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Energy and environmental issues raise higher demands on the development of a

sustainable energy system, and the electrocatalytic hydrogen evolution is one of the

most important ways to realize this goal. Two-dimensional (2D) materials represented

by molybdenum disulfide (MoS2) have been widely investigated as an efficient

electrocatalyst for the hydrogen evolution. However, there are still some shortcomings

to restrict the efficiency of MoS2 electrocatalyst, such as the limited numbers of active

sites, lower intrinsic catalytic activity and poor interlayer conductivity. In this review, the

application of monolayer MoS2 and its composites with 0D, 1D, and 2D nanomaterials

in the electrocatalytic hydrogen evolution were discussed. On the basis of optimizing

the composition and structure, the numbers of active sites, intrinsic catalytic activity,

and interlayer conductivity could be significantly enhanced. In the future, the study

would focus on the structure, active site, and interface characteristics, as well as the

structure-activity relationship and synergetic effect. Then, the enhanced electrocatalytic

activity of monolayer MoS2 can be achieved at the macro, nano and atomic levels,

respectively. This review provides a new idea for the structural design of two-dimensional

electrocatalytic materials. Meanwhile, it is of great significance to promote the study of

the structure-activity relationship and mechanism in catalytic reactions.

Keywords: monolayer MoS2, electrocatalytic hydrogen evolution, active sites, intrinsic catalysis, composite

structure

INTRODUCTION

The continuous growth of the population and the development of the industrialization process
have accelerated the consumption of fossil energy, and brought serious environmental problems.
Therefore, the development of sustainable energy system is one of the most important challenges
today (Wang and Mi, 2017; Chi and Yu, 2018). At present, a promising method is to produce
renewable energy through the electrochemically catalytic reaction, which converts the common
materials, such as water, carbon dioxide, and nitrogen, into the high-energy carriers (hydrogen,
oxygen, hydrocarbons, ammonia, etc.). After years of research and practice, many important
advances have been made in electrochemical energy conversion (Gu et al., 2018; Mao et al., 2018;
Xiong J. et al., 2018). Among them, hydrogen energy is considered as the most powerful candidate
to alternate fossil energy due to its clean, renewable, and environmentally friendly properties
and high energy density (Lin et al., 2017; Zhang S. et al., 2017). Among various methods of
hydrogen energy production, electrocatalytic water splitting has attracted tremendous attention
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because of its advantages of low cost, non-pollution and high
efficiency (Wang et al., 2016). Moreover, the electrocatalytic
cathode in this method is the key to determine the efficiency
of water decomposition. So far, the Pt cathode possessing the
near zero overpotential is considered to be the most effective
catalytic cathode. However, it is difficult to be practically applied
or industrialized due to its high cost and scarce resource
(Eftekhari, 2017; Hou et al., 2017). Therefore, seeking for low-
cost, abundant, high efficient, and environmentally friendly
catalytic cathode materials has become a research hotspot. In the
view of this point, manymaterials have been extensively explored,
such as carbides, nitrides, sulfides, selenides, phosphides, and
Mo-based non-noble metal electrocatalysts (Xie et al., 2014;
Pu et al., 2016a,b,c, 2017, 2018; Voiry et al., 2016; Wei et al.,
2016; Xie and Xie, 2016; Kou et al., 2017, 2018a,b; Jin et al.,
2018). Among these materials, molybdenum disulfide (MoS2)
has attracted much more attention due to its low cost, high
catalytic activity, high stability, large in-plane carrier mobility
and good mechanical properties (Tan et al., 2017; Li et al.,
2018; Wang et al., 2018a). Studies have shown that monolayer
MoS2 has higher electrocatalytic activity for hydrogen evolution.
However, there are still some shortcomings, such as the limited
numbers of active sites, lower intrinsic catalytic activity and
poor interlayer conductivity. In order to further improve the
electrocatalytic activity of monolayer MoS2, researchers usually
composite themwith othermaterials. In this paper, the composite
of monolayer MoS2 with 0D, 1D, and 2D materials and its
application in electrocatalytic hydrogen evolution are reviewed
in order to provide guidance for related research. At present,
there are two kinds of methods for preparing monolayer MoS2.
The first method is top-down approach, including mechanical
stripping (Li et al., 2012), ion intercalation (Nurdiwijayanto et al.,
2018) and liquid phase stripping (Zhao et al., 2016), and the
second one is bottom-up approach, including chemical vapor
deposition(CVD) (Liu et al., 2018) and wet chemical stripping
(Zeng et al., 2017). The development strategy of sustainable
energy pattern and catalyst based on the electrocatalysis are
shown in Figure 1.

STRATEGIES FOR ELECTROCATALYTIC
HYDROGEN EVOLUTION

As the electrocatalyst plays an important role in improving
conversion efficiency in energy conversion process, the
research of electrocatalyst is a crucial part in these conversion
technologies. Up to now, the electrocatalysts suffer from the
lack of types and low efficiency. What’s more, the high expense
leads them difficult to be practically used on a large scale. Many
efforts have been made to solve these problems. For example,
in order to improve the electrocatalytic activity, three strategies
are usually proposed: one is to increase the number of active
sites (from the view of the “quantity” aspect); the other is to
increase the intrinsic activity of active sites (which belongs to
the “quality” aspect); the third is to improve the conductivity
of electrocatalysts by forming composites. These strategies are
not mutually exclusive, but can be mutually complementary to

improve the activity of catalysts simultaneously (Seh et al., 2017;
Tang C. et al., 2018).

Two-dimensional materials such as MoS2 have been
extensively studied in the electrocatalytic hydrogen evolution
due to their promising potential application prospect. However,
there is still a big gap compared with Pt catalyst. Therefore, great
efforts have been made to improve the electrocatalytic activity
of MoS2, including phase transformation (Tang and Jiang, 2016;
Jiao et al., 2018; Wang J. et al., 2018), defect engineering (Xie
et al., 2013a, 2017, 2019; Xie and Yi, 2015), nanocrystallization
(Yun et al., 2017), doping (Xie et al., 2013b, 2016; Sun et al., 2014,
2018; Xiong Q. et al., 2018), modification (Benson et al., 2017;
Wang Q. et al., 2018) and compounding (Jayabal et al., 2017;
Zhai et al., 2018), etc.

The bulk phase MoS2 is inert for the electrocatalytic hydrogen
evolution, and the free energy of hydrogen adsorption on
the base surface of MoS2 is 1.92 eV. However, the theoretical
results show that the 1GH of Mo (1010) is 0.08 eV at 50%
hydrogen coverage, which is close to the optimum value (≈0 eV)
and exhibits the good electrocatalytic activity (Hinnemann
et al., 2005). In addition, this propose is confirmed by the
experimental results (Jaramillo et al., 2007). Theoretical and
experimental studies have proved that the edge of MoS2 is
active. Therefore, exposing more edge sites of MoS2 is an
important method to enhance its electrocatalytic activity. Thus,
the way to improve the electrocatalytic performance is classified
to increase the “quantity” of active sites (Zhang J. et al., 2017). The
electrocatalytic hydrogen evolution reaction is a two-electron
transfer process, and the reaction rate depends largely on 1GH.
If the bonding between H2 and the surface is too weak, the
adsorption (Volmer) step will limit the overall reaction rate;
if the bonding is too strong, the desorption (Heyrovsky/Tafel)
step will limit the reaction rate (Parsons, 1958; Wang et al.,
2018b). Therefore, a highly active catalyst should have neither
too strong nor too weak bonding intermediates. According
to these points, by controlling the surface/interface properties
of MoS2, the surface electronic properties, surface adsorption
behavior and hydrogen evolution reaction path can be optimized,
which can promote the kinetic process of the electrocatalytic
hydrogen evolution and enhance the intrinsic catalytic ability
(Otyepková et al., 2017; Chen et al., 2018). The research in this
field is to improve the electrocatalytic activity by optimizing
the “quality” of the active site. It has been proved that the
transport of electrons between MoS2 layers needs to overcome
certain barriers. The electron transport is dominated by the jump
transport mode leading to the low transport efficiency, which
limits the improvement of their electrocatalytic activities. So, the
acceleration of the electron transport between layers is also an
effective way to enhance the catalytic activity (Yu et al., 2013).

ELECTROCATALYTIC HYDROGEN
EVOLUTION

Monolayer MoS2
Monolayer MoS2 exhibits relatively high electrocatalytic activity
due to the exposure of more active sites, which can enhance
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FIGURE 1 | Schematic diagram of sustainable energy pattern and catalyst development strategies based on the electrocatalysis.

the “quantity” of active sites. Zhang et al. prepared monolayer
MoS2 by low-voltage CVD method (Shi et al., 2014). By
changing the growth temperature or the distance between source
and substrate, the controllable boundary length of MoS2 was
successfully realized. The electrocatalytic hydrogen evolution
results showed that the exchange current density increased
linearly with the increase of boundary length. By changing
the morphology of monolayer MoS2, the boundary length
could be further extended. The dendritic morphology enriched
the boundary of monolayer MoS2 to a great extent, which
contributed greatly to the enhancement of the electrocatalytic
activity (Zhang et al., 2014; Xu et al., 2018). Fractal monolayer
MoS2 can also promote the efficiency of the electrocatalytic
hydrogen evolution reaction. The fractal monolayer MoS2
synthesized on the surface of fused quartz can expose a large
number of active sites at its edge. Besides, the existence of large
internal stresses in the fractal monolayer MoS2, causes more
electrons to migrate to the edge active sites, further improving
the electrocatalytic performance (Wan et al., 2018). This study
also manifests that there is a linear relationship between the
electrocatalytic hydrogen evolution activity and the number of
marginal active sites of MoS2. The inert surface of MoS2 can
be tuned into ordered porous structure by using template. The
porous structure can increase the proportion of edge atoms (the
number of active sites), resulting in the enhanced electrocatalytic
performance (Su et al., 2018). MoS2 nanosheets with rich
1T phase content can be prepared by the chemical peeling.
These nanosheets possess many defects, which benefit to the
good catalytic activity in the electrocatalytic hydrogen evolution

(Voiry et al., 2013; Chang et al., 2016). Doping monolayer MoS2
can activate the activity of the base surface and improve the
catalytic activity. For example, the doping of transition metal
element Co atoms can change the surface electronic structure of
MoS2 and the adsorption energy of hydrogen atoms, improving
the catalytic performance (Hai et al., 2017; Lau et al., 2018). The
post treatment on monolayer MoS2 is also a strategy to enhance
catalytic capacity. Processing with oxygen plasma can increase
defects and interfaces in a large extent, which play a certain role
in increasing active sites and enhancing intrinsic catalytic activity
(Ye et al., 2016).

However, the electrocatalytic hydrogen evolution of
monolayer MoS2 is still limited. The number of active sites,
intrinsic catalytic activity and interlayer conductance limit the
further improvement of the electrocatalytic hydrogen evolution
performance of monolayer MoS2. The process for improving the
electrocatalytic properties of monolayer MoS2 is complicated
or needs special equipments which may limit its practical
application. In order to overcome the defects of monolayer
MoS2, it is necessary to composite monolayer MoS2 with other
low-dimensional materials.

Composition With 0D Materials
The electronic structure of the surface and the binding energy
of the active intermediates can be modulated by compositing the
single layer MoS2 and 0D, 1D, and 2D materials, leading to the
improvement of the electrocatalytic performance by means of
the active sites on the “quality” aspect. At the same time, the
interlayer conductance of MoS2 can be enhanced by forming
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the composite, which further improves the electrocatalytic
activity from another aspect. Zhang et al. composited Pd, Pt,
and Ag nanoparticles with monolayer MoS2 by wet chemical
method (Huang et al., 2013). The Pt nanoparticles with the
size of 1-3 nm are successfully composited on the surface of
monolayer MoS2. The Pt-modified monolayer MoS2 showed
the excellent electrocatalytic performance with the neglected
overpotential and the comparable Tafel slope of 40 mV/dec
compared with pure MoS2 and Pt, which could be ascribed
to the effective collection and transport of electrons in the
presence of Pt.

Polyoxometallates (POMs) possess excellent performance in
catalysis, which is attributed to the abundant oxygen on the
surfaces and rich negative charges (Huang J. et al., 2017; Huang
et al., 2018b). Polyoxometallates have the abilities to accept
multiple electrons and reversible redox properties, which means
that they have the outstanding electronic transport properties
(Ammam, 2013). The MoS2 nanosheets were successfully
exfoliated using the liquid phase exfoliation method assisted
by formamide solvothermal treatment (Huang et al., 2018a).
The monolayer MoS2 and POM were stacked into a multilayer
heterostructure by the layer-by-layer (LBL) method, and the

FIGURE 2 | (A) Process for building up the multilayer films (PMo12/MoS2)n, (B) Polarization curves of multilayer (PMo12/MoS2)n, (C) Current density as a function of

layer number (inset of (c) Photograph of thin films of (PMo12/MoS2 )n deposited on ITO with different number of layer), (D) Polarization curves of multilayer

(PMo12/MoS2)4 and (MoS2)4, (E) The EIS spectra of multilayer (PMo12/MoS2 )4 and (MoS2)4 (Huang et al., 2018a).
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process for buildup of multilayer films is shown in Figure 2A.
The electrocatalytic performance was improved due to the high
electron transport performance of POMs and the electrochemical
test results were plotted in Figures 2B–E.

Composition With 1D Materials
One-dimensional (1D) nanostructures offer the unique
electronic transport channels. By compositing them with
monolayer MoS2, the carrier transport capacity can be improved
and the carrier recombination can be reduced. At the same
time, the composite structure can bring the modification of
the interface and the change of electronic structure, then
the electrocatalytic performance can be further improved.
Kim group prepared monolayer MoS2 by Li intercalation
method (Ahn and Kim, 2017). 1D carbon nanotubes and
MoS2 nanosheets were composited by LBL method to form
a multilayer structure. The fabrication process was shown in
Figure 3A. The hydrogen evolution performance reached the
optimum value with the Tafel slope of 62.7 mV/dec for the
number of layers of 14. The enhanced catalytic performance
was attributed to the high conductivity of carbon nanotubes,
which increased the conductivity of interlayer of MoS2, as
shown in Figures 3B,C.

Xia et al. combined Au nanorods with MoS2 to achieve
surface plasmon resonance under auxiliary illumination, which
increased the carrier concentration. Moreover, the improved
carrier injection and carrier separation efficiency benefited
from 1D structure can enhance the electrocatalytic efficiency
(Shi et al., 2015).

Composition With 2D Materials
The calculation results pointed out that the combination
of graphene oxide and MoS2 could change the interface
electronic structure, improve electron transport, and
enhance electrocatalytic performance (Tang S. et al.,
2018). The combination of graphene and monolayer MoS2
could increase the number of active sites, accelerate the
desorption rate of H2 and enhance the efficiency of electron
injection, and thus greatly boosted the electrocatalytic
activity (Huang H. et al., 2017).

Sasaki team successfully exfoliated bulk MoS2 to obtain
monolayer by Li intercalation method, and the monolayer
MoS2 was verified to be 1T phase structure (Xiong P. et al.,
2018). Then, it can be seen that the monolayer MoS2 was
successfully restacked with graphene to form composite
structure by the flocculation method (Figures 4A–E). The
electrochemical measurements (Figures 4F–J) showed that
this structure exhibited excellent electrocatalytic hydrogen
evolution performance with the overpotential of 88mV and
Tafel slope of 48.7 mV/dec. The long-term stability was also
manifested at 10 mA/cm2 for 10,00,00 s. The outstanding
electrochemical properties could be originated from the
enhanced electron transport and reduced Gibbs free energy of
this unique structure.

According to the characteristics of 0D, 1D, 2D materials,
it can play different roles in the composite structure,
which can serve as an enhanced electron transport
function, as well as to increase the active site, or to
activate the in-plane properties. In the actual operation,

FIGURE 3 | (A) Schematic of the LbL assembly of (MoS2/MWNT)n multilayer electrode, (B) Polarization curves of hybrid multilayer (MoS2/MWNT)n electrodes (Inset

of B is the experimental setup of the three-electrode system), (C) Corresponding Tafel plots (Ahn and Kim, 2017).
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FIGURE 4 | (A) AFM images and height profiles for the exfoliated metallic MoS2 nanosheets, (B) AFM images and height profiles for the PDDA-graphene nanosheets,

(C,D) SEM images of the MoS2/graphene superlattice with different magnifications, (E) SEM image and corresponding elemental mapping images of the

MoS2/graphene, (F) Polarization curves, (G) Tafel plots, (H) The EIS spectra, (I) The polarization curves of the MoS2/graphene superlattice before and after the 105 s

test, (J) Long-term stability measurement (Xiong P. et al., 2018).

the electrocatalytic performance can be improved with
diverse composite structure in different aspects, such as
intrinsic catalysis, increasing the number of active sites, and
improving conductivity.

OUTLOOK

Monolayer MoS2 has attracted extensive attention for the
electrocatalytic hydrogen evolution. In order to overcome the
limitations of active sites, low intrinsic catalytic activity and
poor interlayer conductivity, surface modification and composite
structure are carried out to improve the electrocatalytic
performance. However, there are still some challenges to

be worthy of further investigation. Firstly, the properties of
composite structure, active site and interface of composite
materials are not clear, and need to be studied by more
detailed characterization methods; secondly, the comprehensive
utilization of monolayer MoS2 and its composite structures at the
macro, nano and atomic levels will improve the efficiency of the
electrocatalytic hydrogen evolution in principal, but involving
the preparation, test andmechanism explanation ofmaterials and
devices. It belongs to the multi-disciplinary frontier field and can
be studied through in-depth research. In-depth research on these
issues can provide the clue for the improvement of the efficiency
of the electrocatalytic hydrogen evolution and the deep insight of
catalytic mechanism.
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