence Database (ODb) containing, for each point,
the longitude and latitude coordinates and the “presence” or “not
presence” information.
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FIGURE 1 | Study area domain represented by black borders limiting the Russian Federation territory. The parallel limiting the Arctic Circle is shown in

gray-black/dashed line.

FIGURE 2 | Example of the processing chain for the creation of the Occurrence Database (ODb). (A) The initial 0.5 × 0.5◦ grid; (B) The selection of grid element

overlapped by species polygon; (C) The final binary map of not presence (0; empty circles)—presence (1; full black circles).

2.2.2. Environmental and Territorial Predictors
Different categories of predictors were considered for the SDMs’
calibration and subsequent projections: bioclimatic predictors
(BPs), indicators of environmental characteristics; topographic
predictors (TPs); and two accessibility predictors (APs) related to
other territorial settings (distance from major cities and rivers).
BPs were elaborated from the time series of temperature and
precipitation data available, for the historical period, from the
Water and Global Change (WATCH) forcing dataset (WFD)
(http://www.eu-watch.org/data_availability). The WFD is a
twentieth century meteorological dataset based on the European

Centre for Medium-range Weather Forecasts (ECMWF) Re-
Analysis (ERA-40) (Uppala et al., 2005) interpolated to a 0.5 ×

0.5◦ latitude/longitude grid, with successive elevation correction
of surface meteorological variables plus monthly bias correction
from the Climatic Research Unit (CRU) gridded observational
dataset (Piani et al., 2010;Weedon et al., 2011). From this dataset,
the years from 1960 to 1999 were considered as representative of
the historical period.

BPs are listed in Table 1. The first 19 BPs match with the
ones promoted by the WorldClim dataset (Fick and Hijmans,
2017), the remaining were selected from the analyzed literature
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TABLE 1 | Bioclimatic environmental predictors.

ID Description Unit

Bio1 Annual Tm ◦C

Bio2 Mean Diurnal Range ◦C

Bio3 Isothermality %

Bio4 Temperature Seasonality ◦C

Bio5 Tx of warmest Month ◦C

Bio6 Tn of coldest Month ◦C

Bio7 Temperature annual range ◦C

Bio8 Tm of wettest quarter ◦C

Bio9 Tm of driest quarter ◦C

Bio10 Tm of warmest quarter ◦C

Bio11 Tm of coldest quarter ◦C

Bio12 Annual P mm

Bio13 P of wettest month mm

Bio14 P of driest month mm

Bio15 P seasonality mm

Bio16 P of wettest quarter mm

Bio17 P of driest quarter mm

Bio18 P of warmest quarter mm

Bio19 P of coldest quarter mm

Bio20 Ellemberg quotient

Bio21 Accum. temperature of Months with Tm >0 ◦C

Bio22 Sum of monthly Tm ◦C

Bio23 Ombrotermic Index

Bio24 Accumulated P of Months Tm >0◦ mm

Bio25 Kira coldness index ◦C

Bio26 Kira warmth index ◦C

Bio27 Continentality index ◦C

Bio28 Tm of warmest month ◦C

Bio29 Tm of coldest month ◦C

Bio30 Tm of driest month ◦C

Bio31 Tm of wettest month ◦C

Bio32 Termicity index ◦C

Bio33 Ombrotermic summer index

Bio34 Evapotraspiration* mm

Tm, Mean Temperature; Tx, Max Temperature; Tn, Min Temperature; P, Precipitation.
*Mean of Hargreaves (Hargreaves and Samani, 1982) and Thornthwaite (Thornthwaite,

1948) formulas.

on the topic (Kira, 1945; Gorbunov, 1978; Ellenberg, 1988; Rivas-
martínez, 2004). While the longitude and latitude information
are directly available in the ODb (TPs 1 and 2), other TPs (from
3 to 8) have been elaborated from the ViewFinder Panorama
Digital Elevation Model (DEM) (De Ferranti, 2014), downloaded
at http://viewfinderpanoramas.org/dem3.html. The 90 × 90 m
resolution of the available dataset was resampled in GIS to 0.5
× 0.5◦ resolution and the main statistics (mean, maximum,
minimum) for elevation and slope were calculated within the
new cells. The APs came from spatial analyses in the GIS
environment, made starting from “World Major Rivers” network
and “World Cities,” available in the ArcGIS Online platform
through the Euclidean Distance tool in ESRI ArcGIS Spatial
Analyst extension. TPs and APs are listed in Table 2.

TABLE 2 | Topographic and accessibility predictors.

ID Description Unit

Top1 Easting ◦C

Top2 Latitude ◦C

Top3 Max altitude m

Top4 Max slope %

Top5 Mean altitude m

Top6 Mean slope %

Top7 Min altitude m

Top8 Min slope %

Acc1 Distance from cities with more than 250,000 inhabitants km

Acc2 Distance from major rivers km

2.2.3. SDM Calibration and Evaluation
The BIOMOD2 platform was trained and calibrated re-adapting
the choices in VanDerWal et al. (2009) and Lobo et al. (2010) to
the characteristics of the study area, i.e., using pseudo-absences
to address the risk of false absence information (Barbet-Massin
and Jetz, 2014). Pseudo-absences were randomly selected within
a maximum distance of 4◦ from detected presences. The number
of pseudo-absences for each species was set five times larger
than the number of presences, except for Fir where a factor
of 10 was used. We increased the factor for Fir’s analyses,
due to an overestimation of the predicted presences and very
low modeling performance detected in training simulations,
according to Kanagaraj et al. (2013). Then, a subset of 70%
of points was used to calibrate each SDM for each single
species, while the remaining 30% was used for the validation
(see, e.g., Duque-Lazo et al., 2016; Noce et al., 2017). Still,
for validation purposes, the BIOMOD2 platform also allows
n data splitting runs within each model simulation: ten runs
where used in this case. Runs and thus models concurring to
the ensemble were selected by applying a Receiver Operating
Characteristic (ROC) test with a score of ≥0.85. The ROC
plot has been selected because it is threshold-independent and
could overcome the limits of threshold-dependent Cohen’s K and
True Skills Statistics (TSS) (Noce et al., 2017). In the end, nine
among the ten SDMs in BIOMOD2 provided valuable results
for the ensemble forecasting: FDA, GLM, GBM, CTA, ANN,
SRE, MARS, RF, and MAXENT, all with the default settings
(Phillips et al., 2006; Thuiller et al., 2009). For each species, the
nine SDMs’ predictions provided the probability of presence;
an overall probability was then derived by a weighted average
based on the predictions’ performance and converted into a
binary map (projected presence/projected not-presence) using a
threshold that maximized the ROC statistic. This binary map,
for each species, was then compared to the ODb to evaluate
the accuracy of the modeling chain (calibration phase) through
metrics based on the confusionmatrix proposed byMiller (2010):
Sensitivity (Sens), Specificity (Spec), Predicted Present correctly
Predicted (PPP), Predicted Not-Present correctly Predicted
(NPP), True Skill Statistic (TSS), Percent Correctly Classified
or Overall Accuracy (PCC), and Cohen’s Kappa (see Table 3

for more information).
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TABLE 3 | Evaluation metrics of accuracy based on the confusion matrix from

Miller (2010).

Measure Description

PCC Percent correctly classified

Kappa Difference between prediction accuracy and chance agreement

Sensitivity Proportion of observed present correctly predicted

Specificity Proportion of observed not-present correctly predicted

PPP Proportion of predicted present correctly predicted

NPP Proportion of predicted not-present correctly predicted

TSS True skill statistic

2.3. The Cascade Ensemble System
To investigate the expected impact of climate change on
the distribution of the considered forest species, the cascade
ensemble system (CES) as in Noce et al. (2017) was applied,
forcing calibrated SDMs under several climate projections. This
approach takes into consideration both SDMs and climatic
projections’ uncertainty related to climate models and emission
scenario variability. Future outlooks of species occurrence from
the CES, therefore, are flagged according to IPCC terminology
on the likelihood based on the consensus across the projections
(Mastrandrea et al., 2011), providing more robust information
about potential future changes.

2.3.1. Future Projections
To evaluate the potential modifications (expansion, reduction,
shift) of forest species across the study area (whole of Russia),
two future time horizons of 40 years were selected: 2060,
representing the 2040–2079 medium-term period; and 2080,
representing the 2060–2099 long-term period. To re-run the
SDMs under the future expected combination of environmental
and territorial conditions, a dataset of predictors for the
future was prepared. The TPs and APs were considered
unchanging along the period of projections, while BPs were
recalculated under future climatic circumstances. Daily time
series of precipitation and temperature are available thanks to
coordinated climate model simulation experiments from phase
5 of the Coupled Model Intercomparison Project (CMIP5) (van
Vuuren et al., 2011; Taylor et al., 2012). These simulations
are forced by multiple Representative Concentration Pathways
(RCPs) formulated by the Intergovernmental Panel on Climate
Change (IPCC, 2013). The RCPs are defined by their total
radiative forcing (cumulative measure of human emissions of
GHGs from all sources) until 2100 and beyond, which could
result from different combinations of economic, technological,
demographic, policy, and institutional futures. In this study,
the RCP4.5 (Thomson et al., 2011) and RCP8.5 (Riahi et al.,
2011) were selected. The RCP4.5 is a stabilization scenario
where total radiative forcing is stabilized, shortly after 2100,
to 4.5 Wm-2 (approximately 650 ppm CO2-equivalent) by
employing technologies and strategies to reduce GHG emissions,
while the RCP8.5 is a business as usual scenario and it is
characterized by increasing GHG emissions and high GHG
concentration levels. It represents a rising radiative forcing

pathway leading to 8.5 Wm-2 in 2100 (approximately 1,370
ppm CO2-equivalent). To serve impact studies, however, raw
climate model simulations need to be bias-corrected (Hempel
et al., 2013). In this context, the Inter-Sectoral Impact Model
Intercomparison Project (ISI-MIP Fast-Track) provides globally
downscaled (at 0.5 × 0.5◦ grid resolution) and bias-corrected
daily time series of temperature and precipitation for five Earth
System Models (ESMs) participating in CMIP5 (https://esg.
pik-potsdam.de/search/isimip-ft/): GFDL-ESM2M, HadGEM2-
ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, NorESM1-M. Bias-
correction is based on a trend-preserving method (Hempel
et al., 2013; https://github.com/ISI-MIP/BC) and, for the purpose
of this work, it was applied also to the ESM developed and
used by the Foundation Euro-Mediterranean Center on Climate
Change (CMCC-CESM), and whose raw data are available
at the CMIP5 data archive (https://esgf-node.llnl.gov/search/
cmip5/). For the five different ESMs already bias-corrected on
the ISI-MIP platform, the RCP4.5 and the RCP8.5 were selected,
while projections under the RCP8.5 scenario are available from
the CMCC-CESM. The previously calibrated SDM package of
BIOMOD2 was thus re-applied to produce eleven CES members
for each time horizon and each forest species, i.e., forced by two
RCPs for five ESMs plus one RCP for the CMCC-CESM. Each
member is, in turn, obtained by weighting simulations from the
nine SDMs.

2.3.2. Likelihood Quantification and Species

Distribution Analysis
Two kinds of analysis were performed over Russia from the
outputs of the CES chain: spatial and non-spatial. The former
examines the spatial occurrence of presence/not-presence cases
for each single species and under each time horizon. After
producing maps of the potential distribution (namely “habitat
suitability”) for each forest species under the different CES
members, the spread in results, due to ESMs and RCPs, was
quantified by adopting the approach and terminology to treat
the variability and communicate the “likelihood” of outcomes,
in compliance with IPCC-AR5 (Mastrandrea et al., 2011). We
slightly reformulated the likelihood scale as reported in Table 4.
Further, the level of expected modifications for each map unit
was calculated by producing an additional binary map, for each
species and time horizon, with 1 indicating conversion from
presence (or not-presence) to not-presence (or presence), and 0
indicating persisting presence or persisting not-presence. Then,
the binarymaps of changes for the different species were summed
up and a final map with discrete values from 0 (no changes)
to 7 (all species changed their state) was produced, indicating
the level of likely change across the study domain. Finally, this
information was aggregated by hexagonal binning in a Hex-Bin
map averaging the discrete values (Change Index) in hexagons
with a surface of 25,000 sq. Km.

The non-spatial analysis looks at aggregated modifications
in the species’ composition, both at regional and local level.
First, the re-arrangement of occurrence values for the different
species (as average among CES members for each species) was
assumed as a proxy of the regional modifications in the forest
composition for the future, within the (persisting or new) suitable
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TABLE 4 | Adopted likelihood scale (based on IPCC AR5 guidance note

Mastrandrea et al., 2011).

Likelihood Number of predicted presence

Exceptionally unlikely 0

Very unlikely 1

Unlikely 2–3

About as likely as not 4–7

Likely 8–9

Very likely 10

Virtually certain 11

areas. Second, the number of co-existing forest species at the
map unit (pixel) level (still as average among CES members)
was considered as representative of local forest diversity, and the
updated frequency of pixels with different species richness was
analyzed. In both cases, the chi-square test was applied to verify
the statistical significance of the differences across time horizons,
assuming a 99.9% significance level (i.e., frequency distributions
are significantly different for a p <0.001).

Besides considering the Russian territory as a whole, a sub-
regional analysis was then conducted. The domain has been
divided into nine quadrants (Figure 3): NW (North-West), N
(North), NE (North-East), E (East), C (Center), W (West), SE
(South-East), S (South), SW (South-West). Each quadrant has an
extension of 13.5◦ latitude and 57◦ longitude. Furthermore, the
Arctic Polar Circle sub-region (North of the latitude 66.50◦N)
was also considered.Within both quadrants and the Arctic Circle,
the average of projected presence across the ensemble members
in the historical period and for the two future time horizons (2060
and 2080) under the two RCPs (4.5 and 8.5) was calculated. Due
to the different coverage of the species across these quadrants
and in the Arctic circle, the sub-regional analysis was limited
to the four species whose SDMs present an overall prediction
accuracy (as average across all the metrics) >0.95: Birch, Larch,
Pine, and Spruce.

3. RESULTS

Concerning the calibration/validation phases, Table 5 shows the
accuracy of SDMs under the evaluation metrics adopted. Results
for Kappa and TSS statistics can be considered as good to
excellent according to Zhang et al. (2015) classification. The
overall accuracy, in terms of averages among the metrics, ranges
from 0.882 (Fir) to 0.977 (Larch) and it is >0.95 for four species:
Birch, Larch, Pine, and Spruce. Additionally, BIOMOD2 provides
an estimate of the relative importance for each environmental
predictor, whose highlights are reported in Table 6. It is clear
how predictors Bio25, Bio32, and Bio34 are crucial for more than
half of the considered species, while 19 predictors in total are
not among the top five in terms of importance, to explain the
species occurrence, and in six cases they are excluded (mostly
Bio14). After running BIOMOD2 embedding future projections
of bioclimatic predictors, the maps derived from the single CES
members were aggregated into two final maps for each dominant
forest species, for 2060 and 2080, respectively. Therefore, each

map represents the likelihood of habitat suitability following
the IPCC terminology. Colors from light yellow to dark red in
Figure 4 indicate the increasing likelihood, which can be also
visually compared to the respective binary map of historical
species occurrence (presence vs. not-presence) derived from the
IIASA database. The Figure 5 shows the Hex-Bin map of the
Change Index for the long-term (2080) scenarios, with major
changes concentrated inmid and lower latitudes, and particularly
in the Irkutsk and Khabarovsk regions. The forest composition
was thus analyzed in terms of species’ regional arrangement
(Figure 6) and local diversity (Figure 7). In the first case, the
species occurrence both in the medium-term and the long-term
future is significantly different from that along the historical
period, as well as between the two future periods. This is mainly
due to the reduction of Birch, Pine, Larch, and the strong increase
of Aspen and Fir. Cedar and Spruce remainmore or less constant.
Furthermore, locally there are significant differences among time
horizons. Locations with moderate forest diversity (two or three
species) diminish while those with very low and high forest
diversity (one and more than four species, respectively) increase,
including some previously bare areas that gain forests.

Looking at sub-regional levels for those species with overall
SDM performance >0.95 (Birch, Larch, Pine, and Spruce),
the Supplementary Information report and summarize the
averages of projected presence among the CES members for
each quadrant. Colored graph bars are distinguished for the two-
time horizons and the two RCPs, and the historical presence is
indicated by the black outline of the bars. For Birch (Figure SI1),
a strong reduction is expected from 59 to 69% on average across
RCPs for the medium-term (2060) and long-term (2080) periods,
respectively, regardless of the level of initial occurrence, and from
36 to 63% in theWest where Birch is originally more diffused. For
Larch (Figure SI2), a reduction up to 76% is projected on average
for 2080 across the Central longitude quadrants and in the whole
Southern zone, and up to 41% considering only the Central
portion which is currently the richest in Larch. Contrarily, a
very strong increase is projected in the North and North-East,
with future presences at least doubling in all scenarios. For
Pine (Figure SI3), the projected spatial distribution for 2080
suggests an average decrease of 42% encompassing the quadrants
of Central and Western longitudes, while an average increase of
around 57% is expected to the East.

Spruce (Figure SI4) is projected to drop up to 51 and 37% in
the South-Eastern and Western sector, respectively, in the long-
term. In the same time-frame, the Central part, largely populated
by Spruce at present, is expected to experience a 39% increase.

In Figure 8 the average projected presence among the CES
members, and considering separately time horizons and RCPs,
are reported for the Arctic Polar Circle. Even if starting from
different historical presences, results for Larch, Pine and Spruce
increase. Pine and Spruce are expected to double; Larch to
increase by nearly 30%. Contrarily, Birch species strongly
decrease, almost disappearing by 2080 under RCP8.5.

4. DISCUSSION

According to the latest climate projections conducted within
the Coupled Model Intercomparison Project 5 (CMIP5),
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FIGURE 3 | Sub-regional analysis quadrants, each 13.5◦ latitude high × 57◦ longitude wide. The parallel limiting the Arctic Circle is shown in gray-black/dashed line.

TABLE 5 | SDM Performance based on selected metrics.

Species PCC Kappa Sens. Spec. PPP NPP TSS Ov.Accuracy

Aspen 0.975 0.859 0.973 0.975 0.791 0.997 0.948 0.931

Birch 0.974 0.929 0.959 0.979 0.934 0.987 0.938 0.957

Cedar 0.980 0.885 0.985 0.980 0.822 0.999 0.964 0.945

Fir 0.969 0.708 0.996 0.968 0.568 1.000 0.964 0.882

Larch 0.984 0.963 0.980 0.986 0.969 0.991 0.966 0.977

Pine 0.975 0.937 0.970 0.977 0.937 0.990 0.948 0.962

Spruce 0.977 0.922 0.986 0.986 0.891 0.997 0.962 0.959

temperature will significantly increase by the end of the twenty-
first century over Russia. This increase will be more evident in
the cold season (by up to +8◦C across high latitudes) and less
in the warm season (by up to +5◦C in Southern Siberia). At the
same time, precipitation is projected to substantially increase,
especially in the cold season. Thus, during the vegetation growing
season, the combined effect of rising temperatures and limited
variation in precipitation will probably lead to changes in the
hydrological cycle and consequently to a significant shifts in
ecosystems (Groisman et al., 2013; Knutti and Sedláček, 2013;
Feng et al., 2014).

To deepen the knowledge on the above climatic impacts, the
climate-driven “habitat suitability” (or simply “suitability”) of
a representative portion (ca. 98%) of some dominant species
of Russian forests was investigated in the present work. A
Cascade Ensemble System (CES) was applied to combine the
variability of outcomes due to both climate models and Species
Distribution Models (SDMs). First, the SDM calibration and
validation phase was conducted, revealing a good performance of

the BIOMOD2 platform due to considerable matching between
observed and modeled forest species’ spatial ranges along the
historical-current period. However, sub-regional analyses were
conducted only for species showing excellent agreement between
the observed and modeled ranges. In general, temperature
appeared the key limiting factor in reshaping species ranges. In
fact, while the precipitation-related bioclimatic predictors show
a lower relative importance in explaining the forests species
occurrence, this occurrence seems more sensitive to bioclimatic
predictors related both to temperature alone (i.e., Kira coldness
and Termicity indices) and to the combination of temperature
and precipitation (i.e., Evapotranspiration).

Successively, possible future ranges of the same dominant
forest species in Russia were provided through spatial maps,
flagged with information about the likelihood of the projected
occurrence, based on the consensus among CES simulations.
In general, considering long-term projections (2080) and the
worst scenario (RCP8.5), some species (Fir and Aspen) could
likely find more suitable conditions in the future, while other
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TABLE 6 | The five most important and excluded environmental (bioclimatic) predictors according to BIOMOD2 calibration for each species.

ID Aspen Birch Cedar Fir Larch Pine Spruce Count

Bio1 – – – – – – – 0

Bio2 – – 4 – – – – 1

Bio3 – – – – – – – 0

Bio4 5 – – – 3 – 1 3

Bio5 – 3 – 4 – – – 2

Bio6 – – – – – – – 0

Bio7 – – – – – – – 0

Bio8 – – – excl – – – 0

Bio9 – – – – – – – 0

Bio10 – 5 – – – 2 – 2

Bio11 – – – – – – – 0

Bio12 – – – 5 – – 4 2

Bio13 – – – – excl – – 0

Bio14 – excl excl – excl – – 0

Bio15 – – – – – – – 0

Bio16 – – – – – – – 0

Bio17 – – – – – – – 0

Bio18 – 4 3 – – – – 2

Bio19 – – – – – – – 0

Bio20 – – – – – – 2 1

Bio21 4 – – – – – – 1

Bio22 – – 5 3 – – – 2

Bio23 – – – – – – – 0

Bio24 – – – – – – – 0

Bio25 1 – 2 1 2 1 3 6

Bio26 – 2 – – – 5 – 2

Bio27 – – – – 5 – – 1

Bio28 – – – – 4 – – 1

Bio29 – – – – – – – 0

Bio30 – – – – – – – 0

Bio31 – – – – – – – 0

Bio32 3 1 1 excl 1 4 – 5

Bio33 – – – – – – – 0

Bio34 2 – – 2 – 3 5 4

The numbers identify how the predictor ranks in terms of importance in explaining the species occurrence. The “Count” column summarizes for how many species the predictor is

ranked among the five most important; “excl” means that the predictor was excluded by BIOMOD2 due to marginal importance.

(mainly Birch and secondarily Pine) could be negatively affected
by climate change with a noteworthy reduction of the historical
ranges. In Figure 4, a general shift of species suitability toward
the North-East is detectable for the majority of species (Aspen,
Fir, Larch, Spruce) if compared to the historical period, although
there is a likelihood that strength diminishes in the long-term
with respect to the medium-term. For the future, the likelihood
quantification is provided rather than the binary presence-
not presence information available for the historical period,
thus it is not possible to state univocally if the visual shift
is an expansion or contraction, as this could vary across CES
simulation members. If extracting from the maps the locations
where presence has higher value of likelihood (“likely,” “very
likely,” and “virtual certain”), only Aspen and Fir seem to

effectively expand their habitats, while for the other species a
contraction is projected, even if rather moderate for Cedar.
Summarizing, our results suggests a possible increasing trend of
forest suitability over higher latitudes, opposed to a reduction
over lower latitudes. Major changes in dominant forests are
expected across the Southern portion of the Central Siberian
Plateau (Irkutsk region) and the Southern Far East (Khabarovsk
region), while the slowest changing rates are projected both in
the Southern-Western domain, probably because the analysis
does not include the dominant species of this area (temperate
broadleaf), and in the Northern-Eastern Siberia, where only the
Larch is expected to gain suitability.

Moving to the sub-regional analyses, the impact of climate
change on Betula species should be negative and largely
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FIGURE 4 | Output maps from the Cascade Ensemble System (CES). Forest species distribution according to historical period (presence-not presence; left side) and

future scenarios for 2060 (central column) and 2080 (right side), with likelihood flag.

widespread, as also described in other studies over Europe
(Dyderski et al., 2017; Noce et al., 2017) under different climatic
conditions. These results can be partly offset by the excellent
dispersal and migration capacities toward new areas of this
species (Giesecke et al., 2017). However, neither dispersal nor
migration dynamics are considered in the SDM approach, thus,
in the end, the Birch habitat suitability seems strongly limited
both in the medium- and long-term.

For Larch, the Northward, and minimally Eastward, shift of
the range appears to be themost likely scenario with a continuous

trend from the mid- to the long-term. Although facilitated by
a good dispersion capacity of these species (Ellenberg, 1988),
these variations associated with a general reduction of suitability
should be more evident under the RCP8.5 scenario. Despite
our results for these, species did not show a gain in suitable
areal distribution under a changing climate as in Tchebakova
et al. (2006, 2010b), the less suitable area in the Central and
Southern portion of the ranges will be partly compensated
by a gain of more appropriate habitats in the Northern and
North-Eastern ones.
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FIGURE 5 | Hex-bin map of the formulated Change Index for the long-term scenario. Each hexagon reports the average value of the number of projected conversions

from presence (or not-presence) to not-presence (or presence).

FIGURE 6 | Cumulated forest species distribution in terms of count of map

units (pixels) with presence (pres.; for the historical period) and projected

presence (pp.; for the future periods). Different capital letters mean that the

distributions are significantly different at the 99.9% level (p < 0.001).

Future climate conditions, in particular in the long-term,
could negatively affect the Pine’s geographical distribution. This
contraction in future ranges could likely be related to increasing
drought stress, due to a positive temperature change according
to Suckow et al. (2016) findings. It is also reasonable to
predict different responses for the most represented species
of this genera: Scots pine (Pinus sylvestris), which is more
tolerant to warmer temperature, could be less affected than
Siberian pine (P. sibirica).

The scenarios for Spruce are interesting: our findings suggest
clear modifications in terms of a potential Eastward shift of
the spatial range and an overall neutral balance in terms of
suitability gain/loss. In particular, in the Central portion of

the study area, our projections suggest a potential change in
the forest composition from Larch dominated toward Spruce
dominated forests, in accordance with (Shuman et al., 2011;
He et al., 2017) and actual trends demonstrated by field
observations (Kharuk et al., 2005).

Finally, the analysis on the Arctic Circle reveals a possible
strong increase of forests dominated by Larch, Pine, and Spruce
in this area that is currently dominated by ecosystems with no or
scarcely forested areas (e.g., tundra). According to the projections
of Tchebakova et al. (2016), foreseeing a strong reduction of
tundra by 2090, and of Shuman et al. (2015), the tree line should
move Northward and the Arctic Circle will potentially become
a refuge area for the migration of these species. However, it is
fundamental to consider the expected retreat of the permafrost
zone under global warming: many studies (Tchebakova et al.,
2009, 2010b; Shuman et al., 2015) emphasize the importance
of this factor in reshaping forest ranges, but as also described
in Tchebakova et al. (2016), the permafrost would not retreat
sufficiently fast enough to create favorable habitats for Pine and
Spruce. Indeed, as demonstrated in McKenney et al. (2007),
Shvidenko et al. (2013), and Gauthier et al. (2015), there is
evidence that climate zones are shifting Northward, but this
is happening one order of magnitude faster than the trees’
ability to migrate. Furthermore, although warmer temperature
(especially in summer) can accelerate tree growth and indirectly
the suitability for some species, at the same time they can
increase the hazard of forest fires (Furyaev et al., 2001). In
synthesis, the Arctic region, despite showing potentially suitable
climatic conditions for some forest species, is likely to become
a bottleneck for the pronounced Northward reshaping of forest
ranges due to other constraints.
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FIGURE 7 | Cumulated forest species diversity in terms of count of map units (pixels) hosting a given number of species. Different capital letters mean that the

distributions are significantly different at the 99.9% level (p < 0.001).

FIGURE 8 | Historical presence (pres.) compared to the average of projected presences (pp.) (averaged and not between RCPs for 2060 and 2080) for the Arctic

Circle region.

Several caveats of the presented approach have to be
considered. First, the lacking consideration of the disturbance
factors in the analysis. In fact, the combined effects of
multiple (natural and human-made) disturbances can influence
the distribution of Russian forests, affecting both succession
dynamics and landscape connectivity, as well as the productivity
and vitality of forest ecosystems, as described in the review work
of Schaphoff et al. (2016). Examples of disturbances playing a
crucial role in the future reshaping of forest species are fires,
which has already burned 1.6 million of ha per year over the
2003–2012 decade (FAO, 2016), and forest insects, whose impacts

are expected to increase (Mollicone et al., 2006; Ivanova et al.,
2010; Baranchikov et al., 2011). Second, the SDM approach
is not able to capture the total species’ environmental range
limit, also known as “truncated niche” (Zurell et al., 2012),
and consequently the combinations of environmental conditions
for which the models are calibrated are under-represented,
affecting future projections (Thuiller et al., 2004). Furthermore,
despite covering a representative portion (ca. 98%) of forests’
dominant species, the sample does not capture the overall
possible spatial transitions, therefore neglecting some possible re-
arrangements of species and the gain of new suitable habitats in
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Southern Siberia for temperate broadleaf forests as described in
Tchebakova and Parfenova (2012). Finally, the source occurrence
database is not strictly based on georeferenced samples as
typically used for more limited-area SDM applications, but is
derived from distribution maps, thus preventing any further
reasonable refinement of the analysis spatial detail and to draw
conclusions at a local level.

Despite the above limitations, the presented work provides
noteworthy information on possible scenarios of forest suitability
for the entire territory of Russia. The analysis strongly relies
on the most updated and bias-corrected data from latest
generation of Earth System Models (ESMs), from which a
cascading ensemble framework (based on climate and species
distribution models) was applied to obtain robust projections
of habitat suitability for forests across Russia. This ensemble
approach allowed for compliance with the terminology
suggested by the IPCC, in order to quantify the likelihood
based on a consensus among projections. Our findings,
flagged with the related likelihood information, represent
preliminary but useful and communicative information,
available to policy makers at national and sub-regional level
in Russia, to support their formulation of future forest
conservation and management plans (e.g., reforestation and
afforestation programs).
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