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Autophagy is an intracellular degradation pathway for malfunctioning aggregation-prone
proteins, damaged organelles, unwanted macromolecules and invading pathogens. This
process is essential for maintaining cellular and tissue homeostasis that contribute to
organismal survival. Autophagy dysfunction has been implicated in the pathogenesis
of diverse human diseases, and therefore, therapeutic exploitation of autophagy is of
potential biomedical relevance. A number of chemical screening approaches have been
established for the drug discovery of autophagy modulators based on the perturbations
of autophagy reporters or the clearance of autophagy substrates. These readouts can
be detected by fluorescence and high-content microscopy, flow cytometry, microplate
reader and immunoblotting, and the assays have evolved to enable high-throughput
screening and measurement of autophagic flux. Several pharmacological modulators
of autophagy have been identified that act either via the classical mechanistic target
of rapamycin (mTOR) pathway or independently of mTOR. Many of these autophagy
modulators have been demonstrated to exert beneficial effects in transgenic models
of neurodegenerative disorders, cancer, infectious diseases, liver diseases, myopathies
as well as in lifespan extension. This review describes the commonly used chemical
screening approaches in mammalian cells and the key autophagy modulators identified
through these methods, and highlights the therapeutic benefits of these compounds in
specific disease contexts.

Keywords: autophagy, autophagy reporter, autophagy substrate, autophagy modulator, screening method,
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INTRODUCTION

Macroautophagy, herein referred to as autophagy, is an
intracellular degradation process essential for ensuring cellular
homeostasis. This well-conserved catabolic process mediates
the targeted degradation of unwanted or excess cytoplasmic
materials, such as aggregation-prone proteins, pathogens
and damaged organelles like mitochondria, amongst others
(Ravikumar et al., 2010). This process is also involved in
the bulk degradation of cytoplasmic macromolecules and
recycling of the breakdown products especially during nutrient
deprivation to provide energy homeostasis, thereby forming a
crucial connection between anabolism and catabolism (Boya
et al., 2013; Kaur and Debnath, 2015). Due to its vital function
as a homeostatic regulator, impairment of the autophagy is
implicated in several human pathologies including certain
cancer, metabolic syndromes, infectious diseases, liver diseases,
myopathies, aging and neurodegenerative disorders (Mizushima
et al., 2008). Therefore, therapeutic modulation of autophagy
holds great potential in the development of treatment strategies
for these diseases (Rubinsztein et al., 2012).

Autophagy is evolutionarily-conserved from yeast to humans.
The de novo formation of phagophores, the double-membrane
structures that expand to form double-membrane vesicles called
autophagosomes, require multiple autophagy-related (Atg)
genes in the autophagic machinery, such as the Atg5-Atg12-
Atg16 complex and the phosphatidylethanolamine-conjugated
microtubule-associated protein 1 light chain 3 (LC3-II) (Kabeya
et al., 2000; Mizushima et al., 2011; Ktistakis and Tooze,
2016). Maturation of autophagosomes into the degradative
autolysosomes occurs either via the multi-step route involving
the fusion of autophagosomes with late endosomes to form
amphisomes which subsequently fuse with the lysosomes, or via
the direct route involving the fusion between autophagosomes
and the lysosomes (Nakamura and Yoshimori, 2017). The
autophagic cargo engulfed by the autophagosomes are
ultimately degraded in the acidic autolysosomes by the
lysosomal hydrolases, which are only active at the low pH
maintained by the vacuolar-type H+-ATPase (V-ATPase) on
the lysosomal membrane (Saftig and Klumperman, 2009).
Finally, the breakdown products are recycled and utilized as
inputs to cellular metabolism for energy generation (Rabinowitz
and White, 2010). The rate at which this dynamic turnover of
cellular contents occurs through the process of autophagy is
referred to as autophagic flux. Autophagic flux encompasses all
stages of autophagy which includes autophagosome formation,
fusion with the lysosomes and cargo degradation in the
autolysosomes (Figure 1).

Key upstream modulators of autophagy include the
mechanistic target of rapamycin complex 1 (mTORC1) pathway,
which promotes cellular biosynthesis and inhibits autophagy
(Saxton and Sabatini, 2017). Regulation of autophagosome
formation by mTORC1 is mediated via the ULK1–Atg13–FIP200
complex; mTORC1 suppresses autophagy under nutrient-rich
conditions by phosphorylation-dependent inactivation of ULK1
and Atg13 (Mizushima, 2010; Zachari and Ganley, 2017).
Various signals such as growth factors and nutrients impinge

on mTORC1 to negatively influence autophagy (Kim and Guan,
2015). Conversely, during nutrient starvation, autophagy is
promoted by inhibition of the mTORC1 activity (Carroll et al.,
2014; Russell et al., 2014). Furthermore, ULK1 can be directly
phosphorylated and activated by the energy sensor AMPK
to stimulate autophagy (Egan et al., 2011; Kim et al., 2011).
In addition, several mTORC1-independent pathways have
been described where autophagy is negatively regulated by the
elevation in intracellular inositol, Ca2+ and nitric oxide levels,
amongst others (Sarkar, 2013b). Molecular mediators of the late
stage of autophagy involving autophagosome maturation include
Rab7, SNAREs (N-ethylmaleimide-sensitive factor-attachment
protein receptors), GABARAPs, BRUCE and Beclin1-interacting
partners such as Atg14L, UVRAG and Ambra1 (He and Levine,
2010; Nguyen et al., 2016; Wang et al., 2016; Reggiori and
Ungermann, 2017; Ebner et al., 2018). At a transcriptional level,
autophagy is governed by the transcription factor EB (TFEB)
(Settembre et al., 2011), which in itself is activated by lysosomal
Ca2+ (Medina et al., 2015).

Chemical modulation of autophagy by targeting the mTOR-
dependent and mTOR-independent pathways has proven to be
of potential biomedical relevance due to therapeutic advantages,
especially in neurodegenerative disorders as well as in diverse
human pathological conditions such as in certain liver diseases,
myopathies, infectious diseases, metabolic diseases, cancer
and aging (Rubinsztein et al., 2012; Sarkar, 2013b; Levine
et al., 2015). Hence, the discovery of potent small molecules
regulating autophagy is of great interest. Here we review the
chemical screening strategies for autophagy drug discovery,
and highlight the potential benefits of autophagy modulators
in human diseases.

CHEMICAL SCREENING STRATEGIES
FOR IDENTIFYING AUTOPHAGY
MODULATORS

A number of in vitro screening methods have been designed
for identifying compounds (Sarkar, 2013a; Joachim et al., 2015;
Seranova et al., 2019). The assays are primarily based on the
perturbations of autophagy reporters or autophagy cargoes as
readouts (Figure 1), which can be measured via fluorescence
or high-content imaging, immunoblotting, flow cytometry and
microplate reader (Mizushima et al., 2010; Klionsky et al.,
2016; Figure 2 and Table 1). Some of these screening methods
can be subjected to high-throughput applications. Below are
descriptions of the common screening approaches in mammalian
cells, and the identification and therapeutic benefits of key
autophagy modulators.

CHEMICAL SCREENING METHODS
BASED ON AUTOPHAGY REPORTERS

Screening methods based on autophagy reporters are the most
commonly used approaches to detect changes in the numbers
of autophagosomes and autolysosomes (Table 1). The protein
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FIGURE 1 | Autophagy reporter and substrate based screening strategies and the impact of autophagy modulators at different stages of the autophagy process.
Autophagy is regulated by the mechanistic target of rapamycin complex 1 (mTORC1) or mTORC1-independent pathways. This process initiates by the formation of
phagophores that expand and engulf autophagy substrates to form autophagosomes, which then fuse with the lysosomes to form autolysosomes where the
autophagic cargo is degraded. Autophagy inducers and inhibitors increase or decrease autophagosome formation, respectively, at the early stages of autophagy,
whereas autophagy blockers prevent lysosomal degradation and/or autophagosome maturation at late stages of autophagy. Autophagic flux is thus enhanced by
autophagy inducers but is retarded by autophagy inhibitors and blockers. Chemical screening methods for identifying autophagy modulators are commonly based
on the readouts of perturbations in autophagy reporters such as LC3-II, or autophagy substrate clearance such as aggregation-prone proteins or p62/SQSTM1.

TABLE 1 | Chemical screening methods for identifying autophagy modulators in mammalian cells.

Autophagy screening assays Detection methods Strengths Limitations

GFP-LC3 Fluorescence or high-content
microscopy

(1) Simple readout easy to detect (1) Can not distinguish between autophagy
inducer and blocker

(2) High-throughput application (2) Can not assess overall autophagic flux

mRFP-EGFP-LC3 Fluorescence or high-content
microscopy

(1) Can distinguish between autophagy
inducer, inhibitor and blocker

(1) Assay depends on proper acidification of the
lysosomes that can be affected by
lysosomotrophic agents

(2) Measures autophagosome flux (2) Can not precisely assess overall autophagic
flux as it does not measure cargo clearance.

(3) High-throughput application

GFP-LC3-RFP-LC31G Fluorescence or high-content
microscopy, Flow cytometry,
Microplate reader

(1) Measures overall autophagic flux (1) Can not distinguish between autophagy
inhibitor and blocker

(2) Versatile detection methods (2) Homologous recombination of two LC3
sequences could result in non-degradable
GFP-LC31G

(3) High-throughput application

Inducible p62-fLuc or GFP-p62 Microplate reader, Flow
cytometry

(1) Measures clearance of autophagic
cargo indicating overall autophagic flux

(1) Can not distinguish between autophagy
inhibitor and blocker

(2) Possible high-throughput application (2) Transcriptional changes in leaky p62
transgene could affect readout

Inducible EGFP-HDQ74 or
HA-α-syn(A53T)

Immunoblotting (1) Measures clearance of autophagic
cargo indicating overall autophagic flux

(1) Can not distinguish between autophagy
inhibitor and blocker

(2) High-throughput analysis not possible

The detection methods, strengths and limitations of the autophagy reporter and substrate based screening assays are highlighted.

reporter that is widely used to study autophagy is microtubule-
associated protein 1 (MAP1) light chain 3 (LC3). The nascent LC3
is cleaved at its C-terminal arginine residue by Atg4 to form the
cytoplasmic LC3-I, which is then post-translationally conjugated

with phosphatidylethanolamine at its C-terminal glycine residue
by Atg7 to form the autophagosome-associated LC3-II (Kabeya
et al., 2000). The lipidated LC3-II remains associated to the
autophagosomes throughout their lifespan, and is present on
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both the outer and inner membranes. Following the maturation
of autophagosomes with lysosomes to form autolysosomes, the
LC3-II on the inner surface is degraded whereas the LC3-II on the
outer surface is delipidated and removed by Atg4B for recycling
(Tanida et al., 2004). A number of fluorescent-tagged reporters
of LC3, such as GFP-LC3 (Kabeya et al., 2000), mRFP-GFP-
LC3 (Kimura et al., 2007) and GFP-LC3-RFP-LC31G (Kaizuka
et al., 2016), have been used to study autophagy and undertake
chemical screening.

Identification of Autophagy Modulators
by GFP-LC3 Screening Method
The most common LC3-based reporter that has been used
in several studies is GFP-LC3, which labels autophagosomes,
autolysosomes as well as phagophores (Kabeya et al., 2000). For
the GFP-LC3 screening method, image-based analysis is done by
quantifying the GFP+ puncta per cell to measure perturbations in
autophagosome number. In general, an autophagy inducer as well
as an autophagy blocker will increase GFP-LC3 puncta whereas

an autophagy inhibitor will decrease GFP-LC3 puncta (Figure 2).
A number of high-throughput and small-scale screens have been
undertaken with this strategy that has been also utilized to assess
the key hits arising from other screening methods; and some
of the primary chemical screens utilizing GFP-LC3 readout are
highlighted below.

Using GFP-LC3 as the primary screening method in a
stable human glioblastoma H4 cell line, an image-based
chemical screen with 480 bioactive compounds was performed
wherein the number, size and intensity of GFP-LC3 spots
were taken into consideration while selecting potent autophagy
modulators (Zhang et al., 2007). Compounds were treated
at 3–12 µM concentrations for 24 h. This screen identified
8 autophagy inducers, which included a number of FDA-
approved drugs such as fluspirilene, trifluoperazine, pimozide
(antipsychotic drugs), niguldipine, nicardipine, amiodarone
(drugs used for cardiovascular conditions) and loperamide
(used in diarrhea). While fluspirilene, trifluoperazine are
dopamine antagonists, the other drugs are Ca2+ channel
antagonists that lower intracellular Ca2+; all of which induced

FIGURE 2 | Autophagy chemical screening strategies in mammalian cells. Chemical screening methods that are commonly used for identifying autophagy
modulators are based on autophagy reporters (LC3) or autophagy substrates (p62 or aggregation-prone proteins). The detection methods for the respective assays
and the expected readouts for autophagy inducers, blockers or inhibitors are indicated as a general guidance.
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autophagy independently of mTOR (Zhang et al., 2007).
Another image-based chemical screen was performed with
a library of 3584 pharmacologically active compounds in
human breast cancer MCF-7 cells stably expressing GFP-LC3
(Balgi et al., 2009). Treatment of compounds was done at
∼15 µM concentration for 4 h. This screen identified 3
FDA-approved drugs such as perhexilene, niclosamide and
amiodarone, as well as rottlerin, as autophagy inducers; all of
which were shown to inhibit mTORC1 (Balgi et al., 2009).
However, other screens have reported amiodarone (Ca2+ channel
antagonist) to act independently of mTORC1 for inducing
autophagy at a much lower dose than what is required
to inhibit mTORC1 (Williams et al., 2008); and likewise,
perhexilene is a Ca2+ channel blocker that could be also mTOR-
independent. Furthermore, one of the largest chemical screens
for identifying autophagy modulators was undertaken in HeLa
cells stably expressing GFP-LC3 with 59541 stereochemically
and skeletally diverse compounds derived from diversity-
oriented synthesis (Kuo et al., 2015). Compounds were treated
for 4 h in 8-point dose with a maximal concentration of
10 µM. Several hits were subjected to a secondary screen
at 10 µM concentration from which BRD5631 was identified
as the potent autophagy inducer along with other hits like
BRD2716 and BRD34009; all of which did not affect mTOR
activity. Interestingly, the hit rate in the primary screen for
compounds having an alkyl amine was higher than that
for all of the compounds. This effect was augmented by
the additional presence of a single lipophilic group, such
as diphenyl alkyne, biphenyl, cyclohexane or naphthalene
(Kuo et al., 2015). While the above screens were undertaken
in immortalized human cell lines, another chemical screen
was done with 1280 pharmacologically active compounds in
mouse embryonic fibroblasts (MEFs) stably expressing GFP-
LC3 (Li et al., 2016). Compounds were treated at 0.02–46 µM
concentrations for 16 h in the presence or absence of chloroquine
(autophagy blocker) to determine their effects on autophagic
flux. Out of the 27 autophagy inducers identified, few were
characterized further. These include anti-psychotic drugs such as
indatraline hydrochloride (dopamine inhibitor), chlorpromazine
hydrochloride and fluphenazine dihydrochloride (dopamine
receptor antagonists). Fluphenazine was found to inhibit
mTORC1 whereas indatraline and chlorpromazine were mTOR-
independent (Li et al., 2016).

Although GFP-LC3 is a straightforward, widely-used
screening assay, its inability to distinguish between
autophagosomes and autolysosomes is a major inadequacy
of this reporter. Accumulation of autophagosomes can occur
either due to induction of autophagosome formation (by
autophagy inducers) or due to block in autophagosome
maturation (by autophagy blockers) in the early and late
stages of autophagy, respectively (Rubinsztein et al., 2009).
Since autophagy is a dynamic, multi-step process, it is
imperative to measure autophagosome flux in order to
assess the status of autophagy. Therefore, the hits from
the primary GFP-LC3 screen are subjected to rigorous
secondary assays (such as autophagosome formation and
maturation, and autophagic substrate clearance, amongst others)

(Mizushima et al., 2010; Klionsky et al., 2012) for characterizing
autophagy modulators.

Identification of Autophagy Modulators
by mRFP-GFP-LC3 Screening Method
In order to overcome the problem of the GFP-LC3 reporter,
a tandem fluorescent-tagged mRFP-GFP-LC3 reporter can
be employed to determine autophagosome maturation
for distinguishing between the autophagosomes and the
autolysosomes. This mRFP-GFP-LC3 reporter is pH-sensitive.
When overexpressed in cells, the autophagosomes exhibit both
mRFP and GFP signals, whereas the autolysosomes emit only
mRFP signal because the acid-labile GFP signal is quenched
in the acidic environment (Kimura et al., 2007). For the
mRFP-GFP-LC3 screening method, image-based analysis is
done by quantifying the mRFP+ and GFP+ puncta per cell
to measure perturbations in the number of autophagosomes
(mRFP+/GFP+) and autolysosomes (mRFP+/GFP−). In general,
an autophagy inducer (acting at early stage) will increase
autophagosomes and autolysosomes, an autophagy inhibitor
(acting at early stage) will decrease both these compartments,
whereas an autophagy blocker (acting at late stage) will increase
autophagosomes and decrease autolysosomes (Figure 2).
Alternative versions of the mRFP-GFP-LC3 reporter have
been described that may provide better readouts. These
include replacing mRFP with mCherry that has superior
photostability over mRFP (Pankiv et al., 2007), and substituting
GFP with mWasabi that is more acid-sensitive than GFP
(Zhou et al., 2012).

This pH-sensitive reporter has been primarily utilized as a
secondary screening strategy following primary screens utilizing
the more simpler GFP-LC3 method. In a high-throughput
screen with 59541 compounds in GFP-LC3 platform, 400
screen hits were subjected to additional screening in stable
HeLa cells expressing mCherry-GFP-LC3 (Kuo et al., 2015).
These compounds were treated at 10 µM concentration for
24 h, after which 250 compounds increased (putative inducers)
and 80 compounds decreased (putative inhibitors/blockers) the
number of mCherry+/GFP− autolysosomes. Following further
characterization, potent mTOR-independent autophagy inducers
identified were BRD5631, BRD2716, and BRD34009 (Kuo et al.,
2015). In another study, HeLa cells stably expressing mRFP-GFP-
LC3 was subjected to three drug libraries such as the Prestwick
Chemical Library, Microsource Spectrum 2000 library and Johns
Hopkins Library that encompass 3791 compounds including
FDA-approved drugs and bioactive molecules (Chauhan et al.,
2015). Compounds were treated at 10 µM concentration for
4 h. However, high-content image analysis was done based
only on GFP-LC3 puncta and total integrated area per cell,
but not together with mRFP-LC3 that was utilized later during
secondary characterization. 80 compounds were identified, out
of which 55 were novel and 25 were previously reported
as autophagy modulators. Further characterization of the hits
including the mRFP-GFP-LC3 analysis identified flubendazole
as a novel autophagy inducer that is also an antihelminthic
drug. Flubendazole was shown to impact on dynamic and
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acetylated microtubules to inhibit mTOR and disrupt Bcl2-
Beclin 1 complex for inducing autophagy (Chauhan et al.,
2015). More recently, a primary screen with mRFP-GFP-LC3
has been performed in U343 glioma cell spheroids (3D tumor
spheroids) by dynamic live-cell imaging (Pampaloni et al.,
2017). A subset of the Enzo Life Sciences Screen-Well Natural
Compounds library comprising of 94 compounds were used
at 1, 12.5, and 50 µM concentrations, followed by long-term
time-lapse fluorescence imaging over 24 h at an interval of 1 h.
Instead of measuring puncta formation, this study quantified
the readout based on the ratio of mRFP and GFP emission
intensities over time. Apart from validating this approach with
the Enzo Life Sciences Screen-Well Autophagy library consisting
of known autophagy modulators, the screen with selected
natural compounds identified six potent autophagy inducers
and four inhibitors. The autophagy-inducing natural compounds
include PI-103, nonactin, valinomycin, quercetin, ivermectin,
and harmine (Pampaloni et al., 2017).

The mRFP-GFP-LC3 reporter or its alternative versions can
be subjected to high-throughput image-based screens to analyse
autophagosome flux. This assay requires proper acidification
of the lysosomes that could be affected by lysosomotrophic
agents. However, autophagic substrate clearance along with other
secondary assays should be assessed following the primary screen
in order to assess the overall autophagic flux.

Identification of Autophagy Modulators
by GFP-LC3-RFP-LC31G Screening
Method
A novel autophagy probe, GFP-LC3-RFP-LC31G, has been
recently developed for evaluating autophagic flux that can be used
for high-throughput screening approaches (Kaizuka et al., 2016).
When overexpressed in cells, the Atg4 family proteases can cleave
this reporter into equimolar amounts of GFP-LC3 and RFP-
LC31G. While GFP-LC3 on the autophagosomes is degraded
or recycled after fusion with the lysosomes, RFP-LC31G cannot
be lipidated due to a deletion in its C-terminal glycine and
thus remains in the cytosol serving as an internal control.
This GFP-LC3-RFP-LC31G reporter can be subjected to both
qualitative (by ratiometric imaging via fluorescence microscopy)
and quantitative (via microplate reader or flow cytometry)
analyses by measuring the fluorescence of GFP-LC3 and RFP-
LC31G, and then calculating the GFP/RFP ratio (Kaizuka et al.,
2016). Autophagy inducers are expected to decrease GFP/RFP
ratio by enhancing autophagic flux, whereas autophagy inhibitors
or blockers will increase GFP/RFP ratio by reducing autophagic
flux (Figure 2).

Two chemical screens employing the GFP-LC3-RFP-LC31G
screening method have been undertaken using a selected
library of 34 known autophagy-regulating compounds and 1054
approved drugs under basal or starvation conditions in HeLa
cells stably expressing this reporter (Kaizuka et al., 2016). The
GFP/RFP ratio was calculated from fluorescence measurement
via a microplate reader. For the first screen with known
autophagy-regulating compounds, cells were treated for 6, 12
or 24 h with concentrations previously shown to modulate

autophagy. A number of known autophagy modulators, but
not all, acted as expected primarily after 12 or 24 h treatment.
Specifically, autophagy inducers such as rapamycin (Blommaart
et al., 1995) and Torin 1 (Thoreen et al., 2009) decreased
GFP/RFP ratio whereas autophagy blockers like bafilomycin A1
(Yamamoto et al., 1998) and chloroquine (Seglen et al., 1979)
increased GFP/RFP ratio (Kaizuka et al., 2016). For the second
screen with approved drug library, cells were treated for 24 h
at 10 µM concentration with few exceptions at 5 µM. The
screen hits included 47 autophagy-inducing drugs (comprising
of certain anti-cancer drugs, antibiotics and cardiotonic drugs)
and 43 autophagy inhibitory drugs. Although many of these hits
were previously reported, 13 inducers and 18 inhibitors/blockers
were identified as novel autophagy modulators, of which
some of the novel autophagy inducers were adefovir pivoxil,
methyltestosterone, norethisterone, oxaprozin, and zidovudine
(Kaizuka et al., 2016). This GFP-LC3-RFP-LC31G probe has
been demonstrated to be capable of measuring basal and induced
autophagic flux in Zebrafish and in tissues of transgenic mice
(Kaizuka et al., 2016), and is thus valuable for monitoring
autophagic flux in vivo.

Although this reporter can be used for high-throughput
applications and in vivo studies to measure the overall
autophagic flux, it is not ideal for investigating the distinct
stages of autophagy such as autophagosome formation and
maturation. Importantly, the two LC3 sequences of GFP-
LC3-RFP-LC31G in retrovirally transfected cells can undergo
homologous recombination, which will generate GFP-LC31G
that is incapable of being degraded by autophagy. In addition,
the expression levels of this reporter define the accuracy of
the readout, and hence analysis in different cell lines or
tissues will require comparable expression (Kaizuka et al., 2016;
Geng and Klionsky, 2017).

CHEMICAL SCREENING METHODS
BASED ON AUTOPHAGY SUBSTRATES

In addition to the screening approaches based on LC3 reporters,
autophagy substrate clearance has also been utilized as a primary
screening assay for identifying autophagy modulators (Table 1).
This method measures the autophagic cargo flux, which together
with LC3-based secondary assays for autophagosome flux can
indicate the overall autophagic flux.

Identification of Autophagy Modulators
by Clearance of Aggregation-Prone
Proteins
A number of neurodegeneration-associated aggregation-
prone proteins are predominantly degraded by autophagy
(Menzies et al., 2017), and hence screening methods can
be based on their clearance as readouts (Sarkar, 2013a).
The well-established substrates undergoing autophagic
degradation include mutant huntingtin (with expanded
polyglutamine repeats) and mutant α-synuclein (A53T or A30P
mutants) associated with Huntington’s and Parkinson’s disease,
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respectively (Webb et al., 2003; Ravikumar et al., 2004). Since the
steady-state level of proteins is not ideal for accurately reflecting
any impact on their degradation, stable inducible cell lines are
required for analyzing autophagic substrate clearance where
the transgene product is temporally synthesized by doxycycline
followed by treatment with compounds after the expression is
turned off (Wyttenbach et al., 2001; Webb et al., 2003; Sarkar
et al., 2009). In general, autophagy inducers will enhance the
clearance of aggregation-prone proteins, whereas autophagy
inhibitors or blockers will retard their clearance (Figure 2).

Independent studies using a stable inducible PC12 cell line
expressing EGFP-tagged mutant huntingtin (EGFP-HDQ74)
identified mTOR-independent autophagy inducers such as
trehalose (Sarkar et al., 2007a) as well as inositol-lowering
agents (lithium, carbamazepine, valproic acid, L-690330) (Sarkar
et al., 2005) and nitric oxide synthase inhibitors (L-NAME)
(Sarkar et al., 2011). These studies also identified autophagy
inhibitory compounds such as agents increasing inositol or
inositol 1,4,5-trisphosphate (IP3) levels (myo-inositol, prolyl
endopeptidase inhibitor 2) (Sarkar et al., 2005) and nitric
oxide donors (DEA NONOate, DETA NONOate) (Sarkar et al.,
2011). Utilizing stable inducible PC12 cell line expressing
hemagglutinin (HA)-tagged A53T α-synuclein (HA-α-syn(A53T))
as the primary screening method, a chemical screen was
undertaken with 72 hits arising from an yeast screen involving
50729 compounds (Sarkar et al., 2007b). Cells were treated with
compounds at 2 mg mL−1 concentration for 24 h after the initial
doxycycline-induced synthesis of the transgene product (A53T
α-synuclein), followed by immunoblotting analysis to measure
its clearance. A number of novel autophagy modulators were
identified which enhanced the autophagy substrate clearance.
These include 4 small molecule enhancers of rapamycin (SMERs)
and 13 small molecule inhibitors of rapamycin (SMIRs), of
which SMER10, SMER18, and SMER28 were characterized
to be autophagy inducers acting independently of mTOR.
Further screening of the chemical analogs of these SMERs
identified 18 additional autophagy inducers, such as 1 SMER10,
7 SMER18 and 10 SMER28 analogs that are capable of
enhancing substrate clearance; although not substantially better
than the respective parent compounds (Sarkar et al., 2007b).
Another screen also utilizing a stable inducible PC12 cell line
expressing HA-tagged A30P α-synuclein (HA-α-syn(A30P)) was
undertaken with a library of 253 compounds including FDA-
approved drugs and pharmacological probes (Williams et al.,
2008). Drug treatment was done at 1 µM for 24 h after the
synthesis of the transgene product, followed by immunoblotting
analysis. This study elucidated a cyclic mTOR-independent
autophagy pathway with multiple drug targets, in which cAMP
regulates IP3 levels that impact on calpain activity, which in
turn activates Gsα that regulates cAMP levels. Some of the
autophagy-inducing compounds identified include L-type Ca2+

channel blockers (verapamil, loperamide, amiodarone), calpain
inhibitors (calpastatin), ATP-sensitive K+ channel agonist
(minoxidil), cAMP reducing agents (rilmenidine, clonidine) and
inositol lowering agents (valproic acid), whereas Ca2+ channel
openers [(±)-Bay K8644] and agents elevating cAMP (dibutyryl
cAMP, forskolin) and cytosolic Ca2+ (thapsigargin) levels were

autophagy inhibitory (Williams et al., 2008). In addition to
these immunoblotting based methods, the effects of autophagy
modulators on autophagy-dependent clearance of EGFP-tagged
mutant huntingtin aggregates can be validated by fluorescence
microscopy in wild-type (Atg5+/+) and autophagy-deficient
(Atg5−/−) mouse embryonic fibroblasts (MEFs) (Kuma et al.,
2004; Sarkar et al., 2009).

Although autophagic clearance of aggregation-prone proteins
is informative for autophagic flux, only low-throughput
approaches are possible that creates a major hurdle for high-
throughput applications. Nonetheless, this method could be used
as a secondary assay for characterization of selected hits arising
from screens with LC3-based reporters.

Identification of Autophagy Modulators
by p62/SQSTM1 Clearance
An alternative approach to the clearance of aggregation-prone
proteins is to monitor the autophagic degradation of a known
autophagy substrate, p62/SQSTM1, which also functions as
an adaptor protein during selective autophagy for recruiting
specific autophagic cargo to the autophagosomes (Bjorkoy et al.,
2005; Pankiv et al., 2007). Similarly, to the method involving
aggregation-prone proteins, screening approaches based on p62
clearance would ideally require a stable inducible cell line
where the transgene product is temporally expressed before the
treatment with compounds. The p62 reporters, such as GFP-
p62 (Larsen et al., 2010) or luciferase-tagged p62 (Brown et al.,
2016; Min et al., 2018), could be utilized for medium- to high-
throughput screens by flow cytometry or microplate reader (for
analyzing p62 levels) or by fluorescence imaging (for analyzing
p62 aggregates). Genetic screens have been undertaken with
p62-based reporters (Pietrocola et al., 2015; Strohecker et al.,
2015; DeJesus et al., 2016; Hale et al., 2016), and therefore,
similar chemical screening approaches are also possible. In
addition, analyzing the steady-state levels of endogenous p62
by immunoblotting is often used as a secondary assay for
characterization of autophagy modulators (Klionsky et al., 2012).
It is expected that an autophagy inducer will decrease p62 levels
or aggregates, whereas an autophagy inhibitor or blocker will
cause its accumulation (Figure 2). Recently, an assay based on
LC3B-II and p62 time-resolved fluorescence resonance energy
transfer (TR-FRET) has been described to monitor autophagy
independent of any exogenous labels. This method is based on
the proximity of the donor and the acceptor antibodies of LC3-
II and p62, in which autophagy inducers increase LC3-II signal
and decrease p62 signal, autophagy inhibitors do not display
any turnover of either signals, whereas autophagy blockers
will increase LC3-II signal without any turnover of p62 signal
(Bresciani et al., 2018).

Although p62 is a specific autophagy substrate in most
mammalian cell lines (Klionsky et al., 2012), its autophagic
degradation should be confirmed in the cell-type and the time-
points to be used in the screens. Moreover, transcriptional
upregulation of p62 has been reported during some instances
of autophagy activation, such as under prolonged starvation
or with certain pharmacological inducers (Klionsky et al., 2012;
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FIGURE 3 | The impact of malfunctioning autophagy and the therapeutic benefits of autophagy modulators in diverse human diseases. Autophagy is implicated in
diverse human diseases due to its vital role in maintaining cellular homeostasis. Defective or aberrant autophagy contributes to the cytotoxicity underlying many
pathological conditions whereas pharmacological upregulation of autophagy is beneficial in various transgenic models. Key autophagy modulators exerting
therapeutic benefits in neurodegenerative disorders, cancer, infectious diseases, liver diseases, myopathies and lifespan extension, as well as the impact of
malfunctioning autophagy in these contexts, are highlighted.

Sahani et al., 2014; Kuo et al., 2015), and therefore, any
perturbation in p62 protein levels needs to be accompanied by
qPCR assessment of its mRNA levels.

BIOMEDICAL APPLICATIONS OF
AUTOPHAGY MODULATORS IN HUMAN
DISEASES

Autophagy plays an essential role for tissue homeostasis
and cellular survival by removing unwanted materials like
malfunctioning aggregated proteins and damaged organelles
from the cells; however, deregulation of this process could
contribute to cytotoxicity (Mizushima et al., 2008). Autophagy
dysfunction has been implicated in the pathogenesis of
diverse human diseases (Levine and Kroemer, 2008; Jiang and
Mizushima, 2014), and therefore, therapeutic exploitation of
autophagy is of potential biomedical relevance (Figure 3).
A number of independent studies and chemical screens have
identified several autophagy modulators, which have been shown
to impart beneficial effects in various transgenic disease models
(Table 2; Rubinsztein et al., 2012; Sarkar, 2013b; Levine et al.,
2015). Some of the key studies in specific disease contexts are
highlighted below.

AUTOPHAGY MODULATORS IN
NEURODEGENERATIVE DISEASES

Basal autophagy in the brain is critical for maintaining cellular
homeostasis in post-mitotic cells like neurons, which is evident

from the genetic studies in mice where brain-specific deletion
of essential autophagy genes resulted in neurodegenerative
phenotypes (Hara et al., 2006; Komatsu et al., 2006). Particularly,
autophagy is the primary degradation pathway for several
aggregation-prone proteins associated with neurodegeneration
(Rubinsztein, 2006; Nixon, 2013). However, defective autophagy
has been reported in several neurodegenerative diseases,
including neurodegenerative lysosomal storage disorders, and
is considered a major causative factor for neurodegeneration
(Nixon, 2013; Sarkar, 2013b; Menzies et al., 2017; Seranova
et al., 2017). Therefore, induction of autophagy for enhancing
the clearance of mutant aggregation-prone proteins is considered
a potential treatment strategy. The therapeutic benefits of
autophagy inducers have been robustly demonstrated in the
context of neurodegeneration where upregulation of autophagy
was protective in several in vitro and in vivo transgenic models
of neurodegenerative diseases (Rubinsztein et al., 2012; Sarkar,
2013b; Levine et al., 2015; Seranova et al., 2017). Stimulating
autophagy with mTOR inhibitors like rapamycin or its analogs
had beneficial effects in fly and mouse models of Huntington’s
disease, Alzheimer’s disease (AD), Parkinson’s disease (PD),
frontotemporal dementia (FTD), spinocerebellar ataxia type
3 (SCA3) and prion disease (Ravikumar et al., 2004; Berger
et al., 2006; Sarkar et al., 2008; Menzies et al., 2010; Spilman
et al., 2010; Cortes et al., 2012; Wang et al., 2012; Ozcelik
et al., 2013; Jiang et al., 2014). Likewise, several mTOR-
independent autophagy inducers such as, but not limited to,
lithium, carbamazepine (inositol lowering agents), rilmenidine
(cAMP reducing agent), trehalose (AMPK activator), SMERs and
BRD5631 have been shown to be protective in fly, Zebrafish,
mouse or induced pluripotent stem cell (iPSC) models of AD,
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FTD, HD, amyotrophic lateral sclerosis (ALS) and Niemann-
Pick type C1 (NPC1) disease (Sarkar et al., 2005, 2007a,b; Fornai
et al., 2008; Williams et al., 2008; Rose et al., 2010; Zhang
et al., 2011, 2018; Shimada et al., 2012; Wang et al., 2012;
Li et al., 2013; Maetzel et al., 2014; Kuo et al., 2015). The most
widely used mTOR-independent autophagy inducer in vivo is
trehalose (Sarkar et al., 2007a), a disaccharide that stimulates
autophagy by inhibiting SLC2A family of glucose transporters
and activating AMPK (DeBosch et al., 2016), which in turn
can directly influence the phosphorylation of the autophagy-
initiating kinase ULK1 (Egan et al., 2011; Kim et al., 2011).
Remarkably, trehalose had beneficial effects in mouse models of
AD, PD, HD, FTD, SCA17, ALS, as well as cellular and iPSC-
derived neuronal models of prion and NPC1 disease, respectively
(Tanaka et al., 2004; Aguib et al., 2009; Rodriguez-Navarro et al.,
2010; Schaeffer et al., 2012; Castillo et al., 2013; Du et al., 2013;
Zhang et al., 2014; Chen et al., 2015; Tanji et al., 2015). Additional
autophagy-inducing agents reported to be cytoprotective in
neurodegenerative models such as HD, PD, ALS, FTD and Lafora
disease include Tat-Beclin 1 peptide, calpastatin, verapamil,
metformin, AUTEN-67, AUTEN-99, 6-Bio and fluphenazine
(Ma et al., 2007; Williams et al., 2008; Shoji-Kawata et al.,
2013; Barmada et al., 2014; Berthier et al., 2016; Billes et al.,
2016; Papp et al., 2016; Kovacs et al., 2017; Suresh et al.,
2017). A combinatorial approach in enhancing autophagy has
been shown with rapamycin and mTOR-independent autophagy
inducers such as lithium, trehalose or SMERs. Higher efficacy was
achieved via the additive effects of dual treatment on autophagy
induction and cytoprotection in cell and fly models of HD than
the effects of single compounds (Sarkar et al., 2007a,b, 2008).

AUTOPHAGY MODULATORS IN CANCER

The ability of autophagy in the maintenance of metabolic
homeostasis has drawn considerable attention as a potential
target for cancer therapy via its pro-survival and pro-death
mechanisms (Rabinowitz and White, 2010; Levy et al., 2017).
Autophagy plays tumor suppressive role by mitigating oxidative
stress, removing superfluous mitochondria and preventing
DNA damage and genome instability; and on the other hand,
shows pro-tumor activity by preventing the induction of
tumor suppressors, increasing resistance to apoptosis and
maintaining tumor metabolism through recycling of nutrients
(Mathew et al., 2007; Galluzzi et al., 2015; Kimmelman and
White, 2017). Depending on the cancer context and the
opposing effects of autophagy, either inhibitors or inducers
of autophagy could be exploited for cancer therapy (Galluzzi
et al., 2017; Levy et al., 2017). Since autophagy promotes
tumorigenesis in most contexts, inhibition of autophagy has
gathered considerable interest for cancer therapy. Accumulating
evidence demonstrate that autophagy inhibitors/blockers exerted
therapeutic benefits in cancer models. The clinically- approved
autophagy inhibitors chloroquine or hydroxychloroquine
(HCQ), which impair lysosomal acidification and block
autophagic flux (Murakami et al., 1998; Boya et al., 2005),
caused tumor shrinkage in preclinical studies; and thus

HCQ being more potent with lesser side-effects is used in
ongoing clinical trials either alone or in combination with
other treatments (Briceno et al., 2003; Amaravadi et al.,
2007; Cook et al., 2014; Chude and Amaravadi, 2017; Levy
et al., 2017; Onorati et al., 2018). Autophagy inhibitory
compounds, such as Lys05 and ROC-325, which exhibited
anti-tumor activity in mice have been suggested to be more
potent than HCQ (McAfee et al., 2012; Carew et al., 2017).
In addition, autophagy inhibitors preventing autophagosome
formation such as ATG4B antagonists (compounds NSC185058
and UAMC-2526), Vps34 (vacuolar protein sorting protein
34) inhibitor (compound SAR405), ULK1 (Unc-51-like
kinase 1) inhibitor (compound SBI-0206965), USP10/USP13
(ubiquitin-specific peptidases) inhibitor (Spautin-1) and
agents causing transcriptional inhibition of autophagy genes
(pyrvinium pamoate), also exerted anti-proliferative and
anti-tumor effects in cellular and in vivo models of cancer
(Liu et al., 2011; Deng et al., 2013; Akin et al., 2014; Ronan
et al., 2014; Shao et al., 2014; Egan et al., 2015; Kurdi et al.,
2017). On the contrary, various chemical agents or natural
products exerting antiproliferative or anti-tumor activity
either alone or in combination with chemotherapeutic
agents could induce autophagy or autophagic cell death,
which include Torin 1, AC-73, MC-4, metformin, silibinin,
Abrus agglutinin, curcumin, liensinine, spermidine, vitamin
D3, and imatinib (Buzzai et al., 2007; Ertmer et al., 2007;
Wang et al., 2008; Thoreen et al., 2009; Qian et al., 2011;
Francipane and Lagasse, 2013; Law et al., 2014; Jiang et al.,
2016; Pietrocola et al., 2016; Panda et al., 2017; Son et al., 2018;
Spinello et al., 2018).

AUTOPHAGY MODULATORS IN
INFECTIOUS DISEASES

Autophagy plays an important role in innate defense mechanism
by removing intracellular pathogens; a process termed xenophagy
(Levine et al., 2011; Deretic et al., 2013). The role of autophagy
in regulating intracellular infections initially emerged through
studies on Mycobacterium tuberculosis (Mtb) (Gutierrez et al.,
2004; Singh et al., 2006). Subsequently, several other bacterial
pathogens like Salmonella and Listeria, and viral pathogens
like HIV and Dengue were shown to utilize host autophagy
pathways for their own advantage (Jia et al., 2009; Kyei et al.,
2009; Yoshikawa et al., 2009; Heaton and Randall, 2010).
A genome-wide siRNA screen to identify host factors required
for intracellular Mtb survival within macrophages revealed that
a large number of host factors acted via regulation of autophagy
to help the bacteria (Kumar et al., 2010). Induction of autophagy
with rapamycin, carbamazepine, SMER28, and vitamin D3 were
shown to prevent bacterial survival or HIV replication in
macrophages (Gutierrez et al., 2004; Floto et al., 2007; Yuk
et al., 2009; Kumar et al., 2010; Campbell and Spector, 2011,
2012; Schiebler et al., 2015). Notably, carbamazepine reduced
bacterial burden, improved lung pathology and stimulated
adaptive immunity in mice infected with multidrug-resistant
Mtb (Schiebler et al., 2015). Rapamycin also controlled viral and
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TABLE 2 | Therapeutic benefits of autophagy modulators in diverse human diseases.

Diseases Selected autophagy
modulators

Mechanisms of autophagy modulation Therapeutic benefits in animal and iPSC models

Neurodegenerative
diseases

Rapamycin, CCI-779
(Inducers)

Inhibition of mTORC1 (Blommaart et al., 1995;
Ravikumar et al., 2004)

HD flies (Ravikumar et al., 2004; Sarkar et al., 2008),
FTD flies (Berger et al., 2006), HD mice (Ravikumar
et al., 2004), AD mice (Spilman et al., 2010), FTD mice
(Wang et al., 2012; Ozcelik et al., 2013; Jiang et al.,
2014), SCA3 mice (Menzies et al., 2010), Prion disease
mice (Cortes et al., 2012)

Lithium (Inducer) Reduction of inositol and IP3;
mTORC1-independent (Sarkar et al., 2005)

HD flies (Sarkar et al., 2008), AD mice (Zhang et al.,
2011), FTD mice (Shimada et al., 2012), ALS mice
(Fornai et al., 2008)

Carbamazepine
(Inducer)

Reduction of inositol and IP3;
mTORC1-independent (Sarkar et al., 2005)

AD mice (Li et al., 2013), FTD mice (Wang et al., 2012),
ALS mice (Zhang et al., 2018), NPC1 patient
iPSC-derived neurons (Maetzel et al., 2014)

Trehalose (Inducer) mTORC1-independent (Sarkar et al., 2007a);
Inhibition of SLC2A and activation of AMPK
(DeBosch et al., 2016)

HD mice (Tanaka et al., 2004), AD mice (Du et al.,
2013), PD mice (Tanji et al., 2015), FTD mice
(Rodriguez-Navarro et al., 2010; Schaeffer et al., 2012),
SCA17 mice (Chen et al., 2015), ALS mice (Castillo
et al., 2013; Zhang et al., 2014), NPC1 patient
iPSC-derived neurons (Maetzel et al., 2014)

Rilmenidine, Clonidine
(Inducers)

Reduction of cAMP; mTORC1 independent
(Williams et al., 2008)

HD mice (Rose et al., 2010), HD zebrafish (Williams
et al., 2008), HD flies (Williams et al., 2008)

Verapamil (Inducer) Reduction of Ca2+; mTORC1 independent
(Williams et al., 2008)

HD zebrafish (Williams et al., 2008), HD flies (Williams
et al., 2008), NPC1 patient iPSC-derived neurons
(Maetzel et al., 2014)

SMER28 (Inducer) Mechanism unknown; mTORC1 independent
(Sarkar et al., 2007b)

HD flies (Sarkar et al., 2007b)

BRD5631 (Inducer) Mechanism unknown; mTORC1 independent
(Kuo et al., 2015)

NPC1 patient iPSC-derived neurons (Kuo et al., 2015)

Metformin (Inducer) Activation of AMPK (Buzzai et al., 2007) HD mice (Ma et al., 2007), LD mice (Berthier et al.,
2016)

6-Bio (Inducer) Inhibition of mTORC1 signaling (Suresh et al.,
2017)

PD mice (Suresh et al., 2017)

AUTEN-67, AUTEN-99
(Inducers)

Inhibition of MTMR14 (Papp et al., 2016;
Kovacs et al., 2017)

HD flies (Billes et al., 2016; Papp et al., 2016; Kovacs
et al., 2017), PD flies (Kovacs et al., 2017)

Cancer Chloroquine,
Hydroxychloroquine
(Blockers)

Mechanism unknown; Impairment of lysosomal
acidification and autophagosome-lysosome
fusion (Murakami et al., 1998; Boya et al., 2005)

Myc/p53ERTAM induced lymphoma mice (Amaravadi
et al., 2007), mice bearing MCF7-RR and LCC9 ER+
breast cancer xenografts (Cook et al., 2014)

Lys05, ROC-325
(Blockers)

Mechanism unknown; Impairment of lysosomal
acidification and autophagosome-lysosome
fusion (McAfee et al., 2012; Carew et al., 2017)

Mice bearing c8161 melanoma, 1205Lu melanoma and
HT-29 colon cancer xenografts (McAfee et al., 2012),
mice bearing 786-0 RCC xenografts (Carew et al.,
2017)

NSC185058,
UAMC-2526 (Inhibitors)

Inhibition of ATG4B (Akin et al., 2014; Kurdi
et al., 2017)

Mice bearing Saos-2 osteosarcoma xenograft (Akin
et al., 2014), Mice bearing HT29 colorectal tumor
xenograft (Kurdi et al., 2017)

Pyrvinium pamoate
(Inhibitor)

Mechanism unknown; Reduction in Atg gene
expression; mTORC1 independent (Deng et al.,
2013)

Mice bearing 4TI mammary carcinoma xenograft (Deng
et al., 2013)

Torin 1 (Inducer) ATP-competitive inhibition of mTORC1
(Thoreen et al., 2009)

Mice bearing Tu12 and Tu22 colon cancer xenografts
(Francipane and Lagasse, 2013)

Infectious diseases Tat-Beclin 1 (Inducer) Interaction with the negative autophagy
regulator GAPR-1 (Shoji-Kawata et al., 2013)

Mice infected with chikungunya or West Nile virus
(Shoji-Kawata et al., 2013), murine or human
macrophages infected with L. monocytogenes bacteria
and HIV (Shoji-Kawata et al., 2013)

Vitamin D3 (Inducer) Increase in Beclin 1 (Wang et al., 2008);
Increase in Atg gene expression (Yuk et al.,
2009)

Human macrophages infected with M. tuberculosis
bacteria or HIV or coinfection (Yuk et al., 2009;
Campbell and Spector, 2011, 2012)

(Continued)
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TABLE 2 | Continued

Diseases Selected autophagy
modulators

Mechanisms of autophagy modulation Therapeutic benefits in animal and iPSC
models

Carbamazepine
(Inducer)

Reduction of inositol and IP3;
mTORC1-independent (Sarkar et al., 2005)

Human macrophages infected with
M. tuberculosis bacteria or coinfection with HIV
(Schiebler et al., 2015), mice infected with
multidrug-resistant M. tuberculosis bacteria
(Schiebler et al., 2015)

Trehalose (Inducer) mTORC1-independent (Sarkar et al., 2007a);
PI(3,5)P2 agonist, activation of TRPML1 Ca2+

channel (Sharma et al., 2017)

Human macrophages infected with
M. tuberculosis bacteria or coinfection with HIV
(Sharma et al., 2017), PBMCs from HIV patients
(Sharma et al., 2017)

Flubendazole (Inducer) mTORC1 inactivation; nuclear translocation of
TFEB (Chauhan et al., 2015)

Human dendritic cells infected with HIV, and
HeLa cells infected with E. coli bacteria
(Chauhan et al., 2015)

Nitazoxanide (Inducer) Inhibition of mTORC1 signaling (Lam et al.,
2012)

Human acute monocytic leukemia cells or
PBMCs infected with M. tuberculosis bacteria
(Lam et al., 2012)

Nortriptyline (Inducer) Mechanism unknown Human macrophages infected with
M. tuberculosis bacteria (Sundaramurthy et al.,
2013)

Liver Disease Carbamazepine
(Inducer)

Reduction of inositol and IP3;
mTORC1-independent (Sarkar et al., 2005)

AATD mice (Hidvegi et al., 2010), NAFLD and
AFLD mice (Lin et al., 2013), FSD patients (Puls
et al., 2013), AATD patient iPSC-derived
hepatic cells (Choi et al., 2013), NPC1 patient
iPSC-derived hepatic cells (Maetzel et al., 2014)

Lithium, Valproic acid
(Inducers)

Reduction of inositol and IP3;
mTORC1-independent (Sarkar et al., 2005)

AATD patient iPSC-derived hepatic cells (Choi
et al., 2013)

Trehalose (Inducer) mTORC1-independent (Sarkar et al., 2007a);
Inhibition of SLC2A and activation of AMPK
(DeBosch et al., 2016)

NAFLD mice (DeBosch et al., 2016)

Rapamycin (Inducer) Inhibition of mTORC1 (Blommaart et al., 1995) NAFLD mice (Lin et al., 2013), NPC1 patient
iPSC-derived hepatic cells (Maetzel et al., 2014)

Myopathies Rapamycin, CCI-779
(Inducers)

Inhibition of mTORC1 (Blommaart et al., 1995;
Ravikumar et al., 2004)

Collagen type VI muscular dystrophy mice
(Grumati et al., 2010), LMNA cardiomyopathy
mice (Choi et al., 2012; Ramos et al., 2012)

AICAR (Inducer) Activation of AMPK (Buzzai et al., 2007) DMD mice (Pauly et al., 2012)

Simvastatin (Inducer) Inhibition of Rac1-mTOR pathway (Wei et al.,
2013)

DMD mice (Whitehead et al., 2015)

Lifespan extension Spermidine (Inducer) Inhibition of histone acetyltransferase and
increase in Atg gene expression (Eisenberg
et al., 2009)

Flies (Eisenberg et al., 2009), worms (Eisenberg
et al., 2009), mice (Eisenberg et al., 2016)

Resveratrol (Inducer) Activation of SIRT1 (Morselli et al., 2010) Flies (Wood et al., 2004), worms (Wood et al.,
2004; Morselli et al., 2010), mice (Baur et al.,
2006)

Rapamycin (Inducer) Inhibition of mTORC1 (Blommaart et al., 1995) Flies (Bjedov et al., 2010), mice (Harrison et al.,
2009)

Autophagy modulators have shown beneficial effects in a number of transgenic disease models, such as but not limited to, neurodegenerative disorders, cancer, infectious
diseases, liver diseases and myopathies as well as in lifespan extension. Selected examples of autophagy modulators are highlighted in specific pathological contexts.
AATD, α1 antitrypsin deficiency; AD, Alzheimer’s disease; AFLD, Alcoholic fatty liver disease; ALS, Amyotrophic lateral sclerosis; AMPK, 5′ adenosine monophosphate-
activated protein kinase; Atg, Autophagy-related genes; cAMP, 3′,5′-cyclic adenosine monophosphate; DMD, Duchenne muscular dystrophy; FSD, Fibrinogen storage
disease, FTD, Frontotemporal dementia; GAPR-1, Golgi-associated plant pathogenesis-related protein 1; HD, Huntington’s disease; HIV, Human immunodeficiency virus;
IP3, Inositol 1,4,5-trisphosphate; iPSC, Induced pluripotent stem cells; LD, Lafora disease; LMNA, Lamin A/C gene; MTMR14, Myotubularin related protein 14; mTORC1,
Mechanistic target of rapamycin complex 1; NAFLD, Non-alcoholic fatty liver disease; NPC1, Niemann-Pick type C1 disease; PBMC, Peripheral blood mononuclear
cells; PD, Parkinson’s disease; PI(3,5)P2, Phosphatidylinositol 3,5-bisphosphate; RCC, Renal cell carcinoma; SCA, Spinocerebellar ataxia; SIRT1 Sirtuin 1; SLC2A, Solute
carrier 2A; TRPML1, Transient receptor potential cation channel mucolipin subfamily member 1.

bacterial pathogens both in vitro and in vivo (Donia et al., 2010).
In an integrated chemical and RNAi screening for modulators of
intracellular mycobacteria, one of the top three compounds was
nortriptyline which significantly suppressed Mtb survival within
macrophages and induced autophagy (Sundaramurthy et al.,
2013). Other compounds limiting bacterial or HIV infections

through activation of autophagic flux were nitazoxanide (anti-
protozoan drug) and flubendazole (antihelminthic drug) (Lam
et al., 2012; Chauhan et al., 2015). Similarly, the naturally
occurring disaccharide trehalose, a potent mTOR-independent
enhancer of autophagy in diverse cell-types (Sarkar et al., 2007a),
can also induce autophagy and xenophagy in Mtb-infected
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macrophages that resulted in the killing of bacteria (Sharma et al.,
2017). In this study, trehalose was found to act as a PI(3,5)P2
(phosphatidylinositol 3,5-bisphosphate) agonist for activating
the lysosomal Ca2+ channel TRPML1 (Sharma et al., 2017),
which in turn released lysosomal Ca2+ that caused nuclear
translocation of TFEB to induce autophagy (Medina et al., 2015).
Excitingly, trehalose also seemed to be effective during HIV-
Mtb co-infection and limits Mtb survival by reversing the HIV-
mediated block in autophagy flux (Sharma et al., 2017). Similarly,
vitamin D3 could also kill Mtb during HIV co-infection by
inducing autophagy (Campbell and Spector, 2012). Several host
factors currently being tested for anti-Mtb therapeutics function
by regulating host autophagy and xenophagy. For example,
inhibition of host Src kinase by the compound AZD0530 induced
autophagy and lysosomal maturation to clear Mtb (Chandra
et al., 2016). A pioneering anti-infective, autophagy-inducing
agent is Tat-Beclin 1, which is a peptide representing a region
of the autophagy regulator Beclin 1 that interacts with the HIV-
1 accessory protein NEF, and this domain is linked with the
HIV-1 Tat transduction domain to make it cell permeable (Shoji-
Kawata et al., 2013). Tat-Beclin 1 prevented the replication of a
number of viral and bacterial pathogens in vitro in autophagy-
dependent manner, as well as induced autophagy and anti-viral
activity in mice infected with chikungunya or West Nile virus
(Shoji-Kawata et al., 2013). Thus, it is evident that regulators
of autophagy and xenophagy have tremendous potential for
novel therapeutics against various infectious diseases. It is now
clear that within an infected host cell, there is a possibility of
uncoupling between homeostatic autophagy and anti-bacterial
xenophagy (Chandra et al., 2015; Sharma et al., 2018). Therefore,
it is desirable to perform chemical screening pertaining to
infection-specific xenophagy flux for identifying novel regulators
of bacterial/viral survival within the host cells through the
autophagy pathway.

AUTOPHAGY MODULATORS IN LIVER
DISEASES

Liver autophagy is essential for various hepatic functions and is
implicated in various liver conditions including α1-antitrypsin
(AAT) deficiency, non-alcoholic fatty liver disease (NAFLD),
hepatocellular carcinoma and viral hepatitis (Rautou et al.,
2010; Ueno and Komatsu, 2017). Chemical modulation of
autophagy has been shown to have beneficial effects in some
of these diseases. Carbamazepine, an mTOR independent
autophagy inducer acting by reducing inositol levels (Sarkar
et al., 2005), reduced hepatic load of mutant α1-antitrypsin
Z and hepatic fibrosis in a mouse model of AAT deficiency
(Hidvegi et al., 2010), as well as decreased hepatocellular
aggregate-related toxicity in patients suffering from fibrinogen
storage disease (Puls et al., 2013). A high-throughput drug
screen in hepatocyte-like cells derived from iPSC lines of
patients with AAT deficiency also revealed inositol-lowering
autophagy-inducing agents, such as carbamazepine, lithium,
and valproic acid, in facilitating the clearance mutant AAT
(Choi et al., 2013). Carbamazepine as well as the mTOR

inhibitor rapamycin also rescued dysfunctional autophagic flux
and improved cell viability in hepatic-like cells differentiated
from patient-derived iPSC lines of Niemann-Pick type C1
(NPC1) disease (Maetzel et al., 2014). In addition, autophagy
induction with trehalose, carbamazepine, rapamycin or
hydrogen sulfide reduced steatosis, lipid accumulation and
liver injury in high-fat diet-induced NAFLD in mice (Lin et al.,
2013; Sun et al., 2015; DeBosch et al., 2016). Furthermore,
the anti-diabetic drug metformin, which indirectly inhibits
mTOR, induced SIRT1-mediated autophagy in primary
hepatocytes and ameliorated hepatic steatosis in vivo (Song
et al., 2015). Overall, these studies indicate that activation
of autophagy via inhibition of mTOR, lowering inositol
levels or with trehalose are effective modes of inducing
autophagy in the liver.

AUTOPHAGY MODULATORS IN
MYOPATHIES

Basal autophagy is required for maintaining muscle mass and
myofiber integrity (Masiero et al., 2009), and thus deregulation
of muscle autophagy is implicated in myopathies and muscular
dystrophies (Sandri et al., 2013). Sustained activation of mTORC1
in skeletal muscle of TSC1-deficient mice could cause late-onset
myopathy related to suppression of autophagy (Castets et al.,
2013). Upregulation of autophagy, primarily by inhibiting the
mTORC1 pathway, has been reported to have beneficial effects
in certain transgenic disease models. Autophagy induction
by rapamycin or low-protein diet increased myofiber survival
and attenuated dystrophic phenotype in a mouse model of
collagen type VI muscular dystrophy (Grumati et al., 2010).
Likewise, activation of autophagy by dietary changes or with
the AMP-activated protein kinase (AMPK) agonist, AICAR
(5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside),
improved dystrophic phenotypes in mouse models of Duchenne
muscular dystrophy (DMD) (De Palma et al., 2012; Pauly
et al., 2012). A potential role of simvastatin, which has been
reported to induce autophagy by inhibiting the Rac1-mTOR
pathway (Wei et al., 2013), has been suggested in improving the
physiological function of skeletal muscle in DMD transgenic
mice (Whitehead et al., 2015). In addition, rapamycin or
its analog, temsirolimus, ameliorated cardiomyopathy and
improved skeletal and cardiac muscle function in mouse models
of LMNA (lamin A/C gene) cardiomyopathy that recapitulate
Emery-Dreifuss muscular dystrophy (EDMD) (Choi et al., 2012;
Ramos et al., 2012).

AUTOPHAGY MODULATORS IN
LIFESPAN EXTENSION

The functionality of autophagy declines with aging (Rubinsztein
et al., 2011), and thus restoring adequate autophagy is considered
a possible anti-aging strategy for lifespan extension. There are
a number of lifespan expanding strategies, and in many of
such approaches, autophagy acts as a common denominator
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for promoting longevity (Madeo et al., 2010; Hansen et al.,
2018). Pharmacological treatment with autophagy inducers
has been linked to increasing longevity in transgenic in vivo
models (Madeo et al., 2015). Lifespan extension via induction
of autophagy with naturally- occurring polyamines such as
spermidine, which is an acetyltransferase inhibitor, was shown
in yeast, flies, worms and mice (Eisenberg et al., 2009,
2016); and likewise also reported with the natural phenol
resveratrol, which is a deacetylase activator, in yeast, flies,
worms as well as in mice on high-fat diet (Howitz et al.,
2003; Wood et al., 2004; Baur et al., 2006; Morselli et al.,
2010). Although both spermidine and resveratrol impacts on the
acetylproteome, stimulation of autophagy by resveratrol requires
the nicotinamide adenine dinucleotide-dependent deacetylase
sirtuin 1 (SIRT1) whereas the effect of spermidine was
SIRT1 independent (Morselli et al., 2010, 2011). Inhibition
of mTOR by rapamycin also extended lifespan in yeast,
flies and mice (Alvers et al., 2009; Harrison et al., 2009;
Bjedov et al., 2010; Lamming et al., 2013). In addition,
lifespan extension in multiple organisms including mice and
apes could be achieved by caloric restriction, which is a
physiological inducer of autophagy via AMPK activation,
mTORC1 inhibition and SIRT1 activation (Mair and Dillin,
2008; Colman et al., 2009; Mercken et al., 2014; Mattison
et al., 2017). In some of these studies reporting lifespan
extension by autophagy activation, the role of autophagy has
been specifically determined by abolishing the anti-aging effects
via knockdown of essential autophagy genes (Madeo et al., 2015;
Nakamura and Yoshimori, 2018).

CONCLUSION

The methodologies for measuring autophagy have evolved over
the past decade and it is now feasible to undertake high-
throughput chemical screens for identifying modulators of
autophagic flux. A number of pharmacological modulators of
autophagy have been identified via screening approaches or
individual studies; some of which have been demonstrated to
exert therapeutic benefits in diverse human diseases. Most of
the key autophagy modulators have been identified either by
the GFP-LC3 screening method in HeLa cells or via assessing
the clearance of aggregation-prone proteins in inducible PC12
cell lines. While analysis of changes in autophagosome number
with GFP-LC3 reporter requires shorter treatment period
(such as 8–24 h), analysis of clearance of aggregation-prone
proteins requires longer treatment duration (such as 24–72 h)
depending on the nature of the transgene product. Following
the primary screen, it is pertinent to characterize the high-
confidence screen hits with secondary autophagy assays because
there are no single assays to determine autophagic flux. These
normally include analysis of autophagosome formation with
bafilomycin A1 via immunoblotting with anti-LC3 antibody,
analysis of autophagosome maturation with mRFP-GFP-LC3
reporter, and analysis of autophagy substrate (p62) clearance via
immunoblotting with anti-p62 antibody (Mizushima et al., 2010;
Klionsky et al., 2016).

Although the methods described in this review are those that
have been generally used in the field, alternative autophagy assays
could also be employed for chemical screening. One potential
approach is the use of Keima, a fluorescent acid-stable protein
that exhibits bimodal excitation spectra in neutral and acidic
pH, such as in autophagosomes and autolysosomes, respectively
(Katayama et al., 2011). The cumulative fluorescence readout can
be used to measure bulk autophagic flux. This protein can also be
utilized for selective autophagic flux, such as with mitochondria-
targeted Keima to measure mitophagy (Katayama et al., 2011;
Sun et al., 2017). However, Keima-based assays solely depend
upon the lysosomal acidity and thus cannot be performed in
fixed cells where the pH gradient across lysosomal membranes
is lost. In addition, other screening approaches could be based on
fluorescent-tagged early markers of autophagy initiation, such as
with WIPI-1 (Proikas-Cezanne and Pfisterer, 2009) and DFCP1
(Axe et al., 2008); however, these methods will not capture
the late events of autophagy pathway involving autophagosome
maturation and cargo degradation.

For the therapeutic exploitation of autophagy modulators,
mTOR-independent autophagy inducers are generally favorable
and considered to have lesser side-effects than the mTOR
inhibitors like rapamycin. This is because mTOR controls vital
cellular functions like cell growth and translation and thus
its inhibition can lead to undesirable side-effects unrelated to
autophagy induction. For clinical translation to patients, it is
important to determine the efficacy and penetrance of the
autophagy modulators in the target organs. Future directions
could include identifying specific inducers of autophagy acting
at the level of autophagic machinery rather than the upstream
signaling pathways.
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