
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2019, No. 1, pp. 264–301. DOI:10.13154/tosc.v2019.i1.264-301

General Diffusion Analysis: How to Find Optimal
Permutations for Generalized Type-II Feistel

Schemes
Victor Cauchois1,2, Clément Gomez1 and Gaël Thomas1

1 Direction générale de l’armement - Maîtrise de l’information (DGA MI), Boîte Postale 7, 35998
Rennes Cedex 9, France

victor.cauchois@m4x.org,clement.gomez@m4x.org,gael.thomas@intradef.gouv.fr
2 Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes 1, Campus de

Beaulieu, 35042 Rennes, France

Abstract.
Type-II Generalized Feistel Schemes are one of the most popular versions of Gener-
alized Feistel Schemes. Their round function consists in applying a classical Feistel
transformation to p sub-blocks of two consecutive words and then shifting the k =
2p words cyclically. The low implementation costs it offers are balanced by a low
diffusion, limiting its efficiency. Diffusion of such structures may however be improved
by replacing the cyclic shift with a different permutation without any additional
implementation cost. In this paper, we study ways to determine permutations with
the fastest diffusion called optimal permutations.
To do so, two ideas are used. First, we study the natural equivalence classes of
permutations that preserve cryptographic properties; second, we use the representation
of permutations as coloured trees.
For both heuristic and historical reasons, we focus first on even-odd permutations,
that is, those permutations for which images of even numbers are odd. We derive
from their structure an upper bound on the number of their equivalence classes
together with a strategy to perform exhaustive searches on classes. We performed
those exhaustive searches for sizes k ≤ 24, while previous exhaustive searches on all
permutations were limited to k ≤ 16. For sizes beyond the reach of this method,
we use tree representations to find permutations with good intermediate diffusion
properties. This heuristic leads to an optimal even-odd permutation for k = 26 and
best-known results for sizes k = 64 and k = 128.
Finally, we transpose these methods to all permutations. Using a new strategy to
exhaust equivalence classes, we perform exhaustive searches on classes for sizes k ≤ 20
whose results confirmed the initial heuristic: there always exist optimal permutations
that are even-odd and furthermore for k = 18 all optimal permutations are even-odd
permutations.
Keywords: Feistel · Diffusion · Permutations

1 Introduction
Since its first appearance in 1973 with the cipher Lucifer, later evolving into Data Encryp-
tion Standard, DES [DES77], the Feistel network has become one of the main flavour of
block ciphers. More recently, Camellia [AIK+00] and SIMON [BSS+13] are also examples
of Feistel networks. This initial version splits a message into two blocks and consists in
iterating a round function: (m1,m2) 7→ (m2,m1 ⊕ F (m2)) where F is some non-linear
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application. A natural generalisation of Feistel Networks called Generalized Feistel Struc-
tures reproduces these routines, splitting the message into k ≥ 2 blocks, where k is called
the partition number. Among those Generalized Feistel Structures, the so-called Type-II
Feistel Ciphers introduced in [ZMI89] consist in iterations of a round function of the form:

(m0, . . . ,mk−1) 7→ (F0(m0)⊕m1,m2, F1(m2)⊕m3, . . . , F(k−2)/2(mk−2)⊕mk−1,m0)

where the Fi’s are non-linear cryptographic keyed functions. Type-II Feistel Ciphers have
another natural description. They may be seen as the successive application of parallel
non-linear transformations: (mi,mi+1) 7→ (mi,mi+1 ⊕ Fi/2(mi)) and of a cyclic shift of
one block to the left. This very simple description and its induced high parallelism have
inspired several block cipher designers for instance with RC6 [RRSY98], HIGHT [HSH+06],
or CLEFIA [SSA+07].

While AES [DR02] has become very popular, it was not really designed with small-
scale implementations as a main target and Type-II Feistel Ciphers offer an interesting
alternative for these implementations. Large partition numbers are considered suitable for
this application since the width of the round function, directly connected with the size of
implementations, shrinks with growing partition numbers. Moreover, implementation costs
for decryption are negligibly small once encryption has been implemented. For small-scale
implementations when both encryption and decryption are needed, such constructions are
to be considered. They offer interesting trade-offs between efficiency and compactness
measured respectively by the number of rounds and the partition number. Recent Gener-
alized Feistel Structures use a small partition number to balance implementation sizes and
speed. Such structures come however with a serious drawback, Type-II Feistel Ciphers
have a low diffusion: k rounds are needed to ensure that an input difference diffuses to all
output blocks. Imperfections in terms of diffusion are a serious threat and may lead to
cryptanalysis such as impossible differential attack [BBS99] or saturation attacks [DKR97].

A major breakthrough was made in [SM10] where the diffusion issue was widely
addressed. Diffusion round, the minimum number of rounds to ensure a full diffusion, is
used to compare permutations. Moreover, they observe that low diffusion round is related
to good security against impossible differential attacks and saturation attacks. They
noticed the good behaviour of even-odd permutations for which images of odd number are
even number and conversely. From exhaustive search, they recorded even-odd permutations
with the lowest diffusion round for sizes k ≤ 16. One of those permutations is used in
the block cipher TWINE [SMMK12] or the cryptographic permutation Simpira [GM16].
Furthermore, they present a general construction of a permutation with prescribed diffusion
round of 2 log2(k) when k is a power of 2.

Our Contribution
Based on heuristics suggested in [SM10], we first focus on even-odd permutations. The
analysis of their natural equivalence classes gives rise to an upper bound on the number of
such equivalence classes from which we draw a strategy to exhaustively run through them
for all sizes k ≤ 24. Previous works were running exhaustive search on all permutations
and were limited to k ≤ 16. We exhibit next an expected good behaviour for optimal
permutations upon which we propose a method to search for optimal permutations of larger
sizes. We introduce there a new criterion called collision-free depth to highlight reasonable
candidates. This idea allowed us to find an optimal even-odd permutation for size k = 26.
When focusing on sizes that are powers of two, we define a new set of permutations raised
from tree colourings containing the coloured de Bruijn graph already introduced by [SM10].
This method, practical until k = 128, allows us to find the best permutations in terms
of diffusion to the best of our knowledge for sizes k = 64 and k = 128. Table 1 presents
results on the known permutations with the lowest diffusion round. Up to size k = 26,
these results are optimal: no better even-odd permutation exists.
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Finally, we analyse the general case of all permutations. Once again, from natural
equivalence classes of permutations, we draw a new strategy to exhaustively run through
them for all sizes k ≤ 20. The results for cases k = 18 and k = 20 seem to justify our
heuristic to focus on even-odd permutations: there are always optimal permutations that
are even-odd, and there are only even-odd permutations that are optimal for k = 18.

Table 1: Diffusion round of the best known permutations

Size Diffusion Round Reference
6 5 [SM10]
8 6 [SM10]
10 7 [SM10]
12 8 [SM10]
14 8 [SM10]
16 8 [SM10]
18 8 Section 4

Size Diffusion Round Reference
20 9 Section 4
22 8 Section 4
24 9 Section 4
26 9 Section 5
32 10 [SM10] and Section 6
64 11 Section 6
128 13 Section 6

Outline of the Document
Section 2 sets the framework in which our ideas will be developed with few preliminaries. In
Section 3, we present a natural equivalence relation on permutations drawn from equivalence
classes of Generalized Feistel Schemes that preserve cryptographic properties. As already
suggested in [SM10], we focus in Section 4 on the so-called even-odd permutations and
derive from a rigorous analysis of their equivalence classes an upper bound on the number
of such equivalence classes together with a strategy to exhaustively run through all of them
which allowed us to record all optimal ones for sizes k ≤ 24. In Section 5, we associate
collections of trees with permutations and derive a criterion called collision-free depth
which measures the number of rounds satisfying a kind of perfect diffusion, in that every
fork/branching in the algorithm contributes toward full diffusion. From this analysis, arises
a new way for filtering permutations in order to find some with good diffusion properties.
This method allows us to determine an optimal even-odd permutation for k = 26 without
performing exhaustive search. This criterion is extended to binary graphs in Section 6
to reduce the number of candidates we want to test for sizes up to k = 128. We give
then an ad hoc exhaustive search for a natural family of graphs. This results in the best
known permutations in terms of diffusion for sizes k ∈ {64, 128}. Finally, in Section 7, we
study the general case of all permutations. Inspired by Section 4, we derive a new strategy
to exhaustively run through all of the equivalence classes without running through all
permutations. This strategy allows us to exhaustively search all optimal permutations for
k = 20.

2 Preliminaries
Before diving into the core of the subject, we recall here some notions that will be used
throughout the paper.

2.1 Block Construction
A Generalized Type-II Feistel Scheme is defined as follows. One round is illustrated on
Fig. 1 in the case where the block permutation is the left cyclic shift. This structure
generalises to a round function with a different permutation.
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Definition 1. A Generalized Type-II Feistel Scheme is defined by an even partition
number k = 2p, a word size m, a number of rounds r, a permutation π of {0, . . . , k − 1}
and r · p cryptographic keyed functions Fi. The ciphertext of a message (X0, . . . , Xk−1) of
size n = k ·m is given by applying the round functions Π ◦ Ii successively, where:

Ii : (X0, . . . , Xk−1) → (X0, F0+i·p(X0)⊕X1, . . . , Xk−2, Fp−1+i·p(Xk−2)⊕Xk−1)
Π : (X0, . . . , Xk−1) → (Xπ−1(0), . . . , Xπ−1(k−1)).

Xi
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1 Xi
2 Xi

3 Xi
2p−4 Xi

2p−3 Xi
2p−2 Xi

2p−1

F0 F1 Fp−2 Fp−1

Xi+1
0 Xi+1
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2 Xi+1

3
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2(p−2) Xi+1
2p−3 Xi+1

2(p−1) Xi+1
2p−1

Figure 1: Round function of a Type-II Feistel Scheme

An example of cryptographic keyed function can be given by the XOR of a round
key Ki followed by non linear functions, usually called S-Boxes. The i-th round is then
illustrated on Fig. 2.
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Figure 2: Example of cryptographic keyed functions for a Type-II Feistel Scheme

2.2 Diffusion Round
Designers aim at building efficient schemes that are cryptographically resistant. To
estimate the cryptographic resistance of their schemes, designers usually make sure it
resists to known attacks. Among them and following [SM10], we may cite the differential
[BS90] and linear cryptanalysis [Mat93], the saturation attacks [DKR97] or the impossible
differential attack [BBS99] against Feistel ciphers.

For a fixed choice of sizes k and m, and a fixed choice of cryptographic keyed functions,
a Feistel designer wishes to find a permutation that minimizes r, the number of rounds
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needed to ensure security since r dictates the speed of the algorithm. Depending on the
choices of k and m, the attacks threatening the maximum number of rounds may either
be the classical linear or differential attacks or the more peculiar saturation or impossible
differential attacks. In [SM10], the authors show that the number of rounds necessary
to achieve resistance against both of the latter attacks is very closely related to a notion
they call diffusion round, denoted DR. The resistance of the scheme is achieved when
r is greater than 2DR+ 1. This notion measures the quality of the diffusion of a round
function of a given scheme and reveals to be fundamental in the design of such primitives.
Its formalism goes back to Shannon in his seminal paper [Sha49].

This paper discusses ways to find permutations such that the Generalized Type-II
Feistel Schemes they build have the best possible diffusion properties and thus offer the
best possible resistance against both saturation and impossible differential attacks.

More precisely, diffusion and diffusion round are defined as in the following. If the
variable at position i after r1 rounds, Xr1

i , is expressed by a formal equation containing a
non-zero term in Xr2

j for r2 < r1, we say that Xr2
j diffuses to Xr1

i or that Xr1
i is affected

by Xr2
j . For instance, in Type-II Scheme described in Figure 1, X1

0 is affected by X0
0 and

X0
1 whereas X1

1 is only affected by X0
2 .

Definition 2. For a Generalized Type-II Feistel Scheme built from a permutation π,
denote by DRei (π) the minimum number of rounds such that the ith input sub-block of
the first round, X0

i , is diffused to all output sub-blocks. The encryption diffusion round
denoted by DRe(π) lies in {N,∞} and is defined by:

DRe(π) := max
0≤i≤k−1

DRei (π).

Decryption is made using π−1. We are interested in the maximum between DRe(π)
and DRe(π−1), hence the following definition:

Definition 3. For Generalized Type-II Feistel Scheme built from a permutation π, denote
by DR(π) the diffusion round of π defined by:

DR(π) = max(DRe(π), DRe(π−1)).

Definition 4. A permutation of k elements is optimal if its diffusion round is minimal
among all permutations of k elements.

The aim of this paper is to present methods to determine optimal permutations.

2.3 Notations on Permutations
In the following, p will be an integer and k = 2p will be the size of the permutations.
Permutations we consider will then be permutations of {0, . . . , k − 1}. We denote by Sk
the set of all those permutations.

Definition 5. Let k be some integer. Let π be a permutation in Sk. A cycle decomposition
of π is a decomposition of π as a product of cycles with disjoint supports. If π has n1
cycles of size t1,. . . , and nn cycles of size tn, we say that π has decomposition type Tπ,
written as follows:

Tπ = ((t1, n1), . . . , (tn, nn)).

Remark 1. Since cycles in the cycle decomposition of a permutation have disjoint supports,
they commute with each other. We will then with a slight abuse of notation talk about
the cycle decomposition of a given permutation even if it is only unique up to the choice of
the order of those cycles.
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To refer to a permutation π, we may write its cycle decomposition or its value table
depending on the context. Example 1 illustrates these notations.

Example 1. p = 4⇒ k = 8. We consider arbitrarily π, the permutation in S8 defined by:

π(0) = 3, π(1) = 2, π(2) = 4, π(3) = 6, π(4) = 1, π(5) = 7, π(6) = 0, and π(7) = 5.

• If we are interested in its cycle decomposition, we shall write π = (0, 3, 6)(1, 2, 4)(5, 7).

• The decomposition type of π is then Tπ = ((3, 2), (2, 1)).

• Whenever cycle decomposition is not relevant, we shall write π = {3, 2, 4, 6, 1, 7, 0, 5}.

3 Global Considerations on Equivalence Classes
We recall now a notion of equivalence for Generalized Feistel Schemes from which derives a
notion of equivalence for permutations. Considerations on the number of those classes, its
use and some theoretical aspects are also presented. Note that everything presented in this
section is generic and holds for any type-II Generalized Feistel Scheme of definition 1, and
does not presume anything (such as being even-odd or optimal) about the permutations
used in the Generalized Feistel Structures.

3.1 From Equivalence classes of Type-II Generalized Feistel Schemes
to Equivalence classes of Permutations

From the definition of diffusion round, it can be seen that diffusion round stays the same
regardless of the choice of the cryptographic keyed functions (Fi)i≤r·p. We consider those
as indeterminate functions and denote by Ii, the following indeterminate application:

Ii : (X0, . . . , Xk−1)→ (X0, F0+i·p(X0)⊕X1, . . . , Xk−2, Fp−1+i·p(Xk−2)⊕Xk−1).

A Type-II Generalized Feistel Structure F is defined by its round functions Mi

composed of Ii and Π built from a permutation π in Sk and by its number of rounds r,
denoted by GFS((Ii)i∈{1···r}, π, r):

F =
∏
Mi =

∏
(Π ◦ Ii).

Remark 2. A more formal description of this function is to consider F as an element of
the multivariate polynomial ring F2[Y1, . . . , Yr·p][X0, . . . , Xk1 ], where the evaluations of
the Xi’s are made with elements in F2m and the evaluations of the Yi’s are made with
cryptographic keyed functions from F2m to F2m .

Cryptographic properties of a Type-II Generalized Feistel Structure are not modified
by any reindexation of blocks. The following definition is a natural consequence of this
fact.

Definition 6. Let F1 =
∏
M1,i and F2 =

∏
M2,i be any two Type-II Generalized Feistel

Structure. They are said to be equivalent (up to block reindexation) if there exists a (block
reindexing) permutation ϕ in Sk such that:

∀i ∈ {1, · · · , r},M1,i = ϕ−1 ◦M2,i ◦ ϕ.

Remark 3. For any choice of cryptographic keyed functions, two Type-II Generalized
Feistel Schemes instantiations of two equivalent Type-II Generalized Feistel Structures
have exactly the same cryptographic properties.
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The rest of this section is dedicated to showing that any such ϕ in the previous definition
must be of a special type, and that this induces an equivalence relation on the permutations
π used in the Π function of a Generalized Feistel Scheme. In order to formalize, we need
to define the notion of permutations of pairs:
Definition 7. The set of permutations of pairs Spk is the subset of permutations in Sk
defined as:

Spk = {ϕ ∈ Sk| ∀i ≤ p− 1, ϕ(2i) is even and ϕ(2i+ 1) = ϕ(2i) + 1}.
We then have the following proposition.

Proposition 1. Two Type-II Generalized Feistel Structures F1 = GFS((Ii)i∈{1···r}, π1, r)
and F2 = GFS((Ii)i∈{1···r}, π2, r) are equivalent if and only if there exists a permutation
of pairs ϕ ∈ Spk such that:

π1 = ϕ−1 ◦ π2 ◦ ϕ.
Proof. Developing the variablesMi,0 , we have:

π1 ◦ I0 = ϕ−1 ◦ π2 ◦ I0 ◦ ϕ.

Evaluating the indeterminate functions at 0, we get:
π1 = ϕ−1 ◦ π2 ◦ ϕ.

This equality imposes:
I0 = ϕ−1 ◦ I0 ◦ ϕ.

This latest equality is equivalent to ϕ being a permutation of pairs.

Thanks to Proposition 1, we can rephrase Definition 6 using permutations of pairs.
Both definitions are equivalent.
Definition 8. Let F1 =

∏
M1,i and F2 =

∏
M2,i be any two Type-II Generalized Feistel

Structure. They are said to be equivalent (up to block reindexation) if there exists a (block
reindexing) permutation of pairs ϕ in Spk such that:

∀i ∈ {1, · · · , r},M1,i = ϕ−1 ◦M2,i ◦ ϕ.

Equivalently, we can then define an equivalence relation on the permutations used to
build type-II Generalized Feistel Structures.
Definition 9. Two permutations π1 and π2 of Sk are said to be pair-equivalent if there
exists a permutation of pairs ϕ in Spk such that:

π1 = ϕ−1 ◦ π2 ◦ ϕ.

3.2 Number of Classes
For small values of k, optimal permutations can be found by exhaustive search. Because of
its exponential complexity, O(k!), this method becomes very quickly intractable. However,
as permutations in the same pair-equivalence class share the same cryptographic properties,
we would like to compute the diffusion round of only one element per class. Table 2 exhibits
the fact that the number of classes is a lot smaller than the total number of permutations
for small values of k. This heuristic is a first step in reducing the complexity of finding
optimal permutations for greater values of k.

The previous table is a good motivation to find a strategy that computes quickly an
element per equivalence class. An essential point of our work is to give a strategy that
produces at least one permutation of each pair-equivalence class without computing these
classes beforehand.
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Table 2: Comparison between numbers of classes and total numbers of permutations

Feistel size Number of pair-equivalence classes of permutations Number of permutations
4 16 24
6 134 720
8 1796 40320

4 The Even-odd Case
From now on and until Section 7, we will focus on even-odd permutations. This property
seems to be quite a natural requirement for optimal permutations since each position
diffuses in at least two positions every two rounds. For non even-odd permutations, some
positions do not diffuse in more than one position before three rounds. Intuitively we may
think that such permutations should not diffuse as much as even-odd ones. Focusing on
those even-odd permutations significantly decreases the complexity of exhaustive searches.
The general case will be discussed in Section 7.

4.1 Even-odd Permutations
Following [SM10], we recall the definition:

Definition 10. Let k be an even number. A permutation π in Sk is called an even-odd
permutation when the image by π of even elements are odd elements and conversely. The
set of even-odd permutations of k elements is denoted by Seok .

For low values of k, optimal even-odd permutations together with their diffusion round
can be determined through exhaustive search. For higher values of k, beyond the reach of
practical exhaustive searches, we can compute from their structure a lower bound on the
minimal diffusion round of even-odd permutations.

Denote by (Fib(n))n∈N the Fibonacci sequence defined by: Fib(0) = 0
Fib(1) = 1
Fib(n+ 2) = Fib(n+ 1) + Fib(n) for n ∈ N

Proposition 2. Let π be an even-odd permutation. Then,

2 · Fib(DR(π)) ≥ k.

Proof. The proof from [SM10] is rewritten here both for the sake of completeness and
mainly as an introduction to the search techniques discussed in the next sections. Let F
be a Generalized Feistel Scheme built from an even-odd permutation π. Let i be an odd
number in {0, . . . , k − 1}.

• After one round, X0
i has diffused to only one even position: X1

π(i).

• After two rounds, X0
i has diffused to one even position and one odd position: X2

π2(i)
and X2

π(π(i)+1).

• After r rounds, under the assumption that for all ` < r, when X`
2i is affected by X0

i ,
X`

2i+1 is not, which maximizes the number of positions impacted, X0
i has diffused to

Fib(r − 1) odd positions and Fib(r) even positions.
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Reproducing the same arguments for i even number in {0, . . . , k − 1} ensures that X0
i

diffuses to at most Fib(r) odd positions and Fib(r + 1) even positions after r rounds. Full
diffusion is obtained when X0

i have diffused to both p odd positions and p even positions
for all i ∈ {0, . . . , k − 1}. This implies 2 · Fib(DR(π)) ≥ k.

4.2 Number of Pair-equivalence Classes of Even-odd Permutations
We compute here an upper bound Ueok of the number of pair-equivalence classes for even-
odd permutations and then give a strategy to build a set of Ueok even-odd permutations
such that all pair-equivalence classes have at least a representative in this set.

Proposition 3. For k = 2p, the cardinal of the set Seok is given by (p!)2.

Proof. There are p possible matches for the images of 0 and 1, corresponding respectively
to the number of odd and even elements. Then, there are p− 1 remaining possible matches
for the images of 2 and 3 and so on until k − 2 and k − 1.

Focusing on even-odd permutations drastically decreases the search space from k!
elements to (p!)2 (recall k = 2p). In [SM10], exhaustive searches through even-odd
permutations are performed up to k = 16 which requires 230 tests whereas general
exhaustive searches for k = 16 was beyond reach, requiring 244 tests. Nevertheless, even
exhaustive search through even-odd permutations becomes quickly intractable because of
the exponential growth of (p!)2 and the case k = 22 with its 250 even-odd permutations is
already beyond reach. Table 3 compares the number of classes and the number of even-odd
permutations for small values of k:

Table 3: Number of pair-equivalence classes of even-odd permutations

Feistel Number of pair-equivalence classes Number of even-odd
size of even-odd permutations permutations
4 4 4
6 11 36
8 43 576
10 161 14400
12 901 518400
14 5579 25401600

Denote by Np the number of distinct cycle decompositions of permutations in Sp.

Theorem 1. Let k = 2p, and Np be the number of distinct cycle decompositions of
permutations in Sp. The number of pair-equivalence classes of even-odd permutations in
Sk is upper bounded by:

Ueok = Np · p!.

Proof. There are two natural bijections Ψ1 and Ψ2 given by:

Ψ1 :
{
Spk → Sp
ϕ 7→ ϕ s.t. ϕ(i) = ϕ(2i)

2 .

and

Ψ2 :

 Sp × Sp → Seok
(ϕ1, ϕ2) 7→ ϕ s.t.

∣∣∣∣ ϕ(2i) = 2ϕ1(i) + 1
ϕ(2i+ 1) = 2ϕ2(i)
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with :

Ψ−1
2 :


Seok → Sp × Sp

ϕ 7→ (ϕ1, ϕ2) s.t.

∣∣∣∣∣ ϕ1(i) = ϕ(2i)−1
2

ϕ2(i) = ϕ(2i+1)
2

Let {ϕj}1≤j≤Np be a set of permutations such that for any existing decomposition type
t of elements in Sp there exists ϕ` in that set such that ϕ` is of type t, i.e. Tϕ` = t (recall
definition 5). We show now that any pair-equivalence class of even-odd permutations owns
at least one element of the following set:

{Ψ2(ϕj , π), j ∈ {1, . . . , Np}, π ∈ Sp}.

Indeed, let π be an even-odd permutation and (π1, π2) = Ψ−1
2 (π). Let j ∈ {1, . . . , Np}

such that Tϕj = Tπ1 and let φ ∈ Sp such that:

φ−1 ◦ π1 ◦ φ = ϕj .

Then, for some ψ ∈ Sp, we have:

Ψ−1
2 (Ψ−1

1 (φ−1) ◦ π ◦Ψ−1
1 (φ)) = (ϕj , ψ)

Remark 4. Computing the value of Nk is a well-known problem in partition theory. As a
consequence of the Euler pentagonal number theorem, the numbers Nk can be computed
recursively: 

Nk = 0 if k < 0
N0 = 1
Nk =

∑
i>0(−1)i+1 · (N

k− i·(3i+1)
2

+N
k− i·(3i−1)

2
)

The complexity reduction Theorem 1 induces is significant since Np ∼ e
π·
√

2·p
3

4·
√

3·p , which is
negligible compared to p!.

Together with the proof of Theorem 1 comes a strategy to produce at least one even-odd
permutation in each pair-equivalence class by constructing Np · p! permutations.

Strategy 1 (Even-odd Pair-equivalence Class Exhaustive Search).

1. For all decomposition types t of size p, fix an arbitrary permutation ψt that satisfies
this decomposition type.

2. For all permutation φ of p elements, construct the permutation πψt,φ given by:{
πψt,φ(2j + 1) = 2ψt(j)
πψt,φ(2j) = 2φ(j) + 1.

3. The set Ek = {πψt,φ}t,φ is then a set such that for any permutation ϕ in Sk, there
exists φ in E such that ϕ and φ are in the same pair-equivalent class.

Example 2 illustrates the design of a permutation in Sk from a decomposition type of
size p and a permutation in Sp.

Example 2. Let p = 7. Consider the decomposition type t = ((4, 1), (3, 1)). Construct the
permutation ψt = (0, 1, 2, 3)(4, 5, 6). Let Id be the identity of {1, . . . , 7}, the permutation
πψt,Id is given by:

{1, 2, 3, 4, 5, 6, 7, 0, 9, 8, 11, 10, 13, 12}.
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Table 4: Comparisons between Ueok and |Seok |

k Np log2(Ueok ) log2(|Seok |)
6 3 4.2 5.2
8 5 6.9 9.2
10 7 9.7 13.8
12 11 13.0 19.0
14 15 16.2 24.6
16 22 19.8 30.6
18 30 23.4 36.9

k Np log2(Ueok ) log2(|Seok |)
20 42 27.2 43.6
22 56 31.1 50.5
24 77 35.1 57.7
26 101 39.2 65.1
28 135 43.4 72.7
30 176 47.7 80.5
32 231 52.1 88.5

Table 5: Fibonacci lower bounds and optimal even-odd diffusion rounds

k lower bound minπ∈Seo
k

(DR(π)) Number of classes
6 5 5 1
8 6 6 2
10 6 7 3
12 7 8 32
14 7 8 23
16 7 8 13
18 8 8 2
20 8 9 2133
22 8 8 4
24 8 9 56

Table 4 compares the upper bound we found with the total number of even-odd
permutations.
Remark 5. The upper bound Ueok is quite satisfying since p! is a lower bound on the number
of pair-equivalence classes. It is indeed the cardinal of the even-odd permutations divided
by the cardinal of permutations of pairs. We have finally:

p! ≤ Number of classes ≤ Np · p!

4.3 Exhaustive Search on Even-odd Permutations
Computations in [SM10] were limited to k ≤ 16. Applying Strategy 1 to produce Ek for
k ≤ 24 and testing all permutations built leads to the results shown in Table 5.

Representatives for pair-equivalence classes reaching optimal even-odd diffusion rounds
are given in the appendix. Optimal even-odd diffusion rounds surprisingly do not grow
uniformly with k. Two particularly interesting cases arise from previous results:

• Case k = 18: only two optimal even-odd pair-equivalence classes exist.

• Case k = 20: no even-odd permutation with diffusion round 8 exists.

5 Designing Permutations with Good Diffusion Rounds
When k > 24, even Strategy 1 becomes computationally intractable. This section introduces
new strategies to find even-odd permutations with good diffusion rounds. We present now
a search algorithm which aims at finding optimal even-odd permutations: Collision-free
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Exhaustive Search. It builds first a subset of even-odd permutations designed to ensure
a perfect diffusion until a given round before computing actual diffusion rounds of those
permutations.

5.1 Collision-free Depths
As stipulated in [SM10], as can also be seen from the proof of Proposition 2, the number
of collisions between consecutive even and odd positions (Xr

2j and Xr
2j+1 affected by some

X0
i ) seems to play an important part in the value of diffusion rounds. The following

definitions are direct consequences of this remark.
From a permutation π in Sk, from any integer i ∈ {0, . . . , k − 1}, we can recursively

construct trees T (π, i, r) which illustrate the diffusion of an input position X0
i after n ≤ r

rounds. A tree is here recursively defined by an integer, the root of the tree, and by a set
of trees, the children of the root. Nodes of depth n of T (π, i, r) are the set of position
affected by i after n rounds.

Precise definition of T (π, i, r) is given by: T (π, i, 0) = {i, ∅}
T (π, 2 · i, n) = {2 · i, T (π, π(2 · i), n− 1), T (π, π(2 · i+ 1), n− 1)}
T (π, 2 · i+ 1, n) = {2 · i+ 1, T (π, π(2 · i+ 1), n− 1)}

The following definition aims to catch the number of rounds without collisions when
considering diffusion from an input position.

Definition 11. A permutation π is said to be collision-free of depth r from i if the leaves
of its associated trees T (π, i, n) are distinct for any n < r and leaves of T (π, i, r) are not.
We denote this depth by CD(π, i).

We are then able to compute the minimum of those collision-free depths from input
positions in order to catch the number of rounds without collisions from any input.

Definition 12. The collision-free depth of π, CD(π), is the minimum of collision-free
depths from each possible root:

CD(π) = min
i

(CD(π, i)).

A high collision-free depth denotes a very structured permutation.
Examples 3 and 4 should clarify these definitions:

Example 3. Let π1 = {3, 0, 5, 2, 1, 4}. Figure 3 illustrates that CD(π1, 0) = 2.

0

π1(0) = 3 π1(0 + 1) = 0

π1(3) = 2 π1(0) = 3 π1(0 + 1) = 0

π1(2) = 5 π1(2 + 1) = 2 π1(3) = 2 π1(0) = 3 π1(0 + 1) = 0

Figure 3: T (π1, 0, 3)

Let π2 = {3, 0, 5, 4, 1, 2}. Figure 4 illustrates that CD(π2, 0) = 3.
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0

3 0

4 3 0

1 2 4 3 0

0 5 4 1 2 4 3 0

Figure 4: T (π2, 0, 4)

Remark 6. In the case of even-odd permutations, we do not need to study collision-free
depths from odd roots since when i is odd, CD(π, i) = 1 + CD(π, π(i)) with π(i) even.
Collision-free depth of an even-odd permutation π is then:

CD(π) = min
i even

(CD(π, i)).

We believe permutations with greater collision-free depths are more likely to have
smaller diffusion rounds than other ones. This belief comes from the fact that when the
Fibonacci bound is tight (for k = 16 or k = 26), this bound can only be reached by
permutations whose odd positions X0

i diffuse without collisions of consecutive positions
(Xr

2j and Xr
2j+1 affected by X0

i ) when r is lower than the theoretical bound. Table
6 reinforces this hope by exhibiting Collision-free depths of known optimal even-odd
permutations from [SM10] and subsection 4.3. Despite our heuristic, we notice however
that some of the optimal permutations can also suffer from quite low collision-free depths.

Table 6: Collision-free depths of optimal even-odd permutations

k 16 18 20 22 24
CD 3 4 3 2 3 4 5 5 3 4 5

] optimal classes 9 4 2 165 1624 340 4 4 19 32 5

Remark 7. It is clear that collision-free depths are pair-equivalence invariants. We have
therefore focused once again our study on pair-equivalence classes.

5.2 Collision-free Search Algorithm
The Collision-free Search Algorithm, given in Algorithm 1, constructs a representative of
each class of permutations that has a given collision-free depth. It works using a depth-first
search with backtracking to avoid going through all permutations. More precisely, the
algorithm works iteratively. From a partial permutation, we try to construct the image of
the next element such that the new image doesn’t lead to a collision. In case of impossibility,
we perform backtracking in the search tree to consider another possibility for the previous
choice of images.

It seems hard to give a theoretical value of its complexity and we only measure
its efficiency empirically. Modifying parameters of Algorithm 1 leads to the following
behaviour: low values of collision-free depth return many permutations whereas high values
of collision-free depth impose many constraints and may return very few permutations.
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The speed of Algorithm 1 comes from the fact that it gets rid of many classes at once. For
instance, for all permutations π with π(0) = 1 and π(1) = 0 , the algorithm does not find
any further images for odd entries which yield a permutation with a collision-free depth
greater than 3 and then it excludes all of these possibilities at once.

Results

• For k ∈ {16, 18} with CD(π) ≥ 3, optimal permutations are found almost instanta-
neously.

• For k = 26 with CD(π) ≥ 4, many permutations with diffusion round 10 are found
and none with diffusion round 9.

This result is quite surprising since the lower bound allows the hope to find permutations
with diffusion round 9 or even 8. However, since Fib(8) = 13 = 26

2 , 8 was a tight bound of
optimal diffusion round for k = 26 that could only be reached by even-odd permutations
with collision-free depth of 7. The result of the algorithm shows that optimal permutations
must have either 9 or 10 for their diffusion round.

Non-deterministic analogues

Algorithm 1 can also be used in a non-deterministic version. For large values of k, even
exhaustive searches of permutations with fixed collision-free depth is beyond reach. In
order to find permutations with low diffusion rounds, we choose random values for a given
subset of entries and we construct all permutations with these fixed images and with a
chosen collision-free depth. Such permutations are likely to have low diffusion round and
even to be optimal. This strategy applied on k = 26 together with a collision-free depth
of 3 raised permutations with diffusion round of 9. From the previous analysis, we know
these permutations to be optimal which is a great validation of both this heuristic and
this method. An example is given in the appendix.

6 From Collision-Free Permutations to Collision-Free Block
Trees

To compute permutations with high collision-free depths, we introduced trees associated
with a permutation and ensured that any root from 0 to k−1 yields a tree with no colliding
nodes before collision-free depth. Considering only even-odd permutations, the number of
leaves of those trees is given by the Fibonacci sequence, complexifying their structures.
From an higher perspective, we would like to construct permutations whose associated trees
respect this collision-free property without enumerating all of them. The notions developed
in this section are not specific to even-odd permutations, and apply to any permutation.
However, following our heuristic, the actual applications of the technique described here is
restricted to even-odd permutations for which algorithms can be optimized.

6.1 Binary Trees
To simplify this analysis, we focus now on blocks rather than single positions. By block,
we mean a pair of adjacent positions (2i, 2i+ 1). The two positions of a block diffuse in
the two blocks that contain π(2i) and π(2i+ 1). We can grow trees of blocks TB(π, i, n)
associated with some permutation π recursively, as we did before with single positions:{

TB(π, i, 0) = {i, ∅}
TB(π, i, n) = {i, TB(π, bπ(2·i)

2 c, n− 1), TB(π, bπ(2·i+1)
2 c, n− 1)}
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Algorithm 1 Collision-free Search Algorithm
Input: An integer p such that 2p is the size. An integer r, the minimal collision-free
depth.

Output: A list of even-odd permutations P ⊂ Sk such that if π is a permutation with
collision-free depth at least r, there exists ϕ ∈ P in the pair-equivalence class of π.

P ← {}
for all decomposition types t of size p do
Choose arbitrarily ψt such that Tψt = t

for i = 0 to p− 1 do
ϕ(2 · i) = 2 · ψt(i) + 1

end for

for i0 = 0 to p− 1 do
ϕ(1) = 2 · i0

if ϕ has no collision up to depth r then

for i1 = 0 to p− 1 , i1 6= i0 do
ϕ(3) = 2 · i1

. . .

if ϕ has no collision up to depth r then
ϕ(2 · p− 1) = 2 · ip−1

if ϕ has no collision up to depth r then
P ← P ∪ {ϕ}

end if
end if
. .
.

end for
end if

end for
end for
return P

The following equality may happen: bπ(2·i)
2 c = bπ(2·i+1)

2 c. Such a node i has then twin
children trees. Definitions of collision-free depths translate immediately to these trees.
Beside, a tree of blocks of collision-free depth r, associated with some permutation π,
ensures π to have a collision-free depth at least r from the positions given by the roots of
the trees. The main advantage of this representation is that its structure, binary trees, is
easier to build, study and manipulate.

Example 4. An example of this association is given in Figure 5 for the cycle π1 defined
by:

π1 = (0, 1, 2, 5, 4, 3, 6, 9, 8, 7).

Several permutations are associated with the same collection of trees of blocks. Con-
versely, constructing a permutation from such a tree consists in choosing images of each
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0

0 1

0 1 2 3

2

1 2

2 3 1 2

Figure 5: TB(π, 0, 2) and T (π, 2, 2)

position compatible with the constraints of blocks fixed by the tree. For instance, if a node
i has two children c1 and c2, an even-odd permutation π compatible with this tree can
only satisfy one of the two possibilities:

{
π(2i) = 2c1 + 1

π(2i+ 1) = 2c2
or

{
π(2i) = 2c2 + 1

π(2i+ 1) = 2c1

Such a construction of a permutation from a collection of trees is called a colouring.
Example 5 gives a construction for k = 8 of a collection of trees with collision-free

depth of 3:

Example 5. This construction consists simply in addressing children to nodes according
to the ascending order: 0 7→ {0, 1}, 1 7→ {2, 3}, 2 7→ {0, 1} and 3 7→ {2, 3}.

0

0 1

0 1 2 3

0 1 2 3 0 1 2 3

1

2 3

0 1 2 3

0 1 2 3 0 1 2 3

2

0 1

0 1 2 3

0 1 2 3 0 1 2 3

3

2 3

0 1 2 3

0 1 2 3 0 1 2 3

Figure 6: A collection of trees with collision-free depth of 3

This construction generalises obviously for 2` with ` ∈ N. We denote these collections
of trees T`. Any permutation of size 2`+1 compatible with such a collection of trees is then
of prescribed collision-free depth greater than `. In the same way as collision free depth
for a permutation, we may introduce the notion of collision free depth for a collection of
compatible trees (compatible means that all nodes with the same index have the same
indexes as children).

Definition 13. The collision-free depth of a collection of compatible trees T, is the
minimum of the collision-free depths of all its trees, denoted by CD(T). A collection T
with the highest collision-free depth is called a collision-free collection of trees.

Remark 8. For a collection of trees T of size p, the collection free depth satisfies:

CD(T) ≤ blog2(p)c.
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As in the previous section, permutations arising form collection-free collections of trees
have by construction a high collision-free depth and are likely to be optimal permutations.
Furthermore, given a collection of trees with ` nodes (permutations of sizes 2`), they are
only 2` colourings which can be tested exhaustively even for larger values of `.

Example 5 is then a collection-free collection of trees. Such a collection of binary trees
is however not unique even up to positions reindexing:

Example 6. The two following constraints yield two collision-free collections of trees that
cannot be obtained from each other with a reindexing of blocks:

• 0 7→ {0, 1}, 1 7→ {2, 3}, 2 7→ {4, 5}, 3 7→ {6, 7}, 4 7→ {0, 1}, 5 7→ {2, 3}, 6 7→ {4, 5},
7 7→ {6, 7}.

• 0 7→ {0, 1}, 1 7→ {2, 3}, 2 7→ {4, 5}, 3 7→ {6, 7}, 4 7→ {0, 3}, 5 7→ {1, 2}, 6 7→ {4, 5},
7 7→ {6, 7}.

6.2 Colouring Trees Algorithm
Algorithm 2 realizes the exhaustive even-odd colorations of the family of collision-free
collections of trees T`.

Algorithm 2 Colouring-T`

Input: an integer `, such that 4` is the size of the permutations (` = log2(l)− 1).
Output: P, the list of even-odd permutations associated with T` with lowest diffusion

round.
P ← {}
min← 4`

for i1 = 0 to 1 do
π(0) = 2i1 + 1 π(1) = 2(1− i1),
π(p) = 2(1− i1) + 1 π(p+ 1) = 2i1

. . .

for i` = 0 to 1 do
π(2(`− 1)) = 2 · (2(`− 1) + i`) + 1, π(2(`− 1) + 1) = 2 · (2(`− 1) + 1− i`)
π(2(`− 1) + p) = 2 · (2(`− 1) + 1− i`) + 1 π(2(`− 1) + p+ 1) = 2 · (2(`− 1) + i`)

if DR(π) ≤ min then
if DR(π) < min then
min← DR(π)
P ← {π}

else
P ← P ∪ {π}

end if
end if

end for
. .
.

end for

return P
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Compared to previous methods, this algorithm with its complexity of O(2 k4 ) is rather
fast and computes permutations in Sk likely to hide among them optimal permutations.
For sizes that are powers of 2, this heuristic leads to the best known even-odd permutations,
as illustrated by table 7. Complete optimal results are shown in appendix A.

Table 7: Some even-odd permutations associated with Tl graphs

k π DR(π)

32 { 1, 2, 5, 6, 9, 10, 13, 14, 19, 16, 23, 20, 27, 24, 31, 28,
3, 0, 7, 4, 11, 8, 15, 12, 17, 18, 21, 22, 25, 26, 29, 30 } 10

64

{ 1, 2, 5, 6, 11, 8, 15, 12, 19, 16, 23, 20, 25, 26, 29, 30,
35, 32, 39, 36, 41, 42, 45, 46, 49, 50, 53, 54, 59, 56, 63, 60,
3, 0, 7, 4, 9, 10, 13, 14, 17, 18, 21, 22, 27, 24, 31, 28,
33, 34, 37, 38, 43, 40, 47, 44, 51, 48, 55, 52, 57, 58, 61, 62 }

11

128

{ 1, 2, 5, 6, 11, 8, 15, 12, 19, 16, 23, 20, 25, 26, 29, 30,
35, 32, 39, 36, 41, 42, 45, 46, 49, 50, 53, 54, 59, 56, 63, 60,
67, 64, 71, 68, 73, 74, 77, 78, 81, 82, 85, 86, 91, 88, 95, 92,
97, 98, 101, 102, 107, 104, 111, 108, 115, 112, 119, 116, 121, 122, 125, 126,
3, 0, 7, 4, 9, 10, 13, 14, 17, 18, 21, 22, 27, 24, 31, 28,
33, 34, 37, 38, 43, 40, 47, 44, 51, 48, 55, 52, 57, 58, 61, 62,
65, 66, 69, 70, 75, 72, 79, 76, 83, 80, 87, 84, 89, 90, 93, 94,
99, 96, 103, 100, 105, 106, 109, 110, 113, 114, 117, 118, 123, 120, 127, 124 }

13

6.3 From trees to graphs
Surprisingly, this construction is a new perspective on the construction coming from the de
Brujin graphs in [SM10]. To be consistent with those, we give a graph description of our
collections of trees. With a permutation, we can associate a graph recording connections
between blocks of two consecutive positions.

Definition 14. Let k = 2p be an even number and π be a permutation in Sk. The graph
associated with π, denoted by Gπ is a directed graph of order p whose vertices are labelled
with {0, . . . , p− 1} and whose directed edges are (i, j) for all i, j ∈ {1, . . . , p− 1} such that
π(2i) ∈ {2j, 2j + 1} or π(2i+ 1) ∈ {2j, 2j + 1}.

Graphs associated with permutations have clearly in- and out-degrees of 2. In our
representations, vertices will be doubled to offer a better understanding of edges. Vertices
at the top of the figures will correspond to inputs of edges while vertices at the bottom of
the figures will correspond to output of edges. From our directed binary graphs, we grow
conversely an associated collection of binary trees defined recursively:{

T (G, i, 0) = {i, ∅}
T (G, i, n) = {i, T (G, j1, n− 1), T (G, j2, n− 1)}

where (i, j1) and (i, j2) are edges of G.

Example 7. Figure 7 gives an example for p = 8. The careful reader may notice that it
is a de Bruijn binary graph and yield also the first collection of trees of Example 6.

Let π be some permutation in Sk and Gπ be its associated graph. If Gπ is of collision-
free depth d, we know that for any a ∈ {0, . . . , k − 1}, and any i ∈ {0, . . . , d}, T (π, a, i)
has distinct leaves. This implies CD(Gπ) ≤ CD(π). It seems then natural to search
optimal permutations among those whose associated graph has a high collision-free depth.
This last sentence explains why the de Brujin graphs exhibited in [SM10] allow to build
permutations with high diffusion rounds.
Remark 9. Equivalence classes of invertible symmetric binary graphs may be built as before
by reindexing vertices. From Example 6, we know the equivalence classes of collision-free
graphs not to be unique. The results we get from our natural construction might then be
improved by considering other collision-free graphs.
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0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Figure 7: A collision-free graph

The colorations requirement for the trees can be rephrased in term of graphs, which is
the definition given in [SM10]:

Definition 15. We call a correct 2-colouring of a binary directed graph a colouring of
the edges such that any vertex is the input of two edges with different colors and is also
the output of two edges with different colors.

From a correct 2-colouring of a binary directed graph of size p, we have a corresponding
even-odd permutation in S2p, constructed as follows:

• If (i, j1) is blue then π(2i) = 2j1 + 1.

• If (i, j2) is red then π(2i+ 1) = 2j2.

Remark 10. When k is a power of 2, k = 2s, we notice that the coloured de Bruijn graph
used in [SM10] to construct even-odd permutations of diffusion round less than 2 log2(k)
may be seen as a colouring of the graphs CG3.

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Figure 8: Coloured de Bruijn graph for s = 3

When [SM10] exhibits one graph with one particular colouring, we propose a tree
representation that explains why de Brujin graphs are likely to produce high diffusion
rounds permutations. We searched among all colorations the ones that produced the
lowest diffusion round. This latest search allowed us to find a permutation with the
lowest diffusion round in the literature. Furthermore, collision-free collections of trees are
not unique even up to reindexation as Example 6 shows. Testing colorations for other
collision-free collection of trees could be a new way to find new permutations with low
diffusion round.
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7 General Case
Until this point, we have restricted our study to even-odd permutations. This restriction
had three reasons: first, even-odd permutations are the closest generalisation of the usual
Feistel structure. Secondly, instinctively and heuristically for small sizes of k, they are the
ones that are more likely to be optimal. Finally, they were easier to study. In this section,
we try to analyse the general case. Results from section 4.3 onward have raised two points
of special interest:

• For k = 18, only two optimal pair-equivalence classes, which are inverse of one
another, exist; do non even-odd optimal permutations exist?

• For k = 20, optimal even-odd permutations have diffusion round 9. This appears
surprising since for k = 18 and k = 22, even-odd permutations with diffusion round
8 exist. Can we find a non even-odd permutation with diffusion round 8?
Answering these two questions will either justify or contradict the intuition on
focusing on even-odd permutations.

Before going into the details, example 8 gives a family of non even-odd permutations
reaching a diffusion round of 2 log2(k) when k is a power of 2 and k ≤ 512. Higher values
of k have not been considered but the statement for all powers of 2 seems easy to prove.
This permutation is highly non even-odd but it still achieve the same diffusion round as
the best permutations known for high values of k and its existence justifies our interest in
the general case.

Example 8. For k = 2s, we define πk = {1, 3, 5, . . . , 2s − 1, 0, 2, . . . , 2s − 2}.

7.1 Towards a Theoretical Lower Bound
Proposition 2 gives a theoretical lower bound on diffusion rounds for even-odd permutations.
It ensures that even-odd permutations reaching it are optimal among even-odd permutations.
The proof relies deeply on the even-odd property. Such a bound has not been found for the
general case. Nevertheless, here are some insights that explain why even-odd permutations
are more likely to be optimal.

The proof of Proposition 2 studies diffusion from each point independently. For the
general case, let ϕ be an arbitrary permutation. We consider all the points together, and
together with the collection of trees they yield.

• Roots of those trees are then the set (i)i∈{0,...,k−1}.

0 1 k − 2 k − 1

• Nodes at depth 1 are (ϕ(i))i∈{0,...,k−1} ∪ (ϕ(i))i odd = (i)i∈{0,...,k−1} ∪ (ϕ(i))i odd
counted with multiplicity. Recall for instance that for even-odd permutations, the
second set are the set of even numbers.

0 1 k − 2 k − 1

ϕ(0) ϕ(1) ϕ(1) ϕ(k − 2) ϕ(k − 1) ϕ(k − 1)
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• Reproducing this counting until the depth corresponding to the diffusion round of ϕ,
each position appears at least k times in the set of leaves, at least one time in each
tree.

Conversely, the diffusion round can only be reached when all the numbers appear at
least k times in the set of leaves. Recall for instance that for even-odd permutations, at
round r, odd numbers appear Fib(r) times and even numbers appear Fib(r+1) accordingly
to lower bound given by Proposition 2.

In general, multiplicities of positions at depth r in such collection of trees are not known.
Even the number of nodes at a fixed depth seems difficult to determine. Permutations
do not all behave in the same way for this general diffusion. For instance, the identity
permutation raises a collection of trees with k + r · p nodes at depth r and not Fib(r + 1).
Notice however that the number of nodes at depth r + 1 depends directly on the number
of nodes at depth r and on the number of even nodes at this depth since it is their sum.
Notice also that in order to maximize the number of nodes at depth 2, one should maximize
the number of even nodes at depth 1. To achieve it, a permutation shall send all odd
nodes that have only one child to even ones. Even-odd permutations maximize then the
total number of nodes at depth 2. Analogous arguments may be invoked to prove that
even-odd permutations maximize the number of nodes until depth 4. This is evidence
that the heuristic focusing on even-odd permutations is well-founded. Unfortunately, we
could not extend this argument for any depth, which would have given an even better
motivation together with a general lower bound on diffusion rounds.

7.2 Number of Pair-equivalence Classes of Permutations
Theorem 1 gives an upper bound on the number of pair-equivalence classes of even-odd
permutations. Such an upper bound exists for the general case:

Theorem 2. Let k = 2p and Nk be the number of decomposition types of size k. The
number of pair-equivalence classes of permutations in Sk is upper bounded by:

Uk = Nk ·
k!
p! .

The proof of Theorem 2 is a direct consequence of the following proposition.

Proposition 4. Let {gi}1≤i≤Nk and {φj}1≤j≤ k!
p!

be sets of permutations such that:

∀g ∈ Sk, ∃i ∈ {1, . . . , Nk} and ϕ ∈ Sk| ϕ ◦ gi ◦ ϕ−1 = g,
∀g ∈ Sk, ∃j ∈ {1, . . . , k!

p! } and h ∈ S
p
k | φj ◦ h = g.

Then for all g in Sk, there exist i ∈ {1, . . . , Nk} and j ∈ {1, . . . , k!
p!} such that g and

φ−1
j ◦ gi ◦ φj are in the same pair-equivalence class.

Proof. We first prove the existence of such sets {gi}1≤i≤Nk and {φj}1≤j≤ k!
p!

:

• The first one is a direct consequence of the fact that if ψ1 and ψ2 are two permutations
with the same decomposition cycle, there exists ϕ such that ϕ ◦ ψ1 ◦ ϕ−1 = ψ2.

• The second set is just a set of right representatives of Sk modulo Spk .

Let g be an element of Sk. By construction, there exist i ∈ {1, . . . , Nk} and ϕ ∈ Sk
such that:

g = ϕ−1 ◦ gi ◦ ϕ.
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By construction, there exist also j ∈ {1, . . . , k!
p!} and h ∈ S

p
k such that:

ϕ = φj ◦ h.

Then
g = h−1 ◦ φ−1

j ◦ gi ◦ φj ◦ h

g is thus in the same pair-equivalence class as φ−1
j ◦ gi ◦ φj .

Remark 11. For a permutation φ, the set {φ−1(i)| i is odd} remains invariant by any left or
right composition by a permutation of pairs. Furthermore, denoting this set {x1, . . . , xp}
where xi < xj when i < j, there exists a permutation of pairs ϕ such that φ◦ϕ(xi) = 2·i+1.
This allows to construct easily a set of representatives {φj}1≤j≤ k!

p!
.

7.3 Exhaustive Search, Collision-Free Trees and Colouring
Similarly to Strategy 1, we use Proposition 4 to construct at least one permutation in each
pair-equivalence class without computing explicitly all classes beforehand. Moreover, in
our search for optimal permutations, some classes can be directly excluded. Let π be a
permutation with a fixed point i, π(i) = i. Then, DR(π) =∞ and π cannot be optimal.
Indeed:

• If i is even, Xr
i is not affected by Xj for all r and all j different to i.

• If i is odd, Xr
j is not affected by Xi for all r and all j different to i.

Denote by N0
k the number of decomposition types with no fixed point. The search

space reduces to:
U0
k = N0

k ·
n!
p! .

Table 8 illustrates how this might affect complexities when searching for optimal
diffusion rounds.

Table 8: Comparison between U0
k and |Sk|

k N0
k log2(U0

k ) log2(|Sk|)
6 4 8.9 9.5
8 7 12.6 15.3
10 12 18.5 21.8
12 21 23.7 28.8
14 34 29.1 36.3

k N0
k log2(U0

k ) log2(|Sk|)
16 55 34.7 44.2
18 88 40.5 52.5
20 137 46.4 61.1
22 210 52.3 69.9
24 320 58.5 79.0

Strategy 2 (Pair-equivalence Class Exhaustive Search).

1. For each decomposition type t of size k that doesn’t have any fixed point, fix an
arbitrary permutation gt compatible with t.

2. For each choice {x1, . . . , xp} of p elements among k assumed sorted, fix an arbitrary
permutation ϕj such that:

ϕj(xi) = 2 · i+ 1.

3. For all permutations φ of p elements, construct the permutation Φ of k elements
such that:

Φ(2 · i+ 1) = 2 · i+ 1 and Φ(2 · i) = 2 · φ(i).
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Table 9: Fibonacci lower bounds and optimal diffusion rounds

k lower bound minπ∈Sk(DR(π)) Number of classes
16 7 8 33
18 8 8 2
20 8 9 Not computed

4. Compute the diffusion round of the permutation (Φ ◦ ϕj)−1 ◦ gt ◦ (Φ ◦ ϕj)

Strategy 2 allowed us to compute optimal permutations for k ≤ 18. For k = 20,
strategy 2 costs 246.4 tests of diffusion rounds. Because of this huge complexity, we used
a supercomputer and we limited our search to permutation diffusion round 8 to take
advantage of fast exponentiation. In the latter case, results were negative in the sense that
all permutations have diffusion round strictly greater than 8. Results are summarized in
table 9.

Representatives for optimal pair-equivalence classes are given in the appendix.
Refined methods to construct good candidates for low diffusion rounds with collision-

free trees or graphs colouring applies directly to the general case. The serious drawback for
the general case remains the exponential growth of the number of permutations. All these
strategies, even improving the search complexity, are still quickly bounded by practical
capacities.

• Algorithm 1 translates to all permutations.

• Associations between permutations, collection of binary trees or binary graphs may
be deduced from Section 6. For instance k = 2`+1, there exist though 2k possible
colorations of T` whereas there is only 2 k4 even-odd colorations.

8 Security Analysis
We evaluated the resistance against classical attacks of every type-II Generalized Feistel
Structure that we found, even-odd or not. Individual results can be found next to each
permutation in Appendix. The presentation of the attacks and the discussion concerning
the resistance of Feistel structures are done in the following.

8.1 Differential and Linear Cryptanalysis
Differential [BS90] and Linear [Mat93] cryptanalysis count as the most famous attacks on
ciphers. Usually, to estimate the resistance against such attacks, the minimal number of
S-boxes with a non-zero difference/mask (called active S-boxes) crossed by differential and
linear characteristics is counted. Let P be the maximal differential or linear probability
of an S-box, and N be the minimal number of active S-boxes. Then the best differential
or linear attack against the cipher has a complexity of about 1/PN operations. Thus, a
cipher is supposed to be secure against differential and linear cryptanalysis as soon as
the quantities 1/PN for differential and linear characteristics are greater than the entire
codebook.

To count the minimal number of actives S-boxes, we used the method described
in [MWGP11], based on Mixed-Integer Linear Programming (MILP). Following the study
of [SM10], we evaluated the minimal number of differentially and linearly active S-boxes
across 20 rounds for every permutation we found. Here we assume that each function Fi
in the Feistel Structure counts as a single S-box.
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From the results, we can draw the following conclusion. Suzaki and Minematsu [SM10]
have already observed that the minimal number of active S-boxes varies widely among the
permutations with optimal diffusion round. We confirm and extend this results by looking
at non-even-odd permutation for up to k = 20 blocks, and for even-odd permutation
with k ∈ {22, 24, 26, 32, 64, 128}, sometimes to less than an average of a single active
S-box per round. Besides non-even-odd permutations are in general worse than even-odd
permutation, despite some non-even-odd permutations being as good as the best even-odds
in certain cases.

This tends to confirm the heuristic to search for even-odd permutations when building
a block cipher, yet does not replace careful security evaluation.

8.2 Impossible Differential Cryptanalysis
Impossible differential attacks [Knu98, BBS99] are a type of cryptanalysis that exploits
differentials appearing with probability zero in some middle round of the cipher. It is then
possible to rule out wrong key candidates if the aforementioned differential holds for some
plaintext/ciphertext pair.

Impossible differentials are usually found using a “miss-in-the-middle” technique: find
two differential characteristics, one forward α→ α′ over rα rounds and the other backward
β → β′ over rβ rounds, that both hold with probability one, but such that the middle
differences α′ and β′ cannot both happen. The differential α→ β is then an impossible
differential over rα + rβ rounds.

The U-method [KHS+03, KHL10] is a classical tool for finding truncated word-wise
or block-wise impossible differentials. They are thus particularly effective against any
generalized Feistel structure since they naturally come with a notion of (sub)block.

In the U-method, each truncated block-wise difference lies within the set {0, γ, δ, γ ⊕
δ, ?}k where 0 denotes a zero difference, γ a non-zero fixed difference (denoted γ), δ a
non-zero unfixed difference, γ ⊕ δ the exclusive-or of a non-zero fixed and a non-zero
unfixed difference, and finally ? an unfixed difference. Assuming the functions used in
the Feistel structure are bijective, such differences evolve across rounds in a natural way.
Input differences α and β only contain 0 and γ. An impossible differential can be found
when the middle differences α′ and β′ have at least one common block with incompatible
type, such as 0 vs γ or δ, or γ vs γ ⊕ δ.

The U-method was later improved to the UID-method [LWLG09, LLWG14], that can
also track equality of differences. Both methods were generalized further in [WW12] to
deal with more complex linear diffusion layers. In the case of type-II GFS with unspecified
functions however, all three methods yield the same results, thus we only implemented the
U-method.

Another approach to impossible differentials is MILP-based techniques [ST17]. In a
nutshell, the idea is to search for differential paths. If the MILP solver does not find any
solution, this yields an impossible differential. Contrary to previous methods, this makes
the search very versatile, as one can for example specify which differential transitions are
impossible through the S-box. Besides, it can detect any differential contradiction and not
just block-wise ones. This comes however at the cost of an increase in complexity.

For even-odd type-II GFS, the authors of [SM10] generically proved that impossible
differential attacks happen for at most 2DR(π) + 1 rounds, and exhaustively showed that
for any even-odd type-II GFS with k ≤ 16 branches, the precise number of rounds for
impossible differentials was either 2DR(π)− 2, 2DR(π)− 1, or 2DR(π) + 1.

We implemented the U -method and computed the maximum number of rounds with an
impossible differential attack, for every permutation we found. The results can be summed
up as follows. The precise number of rounds for impossible differentials lies within the
range 2DR(π)−3 to 2DR(π)+1. This is a slight improvement over previous results, whose
best figure was 2DR(π)− 2. However, the new bound is only reached for two non-even-odd
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permutations for k = 12, and it comes at a cost of a very low number of active S-boxes, and
so is probably not a good choice from a designer’s perspective. Otherwise, non-even-odd
permutations always have a resistance at most as good as even-odd permutations. On
average however, even-odd permutations tend to take about one round fewer to resist
impossible differentials.

8.3 Integral Cryptanalysis
Integral cryptanalysis [DKR97, KW02] is an attack where one is given 2n plaintext/ciphertext
pairs that “saturate” an n-bit word, i.e. on a given n-bit word, the plaintexts take all
possibles values on that n-bit word, while all being equal to some constant elsewhere. The
goal of this attack is to predict the value of the sum (a.k.a. the integral) of (parts of) the
ciphertexts after some rounds of encryption. Such attack is called a first order integral. It
can be generalized to an m-th order integral. This time, one is given 2nm plaintexts that
are all different on m words. Again, the goal is to predict the sum of such messages after
some encryption rounds.

Just like for impossible differentials, the propagations of some block-wise properties
across rounds is studied. For integral cryptanalysis, the block-wise properties are: A
(for All) when all texts are different, C (for Constant) when all texts are equal, B (for
Balanced) when the sum of all texts is zero for that particular block, or ? when the sum
cannot be predicted. An integral characteristic α→ β is then such that α ∈ {A,C}k with
at least one A, and β ∈ {A,C,B, ?}k with at least one block not equal to ?.

In order to find an integral, we follow the method of [BS01]: we first build a first-order
integral α→ β with α containing only one A. This integral characteristic is then extended
into an m-th order characteristic by adding rounds at the beginning α′ → α→ β, as long
as α′ is not made of A only (i.e. is not the full codebook).

For even-odd type-II GFS, the authors of [SM10] generically proved that integral
attacks happen for at most 2DR(π) rounds, and exhaustively showed that for any even-odd
type-II GFS with k ≤ 16 branches, the precise number of rounds for integrals was either
2DR(π)− 2, 2DR(π)− 1, or 2DR(π).

We implemented the above method and computed the maximum number of rounds
with an integral attack, for every permutation we found. The results are summed up here.
The precise number of rounds for integrals lies within the range 2DR(π)−2 to 2DR(π) + 1.
There is no improvement over previous results here, we even observe worse results with non-
even-odd permutations reaching 2DR(π)+1 rounds; no even-odd permutation goes beyond
2DR though. As for impossible differentials, we observe that non-even-odd permutations
can perform as well as even-odd, but on average lie one round behind.

9 Conclusion and Perspectives
The resistance of Generalized Type-II Feistel Schemes against both integral and impossible
differential attacks are related with their diffusion round, number of rounds which ensures a
total diffusion of inputs. This diffusion round is completely determined by the permutation
used to define this structure. In this paper, we have first analysed even-odd permutations
accordingly to the heuristic proposed in [SM10] and then the general case of permutations.

In this analysis, we define pair-equivalence classes of even-odd permutations, for which
diffusion rounds are class invariant. We determine a lower bound on the number of
classes together with a strategy to run over them all. We performed exhaustive search of
pair-equivalence classes of even-odd permutations for k ≤ 24 while previous exhaustive
searches on permutations stopped at k ≤ 16.

In order to find optimally diffusing permutations, we pursued the following heuristic:
permutations which present no lack of intermediate diffusion are likely to have low diffusion
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rounds. We give several algorithms which exploit these considerations. It allowed us to find
optimal even-odd permutations for k = 26 without the test of all pair-equivalence classes
which is computationally consuming. Introducing new structures: trees, collections of trees
and graphs, we were able to develop new strategies which allowed us to find even-odd
permutations with the lowest known diffusion round for sizes k ∈ {64, 128}, parameters
beyond reach of exhaustive searches.

This analysis we made on even-odd permutations is not fully restricted to their structure.
We transposed some results to general permutations and benefit from a strategy which
allowed us to compute exhaustive search of pair-equivalence classes of permutations for
k ≤ 20. The heuristic to focus on even-odd permutations to determine permutations with
the best possible diffusion round seems to be confirmed by general results for k = 18 and
k = 20.

We also conducted a security analysis of our results with respect to differential and
linear cryptanalysis, as well as impossible differentials and integrals attacks. This showed
that the previous results for even-odd permutations still hold for k > 16 : resistance to the
latter two attacks is closely linked to the diffusion rounds, while resistance to the former
two can vary widely and requires special attention from the designer. For non-even-odd
permutations, results vary from as good as even-odd but not better, up to absolutely bad.
Thus, from this perspective, it seems a good intuition to search for even-odd permutations,
yet it does solve every problem.

Some interrogations remain and some of our results are surprising. For instance, optimal
diffusion round for k = 20 is greater than the optimal diffusion round for k = 22. Despite
our insight on what could favour or threaten good diffusion, it seems combinatorics is
so important that unexpected behaviours happen. Some theoretical results remain also
challenging. The most meaningful result would certainly be to benefit from the same
lower bound on diffusion round given by the Fibonacci sequence or at least to determine a
similar result.
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A Optimal Permutations Found
For the sake of compactness, it is common to introduce extended pair-equivalence class
of permutations. By definition, we know the inverse of an optimal permutation to be
also an optimal permutation. Pair-equivalence classes generalises naturally to extended
pair-equivalence classes where two permutations ϕ1 and ϕ2 are in the same extended
pair-equivalence class if and only if either ϕ1 and ϕ2 are pair-equivalent or ϕ1 and ϕ−1

2
are pair-equivalent.

The following tables exhibit a representative for each extended class of optimal per-
mutations and their security evaluation. Here, Imp. stands for impossible differential
characteristic, Intg. stands for Integral characteristic, Diff. and Lin. for Differentially
and Linearly actives S-boxes across 20 rounds. When k ≤ 18, even-odd permutations are
indicated by an "eo" superscript. When k > 18, all permutations given are even-odd. For
k = 64 and 128, we were not able to compute the minimal number of actives S-boxes across
20 rounds, hence only resistance against impossible differentials and integrals are given.

Table 10: Optimal permutations for k = 6 up to extended pair-equivalence

Optimal Permutations k = 6, DR(π) = 5 Imp. Intg. Diff. Lin.
{1, 2, 5, 0, 3, 4}eo 9 10 25 25

Table 11: Optimal permutations for k = 8 up to extended pair-equivalence

Optimal Permutations k = 8, DR(π) = 6 Imp. Intg. Diff. Lin.
{7, 0, 3, 4, 1, 6, 5, 2}eo 10 11 26 26
{3, 4, 1, 2, 7, 0, 5, 6}eo 11 11 30 30
{6, 0, 3, 5, 7, 1, 2, 4} 11 12 16 16
{7, 0, 1, 6, 5, 3, 4, 2} 11 13/12 28 28
{1, 2, 6, 0, 7, 3, 5, 4} 11 13 24 24

Table 12: Optimal permutations for k = 10 up to extended pair-equivalence

Optimal Permutations k = 10, DR(π) = 7 Imp. Intg. Diff. Lin.
{1, 2, 7, 8, 3, 4, 9, 0, 5, 6}eo 12 13 35 35
{9, 0, 5, 6, 3, 4, 1, 8, 7, 2}eo 12 13 34 34
{5, 6, 3, 4, 1, 2, 9, 0, 7, 8}eo 13 13 33 33
{8, 0, 3, 5, 7, 1, 9, 4, 2, 6} 13 14 18 18
{9, 4, 0, 2, 6, 8, 7, 1, 5, 3} 14 14 24 24
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Table 13: Optimal permutations for k = 12 up to extended pair-equivalence

Optimal Permutations k = 12, DR(π) = 8 Imp. Intg. Diff. Lin.
{1, 2, 6, 10, 9, 4, 5, 8, 7, 11, 3, 0} 13 15 20 20
{1, 10, 9, 7, 3, 4, 2, 0, 5, 11, 8, 6} 13 15 20 20
{3, 4, 5, 2, 11, 6, 7, 8, 1, 10, 9, 0}eo 14 14 36 34
{7, 4, 11, 2, 5, 6, 3, 8, 1, 10, 9, 0}eo 14 14/15 34 36
{1, 8, 11, 6, 9, 4, 5, 2, 7, 10, 3, 0}eo 14 15/14 28 28
{5, 8, 11, 6, 9, 4, 7, 2, 1, 10, 3, 0}eo 14 15 37 37
{5, 8, 11, 2, 9, 6, 7, 4, 1, 10, 3, 0}eo 14 15 37 37
{7, 8, 9, 4, 5, 6, 11, 2, 1, 10, 3, 0}eo 14 15 36 36
{5, 8, 9, 2, 1, 4, 11, 6, 7, 10, 3, 0}eo 14 15 36 36
{9, 4, 5, 6, 11, 2, 7, 8, 1, 10, 3, 0}eo 14 15 35 35
{5, 6, 7, 2, 11, 4, 3, 8, 1, 10, 9, 0}eo 14 15 35 35
{9, 4, 7, 8, 5, 6, 11, 2, 1, 10, 3, 0}eo 14 15 35 35
{5, 2, 3, 4, 11, 6, 7, 8, 1, 10, 9, 0}eo 14 15 35 35
{3, 6, 11, 4, 5, 2, 7, 8, 1, 10, 9, 0}eo 14 15 35 35
{11, 4, 9, 2, 5, 6, 1, 8, 7, 10, 3, 0}eo 14 15 35 35
{7, 2, 11, 4, 5, 6, 3, 8, 1, 10, 9, 0}eo 14 15 35 34
{7, 4, 5, 2, 11, 6, 3, 8, 1, 10, 9, 0}eo 14 15 34 35
{9, 4, 11, 6, 5, 8, 1, 2, 7, 10, 3, 0}eo 14 15 34 34
{1, 8, 9, 6, 7, 2, 3, 0, 5, 11, 4, 10} 14 15 34 34
{5, 2, 3, 6, 7, 4, 11, 8, 1, 10, 9, 0}eo 14 15 34 34
{9, 4, 7, 2, 11, 6, 5, 8, 1, 10, 3, 0}eo 14 15 34 33
{7, 8, 5, 2, 9, 6, 11, 4, 1, 10, 3, 0}eo 14 15 34 33
{7, 8, 9, 6, 11, 4, 5, 2, 1, 10, 3, 0}eo 14 15 33 34
{1, 4, 9, 2, 11, 6, 5, 8, 7, 10, 3, 0}eo 14 15 33 33
{8, 6, 5, 1, 3, 10, 9, 0, 7, 11, 2, 4} 14 15 32 32
{8, 2, 5, 0, 3, 1, 9, 10, 7, 11, 4, 6} 14 15 32 32
{9, 2, 7, 4, 3, 0, 1, 8, 5, 11, 6, 10} 14 15 30 30
{5, 10, 1, 8, 6, 4, 9, 2, 7, 11, 3, 0} 14 15 18 31
{5, 3, 4, 6, 1, 7, 8, 2, 9, 11, 0, 10} 14 15 13 20
{4, 2, 8, 0, 9, 3, 7, 1, 5, 11, 6, 10} 14 15 20 13
{9, 0, 3, 7, 2, 6, 1, 10, 5, 11, 8, 4} 14 15/16 32 31
{9, 10, 3, 1, 7, 4, 2, 0, 5, 11, 8, 6} 14 16/15 31 32
{1, 3, 9, 10, 7, 4, 2, 0, 5, 11, 8, 6} 14 16/15 29 20
{7, 2, 5, 8, 1, 4, 9, 10, 6, 11, 3, 0} 14 16 35 35
{9, 2, 3, 8, 7, 0, 1, 4, 5, 11, 6, 10} 14 16 33 32
{6, 10, 1, 2, 5, 8, 9, 4, 7, 11, 3, 0} 14 16 32 32
{3, 8, 9, 6, 1, 2, 7, 0, 5, 11, 4, 10} 15 14/16 34 34
{1, 10, 7, 8, 5, 6, 3, 4, 11, 2, 9, 0}eo 15 15 37 37
{5, 6, 11, 2, 7, 4, 3, 8, 1, 10, 9, 0}eo 15 15 35 35
{1, 2, 5, 8, 9, 4, 11, 6, 7, 10, 3, 0}eo 15 15 35 35
{9, 2, 1, 8, 3, 6, 7, 0, 5, 11, 4, 10} 15 15 34 34
{7, 8, 11, 2, 9, 4, 5, 6, 1, 10, 3, 0}eo 15 15 34 34
{1, 2, 9, 4, 3, 10, 8, 0, 5, 11, 7, 6} 15 15 33 35
{9, 6, 7, 8, 11, 4, 5, 2, 1, 10, 3, 0}eo 15 15 33 34
{9, 4, 1, 2, 11, 6, 5, 8, 7, 10, 3, 0}eo 15 15 33 33
{5, 6, 9, 4, 1, 2, 10, 8, 7, 11, 3, 0} 15 15 33 33
{9, 6, 7, 8, 1, 2, 3, 0, 5, 11, 4, 10} 15 15 33 33
{5, 6, 9, 2, 7, 4, 11, 8, 1, 10, 3, 0}eo 15 15 33 33
{4, 2, 8, 10, 9, 6, 5, 1, 7, 11, 3, 0} 15 15 33 33
{1, 8, 7, 4, 9, 10, 5, 2, 6, 11, 3, 0} 15 15 32 33
{3, 8, 7, 0, 9, 2, 1, 4, 5, 11, 6, 10} 15 15 32 33
{7, 0, 9, 2, 3, 8, 1, 4, 5, 11, 6, 10} 15 15 32 33
{7, 8, 1, 2, 9, 4, 3, 0, 5, 11, 6, 10} 15 15 33 32
{6, 8, 1, 2, 5, 10, 9, 4, 7, 11, 3, 0} 15 15 33 32
{9, 4, 7, 8, 1, 2, 3, 0, 5, 11, 6, 10} 15 15 33 32
{3, 6, 10, 4, 1, 2, 7, 8, 5, 11, 9, 0} 15 15 33 32
{2, 10, 9, 1, 3, 4, 7, 0, 5, 11, 8, 6} 15 15 32 32
{1, 8, 3, 7, 2, 6, 9, 0, 5, 11, 4, 10} 15 15 30 31
{2, 6, 5, 10, 7, 8, 3, 4, 9, 11, 1, 0} 15 15 30 31
{1, 2, 6, 8, 3, 0, 7, 9, 5, 11, 4, 10} 15 15 31 30
{9, 6, 7, 2, 11, 4, 5, 8, 1, 10, 3, 0}eo 15 15 30 30
{3, 4, 9, 0, 7, 2, 1, 8, 5, 11, 6, 10} 15 15 28 28
{9, 8, 3, 1, 7, 6, 2, 0, 5, 11, 4, 10} 15 15 27 27
{9, 10, 7, 4, 1, 2, 3, 0, 5, 11, 8, 6} 15 15 27 27
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Table 14: Optimal permutations for k = 12 up to extended pair-equivalence (continued)

Optimal Permutations k = 12, DR(π) = 8 Imp. Intg. Diff. Lin.
{4, 8, 3, 9, 7, 1, 2, 0, 5, 11, 6, 10} 15 15 20 20
{6, 10, 1, 4, 7, 8, 5, 2, 9, 11, 3, 0} 15 15 31 18
{1, 3, 5, 2, 8, 10, 9, 0, 7, 11, 6, 4} 15 15 22 13
{8, 10, 4, 2, 5, 6, 9, 1, 7, 11, 3, 0} 15 15 13 22
{2, 6, 5, 10, 9, 1, 4, 8, 7, 11, 3, 0} 15 15 20 13
{1, 8, 9, 4, 7, 2, 3, 0, 5, 11, 6, 10} 15 15/16 34 34
{7, 8, 1, 4, 5, 2, 9, 10, 6, 11, 3, 0} 15 15/16 34 32
{5, 6, 1, 4, 10, 8, 7, 0, 3, 11, 9, 2} 15 15/16 32 34
{6, 4, 1, 2, 5, 8, 9, 10, 7, 11, 3, 0} 15 15/16 32 33
{1, 2, 9, 4, 7, 8, 3, 0, 5, 11, 6, 10} 15 15/16 32 33
{9, 0, 7, 2, 3, 6, 1, 8, 5, 11, 4, 10} 15 15/16 32 32
{4, 9, 7, 8, 1, 2, 3, 0, 5, 11, 6, 10} 15 15/16 31 32
{3, 8, 7, 1, 9, 2, 0, 4, 5, 11, 6, 10} 15 15/16 32 31
{3, 8, 0, 7, 1, 2, 9, 4, 5, 11, 6, 10} 15 15/16 26 30
{5, 4, 1, 10, 6, 3, 9, 8, 7, 11, 0, 2} 15 15/16 29 26
{10, 2, 6, 0, 1, 3, 9, 8, 7, 11, 5, 4} 15 15/16 26 29
{2, 0, 7, 8, 3, 1, 9, 4, 5, 11, 6, 10} 15 15/16 26 26
{1, 3, 5, 10, 6, 4, 9, 8, 7, 11, 0, 2} 15 15/17 32 32
{1, 10, 9, 6, 8, 2, 3, 0, 7, 11, 5, 4} 15 16/15 35 33
{1, 8, 9, 2, 6, 10, 3, 0, 7, 11, 5, 4} 15 16/15 33 33
{3, 8, 11, 2, 5, 6, 9, 4, 7, 10, 1, 0}eo 15 16/15 33 33
{10, 6, 5, 8, 1, 4, 9, 2, 7, 11, 3, 0} 15 16/15 32 33
{1, 4, 9, 6, 10, 2, 5, 8, 7, 11, 3, 0} 15 16/15 33 32
{8, 6, 3, 7, 9, 2, 1, 0, 5, 11, 4, 10} 15 16/15 32 32
{7, 8, 9, 6, 1, 2, 3, 0, 5, 11, 4, 10} 15 16/15 32 32
{1, 2, 9, 4, 3, 10, 0, 8, 5, 11, 7, 6} 15 16/15 31 30
{9, 10, 3, 1, 5, 8, 2, 0, 7, 11, 4, 6} 15 16/15 29 32
{9, 4, 7, 10, 1, 2, 3, 0, 5, 11, 8, 6} 15 16/15 27 27
{2, 0, 9, 10, 5, 8, 3, 1, 7, 11, 4, 6} 15 16/15 26 27
{2, 4, 9, 1, 5, 8, 10, 6, 7, 11, 3, 0} 15 16/15 20 29
{7, 4, 1, 2, 3, 6, 10, 8, 5, 11, 9, 0} 15 16 35 35
{8, 0, 3, 5, 6, 10, 9, 1, 7, 11, 2, 4} 15 16 34 34
{5, 8, 7, 2, 9, 4, 11, 6, 1, 10, 3, 0}eo 15 16 33 33
{7, 2, 9, 4, 1, 8, 3, 0, 5, 11, 6, 10} 15 16 33 33
{1, 3, 9, 10, 0, 2, 5, 8, 7, 11, 6, 4} 15 16 33 33
{9, 4, 3, 7, 1, 6, 2, 0, 5, 11, 8, 10} 15 16 33 33
{3, 10, 9, 0, 5, 2, 1, 8, 7, 11, 6, 4} 15 16 32 32
{5, 2, 3, 10, 9, 0, 1, 8, 7, 11, 6, 4} 15 16 32 32
{7, 2, 0, 8, 3, 1, 9, 4, 5, 11, 6, 10} 15 16 26 31
{3, 8, 9, 4, 1, 7, 5, 0, 6, 11, 2, 10} 15 16 30 26
{1, 3, 7, 9, 0, 2, 4, 8, 5, 11, 6, 10} 15 16 26 26
{7, 4, 9, 10, 1, 2, 3, 0, 5, 11, 8, 6} 15 16 24 24
{4, 10, 9, 7, 3, 1, 2, 0, 5, 11, 8, 6} 15 16 20 20
{8, 0, 6, 2, 7, 3, 9, 1, 5, 11, 4, 10} 15 16 20 20
{6, 10, 1, 5, 2, 8, 9, 4, 7, 11, 3, 0} 15 16 20 20
{9, 5, 10, 2, 0, 3, 7, 1, 6, 11, 8, 4} 15 16 20 20
{2, 0, 6, 10, 5, 9, 4, 8, 7, 11, 3, 1} 15 16 20 20
{1, 5, 8, 4, 10, 2, 9, 0, 7, 11, 6, 3} 15 16 29 18
{7, 9, 3, 1, 2, 8, 4, 0, 5, 11, 6, 10} 15 16 18 18
{1, 10, 9, 4, 3, 8, 2, 0, 5, 11, 7, 6} 15 16/17 33 33
{1, 3, 6, 8, 7, 2, 9, 0, 5, 11, 4, 10} 15 16/17 27 26
{7, 4, 9, 10, 0, 2, 3, 1, 5, 11, 8, 6} 15 16/17 20 20
{4, 6, 1, 2, 7, 8, 5, 10, 9, 11, 3, 0} 15 17/15 32 29
{3, 4, 7, 8, 2, 1, 9, 0, 5, 11, 6, 10} 15 17/16 31 26
{2, 8, 9, 1, 6, 10, 3, 0, 7, 11, 5, 4} 15 17/16 23 23
{8, 3, 4, 10, 5, 6, 9, 1, 7, 11, 0, 2} 15 17/16 18 29
{7, 10, 9, 4, 3, 1, 2, 0, 5, 11, 8, 6} 15 17 20 20
{8, 4, 9, 10, 2, 6, 5, 1, 7, 11, 3, 0} 15 17 13 20
{9, 4, 7, 2, 1, 6, 3, 0, 5, 11, 8, 10} 16 16/15 33 33
{9, 0, 5, 2, 3, 10, 1, 8, 7, 11, 6, 4} 16 16 31 31
{9, 3, 7, 2, 1, 6, 0, 8, 5, 11, 4, 10} 16 16 32 29
{4, 6, 1, 2, 5, 8, 9, 10, 7, 11, 3, 0} 16 16 29 32
{3, 2, 1, 6, 7, 0, 9, 10, 5, 11, 8, 4} 16 16 24 24
{9, 2, 5, 6, 7, 4, 11, 8, 1, 10, 3, 0}eo 17 16/15 35 35
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Table 15: Optimal permutations for k = 14 up to extended pair-equivalence

Optimal Permutations k = 14, DR(π) = 8 Imp. Intg. Diff. Lin.
{9, 2, 1, 4, 11, 0, 5, 6, 3, 10, 7, 12, 13, 8}eo 14 15 41 41
{11, 4, 1, 6, 5, 2, 9, 10, 3, 0, 7, 12, 13, 8}eo 14 15 40 40
{1, 2, 5, 10, 11, 0, 9, 4, 3, 6, 7, 12, 13, 8}eo 14 15 40 40
{11, 6, 7, 4, 13, 2, 1, 8, 3, 10, 9, 12, 5, 0}eo 14 15 40 40
{1, 4, 5, 0, 11, 6, 9, 2, 3, 10, 7, 12, 13, 8}eo 14 15 39 39
{11, 4, 1, 2, 9, 10, 5, 6, 3, 0, 7, 12, 13, 8}eo 14 15 40 38
{5, 2, 3, 4, 9, 10, 1, 6, 11, 0, 7, 12, 13, 8}eo 14 15 38 40
{9, 10, 5, 6, 1, 4, 11, 2, 3, 0, 7, 12, 13, 8}eo 14 15 38 38
{5, 6, 11, 2, 9, 10, 1, 4, 3, 0, 7, 12, 13, 8}eo 14 15 33 33
{3, 4, 11, 6, 1, 8, 5, 2, 10, 0, 7, 12, 13, 9} 14 16/17 33 27
{1, 4, 5, 6, 11, 2, 9, 10, 3, 0, 7, 12, 13, 8}eo 15 15 39 39
{9, 2, 11, 4, 1, 10, 5, 6, 3, 0, 7, 12, 13, 8}eo 15 15 39 39
{1, 10, 11, 4, 9, 6, 5, 2, 3, 0, 7, 12, 13, 8}eo 15 15 39 39
{11, 6, 1, 4, 5, 2, 9, 10, 3, 0, 7, 12, 13, 8}eo 15 15 38 38
{3, 4, 11, 6, 1, 2, 5, 8, 9, 0, 7, 12, 13, 10}eo 15 15 38 38
{1, 2, 5, 6, 11, 4, 9, 10, 3, 0, 7, 12, 13, 8}eo 15 15 37 39
{1, 10, 5, 2, 11, 0, 9, 4, 3, 6, 7, 12, 13, 8}eo 15 15 39 37
{5, 3, 4, 2, 9, 6, 1, 10, 11, 0, 7, 12, 13, 8} 15 15 37 37
{3, 6, 9, 4, 7, 10, 13, 8, 11, 2, 1, 12, 5, 0}eo 15 15 37 37
{11, 8, 5, 12, 1, 2, 7, 10, 3, 0, 9, 13, 6, 4} 15 15 27 33
{5, 2, 11, 6, 9, 4, 1, 10, 3, 0, 7, 12, 13, 8}eo 15 15/16 39 39
{9, 4, 1, 6, 5, 10, 11, 2, 3, 0, 7, 13, 8, 12} 15 15/16 38 37
{11, 2, 9, 4, 3, 6, 13, 8, 7, 10, 1, 12, 5, 0}eo 15 15/16 37 37
{1, 6, 11, 4, 9, 2, 5, 10, 3, 0, 7, 12, 13, 8}eo 15 16/15 39 39
{9, 6, 1, 10, 2, 4, 3, 5, 11, 0, 7, 12, 13, 8} 15 16/15 37 37
{1, 10, 5, 6, 11, 2, 9, 4, 3, 0, 7, 13, 8, 12} 15 16/15 37 37
{11, 2, 9, 6, 5, 1, 3, 8, 4, 0, 7, 12, 13, 10} 15 16/15 37 36
{13, 2, 11, 4, 9, 6, 3, 8, 7, 10, 1, 12, 5, 0}eo 15 16 39 39
{11, 4, 1, 2, 5, 6, 9, 10, 3, 0, 7, 12, 13, 8}eo 15 16 39 39
{1, 10, 11, 4, 5, 6, 9, 2, 3, 0, 7, 13, 8, 12} 15 16 37 38
{9, 5, 1, 6, 10, 4, 11, 2, 3, 0, 7, 12, 13, 8} 15 16 37 38
{1, 10, 11, 6, 5, 2, 9, 4, 3, 0, 7, 13, 8, 12} 15 16 38 37
{5, 10, 1, 6, 7, 2, 8, 12, 11, 0, 9, 13, 3, 4} 15 16 37 37
{3, 6, 11, 8, 5, 1, 9, 2, 4, 0, 7, 12, 13, 10} 15 16 37 37
{7, 5, 1, 2, 10, 12, 3, 8, 11, 0, 9, 13, 6, 4} 15 16 37 37
{2, 8, 3, 4, 11, 1, 5, 6, 10, 0, 7, 12, 13, 9} 15 16 37 37
{11, 2, 1, 6, 5, 9, 4, 8, 3, 0, 7, 12, 13, 10} 15 16 36 37
{11, 6, 4, 10, 5, 9, 1, 2, 3, 0, 7, 13, 8, 12} 15 16 36 37
{9, 4, 1, 2, 11, 8, 5, 10, 3, 0, 7, 12, 13, 6}eo 15 16 36 36
{10, 0, 11, 4, 9, 6, 5, 2, 3, 1, 7, 13, 8, 12} 15 16 36 36
{7, 10, 3, 4, 1, 12, 5, 2, 11, 0, 9, 13, 8, 6} 15 16 36 36
{9, 12, 1, 4, 11, 6, 5, 2, 3, 0, 7, 13, 10, 8} 15 16 35 35
{5, 10, 1, 2, 11, 4, 8, 12, 3, 0, 9, 13, 7, 6} 15 16 32 32
{11, 3, 10, 7, 5, 1, 12, 6, 4, 0, 9, 13, 8, 2} 15 16 27 27
{4, 8, 0, 2, 6, 10, 7, 11, 5, 12, 9, 13, 1, 3} 15 16 26 26
{4, 10, 11, 1, 5, 2, 8, 12, 3, 0, 9, 13, 7, 6} 15 16 23 32
{7, 2, 8, 12, 11, 6, 1, 4, 5, 10, 9, 13, 3, 0} 15 16 20 20
{3, 12, 1, 6, 11, 9, 5, 2, 4, 0, 7, 13, 10, 8} 15 16 20 20
{11, 8, 5, 12, 3, 1, 7, 10, 2, 0, 9, 13, 6, 4} 15 16/17 20 33
{5, 3, 11, 6, 1, 8, 4, 2, 10, 0, 7, 12, 13, 9} 15 16/17 33 20
{11, 2, 1, 6, 5, 9, 4, 0, 3, 10, 7, 13, 8, 12} 15 17/15 37 36
{7, 8, 11, 12, 1, 2, 5, 10, 3, 0, 9, 13, 6, 4} 15 17/16 36 36
{2, 10, 11, 4, 5, 1, 8, 12, 3, 0, 9, 13, 7, 6} 15 17/16 32 23
{11, 2, 5, 8, 1, 12, 7, 10, 3, 0, 9, 13, 6, 4} 16 15/16 37 37
{5, 8, 11, 4, 3, 6, 1, 2, 10, 0, 7, 12, 13, 9} 16 16 37 37
{4, 6, 5, 1, 11, 2, 9, 0, 3, 10, 7, 12, 13, 8} 16 16 36 36
{3, 5, 8, 12, 7, 2, 10, 6, 11, 0, 9, 13, 1, 4} 16 16 33 33
{9, 6, 7, 4, 11, 2, 3, 12, 5, 1, 8, 13, 0, 10} 16 16 24 32
{4, 10, 8, 12, 11, 6, 7, 3, 5, 0, 9, 13, 1, 2} 16 17 33 33
{12, 2, 7, 8, 11, 6, 3, 4, 10, 1, 9, 13, 5, 0} 16 17 32 24
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Table 16: Optimal permutations for k = 16 up to extended pair-equivalence

Optimal Permutations k = 16, DR(π) = 8 Imp. Intg. Diff. Lin.
{7, 4, 15, 8, 3, 0, 11, 12, 5, 6, 13, 10, 1, 2, 9, 14}eo 14 15 44 44
{13, 6, 7, 10, 15, 2, 3, 12, 1, 8, 5, 0, 9, 4, 11, 14}eo 14 15 41 41
{11, 2, 3, 14, 7, 12, 15, 8, 9, 10, 13, 0, 1, 4, 5, 6}eo 14 15 40 40
{15, 2, 3, 14, 7, 4, 11, 12, 13, 6, 1, 10, 9, 0, 5, 8}eo 15 15 38 38
{15, 2, 3, 14, 7, 4, 13, 8, 9, 12, 1, 10, 11, 0, 5, 6}eo 15 15 35 35
{15, 8, 9, 14, 1, 10, 13, 2, 3, 12, 7, 4, 11, 0, 5, 6}eo 15 15 35 35
{5, 10, 15, 0, 9, 12, 13, 4, 11, 8, 3, 6, 7, 2, 1, 14}eo 15 15 26 39
{13, 8, 9, 12, 7, 4, 11, 2, 3, 6, 15, 0, 5, 10, 1, 14}eo 15 15 39 26
{15, 2, 3, 14, 1, 10, 13, 8, 9, 12, 7, 4, 11, 0, 5, 6}eo 15 15 26 26
{13, 10, 11, 14, 1, 4, 15, 12, 7, 2, 3, 8, 9, 6, 5, 0}eo 15 15/16 42 42
{7, 8, 5, 2, 13, 0, 15, 12, 3, 10, 11, 4, 9, 14, 1, 6}eo 15 16 42 42
{11, 12, 9, 4, 5, 8, 15, 2, 7, 0, 13, 10, 3, 14, 1, 6}eo 15 16 39 39
{6, 12, 13, 0, 11, 8, 5, 1, 7, 4, 15, 2, 3, 14, 9, 10} 15 16 38 38
{15, 10, 7, 4, 1, 2, 9, 12, 11, 8, 3, 6, 5, 0, 13, 14}eo 15 16 38 38
{14, 0, 12, 2, 10, 6, 8, 4, 15, 1, 13, 3, 9, 5, 11, 7} 15 16 30 30
{14, 0, 10, 6, 8, 2, 12, 4, 15, 1, 9, 3, 13, 5, 11, 7} 15 16 26 26
{14, 0, 12, 2, 8, 6, 10, 4, 13, 1, 15, 3, 9, 5, 11, 7} 15 16 20 20
{1, 7, 13, 9, 15, 11, 5, 3, 12, 8, 4, 2, 14, 10, 0, 6} 15 16 18 18
{14, 0, 9, 6, 15, 1, 5, 2, 3, 12, 13, 8, 11, 4, 7, 10} 16 16 41 41
{10, 12, 5, 2, 6, 0, 15, 8, 9, 14, 7, 1, 3, 4, 11, 13} 16 17 38 38

Table 17: Optimal permutations for k = 18 up to extended pair-equivalence

Optimal Permutations k = 18, DR(π) = 8 Imp. Intg. Diff. Lin.
{3, 8, 5, 12, 7, 0, 9, 14, 11, 2, 13, 10, 15, 4, 1, 16, 17, 6}eo 15 16 40 40
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Table 18: Some optimal permutations for k = 20 up to extended pair-equivalence

Optimal Permutations k = 20, DR(π) = 9 Imp. Intg. Diff. Lin.
{3, 12, 5, 10, 7, 8, 9, 6, 11, 0, 13, 16, 15, 4, 1, 18, 19, 2, 17, 14} 16 17/16 42 42
{3, 14, 5, 16, 7, 0, 9, 10, 11, 12, 1, 18, 15, 8, 13, 4, 19, 2, 17, 6} 16 17 51 51
{3, 10, 5, 14, 7, 12, 9, 6, 11, 2, 13, 16, 15, 8, 17, 18, 1, 4, 19, 0} 16 17 51 51
{3, 8, 5, 2, 7, 0, 9, 14, 11, 12, 13, 16, 15, 4, 1, 18, 17, 10, 19, 6} 16 17 51 51
{3, 12, 5, 8, 7, 4, 9, 0, 11, 14, 13, 16, 15, 6, 1, 18, 19, 10, 17, 2} 16 17/18 52 49
{3, 8, 5, 6, 7, 14, 9, 2, 1, 16, 13, 10, 15, 4, 11, 18, 19, 0, 17, 12} 17 17 51 51
{3, 10, 5, 16, 7, 4, 9, 12, 11, 0, 13, 8, 15, 2, 17, 18, 19, 14, 1, 6} 17 17 51 51
{3, 10, 5, 12, 7, 4, 9, 0, 11, 16, 1, 14, 15, 8, 17, 18, 13, 2, 19, 6} 17 17 51 51
{3, 14, 5, 12, 7, 18, 9, 2, 11, 6, 13, 16, 1, 10, 17, 4, 15, 8, 19, 0} 17 17/18 51 51
{3, 4, 5, 2, 7, 16, 1, 12, 11, 8, 13, 14, 15, 6, 9, 18, 19, 0, 17, 10} 17 17/18 51 51
{3, 12, 5, 6, 7, 16, 9, 10, 11, 4, 13, 2, 15, 0, 1, 18, 19, 8, 17, 14} 17 18 51 51
{3, 6, 5, 12, 7, 2, 9, 14, 11, 8, 13, 0, 15, 4, 17, 18, 19, 10, 1, 16} 17 18 51 51
{3, 12, 5, 6, 7, 2, 9, 16, 11, 14, 13, 0, 1, 4, 17, 18, 19, 10, 15, 8} 17 18 51 51
{3, 6, 5, 18, 7, 12, 9, 4, 11, 0, 13, 16, 15, 8, 17, 2, 19, 14, 1, 10} 16 17 26 26
{3, 16, 5, 8, 7, 12, 9, 4, 11, 0, 13, 6, 15, 18, 17, 2, 19, 14, 1, 10} 16 17 26 26
{3, 8, 5, 2, 7, 12, 9, 16, 11, 4, 13, 14, 15, 6, 17, 18, 1, 10, 19, 0} 16 17 26 26
{3, 18, 5, 10, 7, 16, 9, 2, 11, 14, 13, 8, 15, 0, 17, 6, 19, 12, 1, 4} 16 17 26 26
{3, 4, 5, 10, 7, 16, 9, 14, 11, 2, 13, 6, 15, 12, 17, 18, 1, 8, 19, 0} 16 17 26 26
{3, 16, 5, 0, 7, 12, 9, 18, 11, 14, 13, 6, 15, 10, 17, 2, 19, 8, 1, 4} 16 17 26 26
{3, 4, 5, 0, 7, 10, 9, 14, 1, 12, 13, 2, 15, 8, 17, 18, 11, 6, 19, 16} 16 17 49 26
{3, 12, 5, 16, 7, 14, 9, 10, 11, 8, 13, 4, 15, 0, 17, 18, 1, 6, 19, 2} 16 17 51 39
{3, 10, 5, 0, 7, 14, 9, 2, 11, 8, 13, 4, 1, 16, 17, 18, 15, 12, 19, 6} 16 17/18 50 40
{3, 12, 5, 2, 7, 16, 9, 10, 11, 8, 13, 14, 15, 4, 1, 18, 19, 6, 17, 0} 17 17/16 39 48
{3, 6, 5, 0, 7, 12, 9, 18, 11, 14, 13, 16, 15, 10, 17, 2, 19, 8, 1, 4} 17 17 26 26
{3, 6, 5, 8, 7, 12, 9, 4, 11, 0, 13, 16, 15, 18, 17, 2, 19, 14, 1, 10} 17 17 26 26
{3, 10, 5, 8, 7, 0, 9, 12, 1, 6, 13, 16, 15, 18, 17, 4, 19, 14, 11, 2} 17 17 26 26
{3, 16, 5, 0, 7, 12, 9, 18, 1, 14, 13, 6, 15, 10, 17, 2, 19, 8, 11, 4} 17 17 26 26
{3, 8, 5, 16, 7, 12, 9, 6, 11, 2, 1, 14, 15, 18, 17, 4, 19, 0, 13, 10} 17 17 50 26
{3, 0, 5, 18, 7, 8, 9, 12, 11, 14, 13, 6, 1, 10, 17, 2, 19, 16, 15, 4} 17 17 52 40
{3, 4, 5, 14, 7, 2, 9, 0, 11, 16, 13, 10, 15, 6, 17, 18, 19, 12, 1, 8} 17 17/18 39 26
{3, 10, 5, 16, 7, 8, 9, 6, 11, 14, 13, 4, 15, 12, 17, 18, 1, 2, 19, 0} 17 17/18 39 26
{3, 16, 5, 2, 7, 10, 9, 18, 11, 6, 13, 0, 15, 8, 17, 4, 19, 14, 1, 12} 17 18/17 47 26
{3, 16, 5, 6, 7, 0, 9, 14, 11, 12, 13, 4, 1, 10, 17, 2, 19, 8, 15, 18} 17 17/18 52 48
{3, 14, 5, 10, 7, 4, 9, 18, 1, 6, 13, 0, 15, 8, 17, 2, 11, 12, 19, 16} 17 18 26 26
{3, 12, 5, 10, 7, 2, 9, 6, 1, 16, 13, 14, 15, 8, 17, 18, 11, 0, 19, 4} 17 18 26 26
{3, 6, 5, 10, 7, 8, 9, 16, 1, 12, 13, 4, 15, 2, 11, 14, 19, 0, 17, 18} 17 18 46 26
{3, 16, 5, 12, 7, 8, 9, 6, 11, 2, 13, 14, 1, 10, 17, 18, 15, 0, 19, 4} 17 18 51 39
{3, 4, 5, 14, 7, 16, 9, 12, 11, 0, 13, 6, 15, 10, 1, 18, 17, 8, 19, 2} 17 17/18 46 50
{3, 4, 5, 0, 7, 8, 9, 10, 11, 14, 13, 16, 15, 6, 1, 18, 17, 12, 19, 2} 17 18/17 50 40
{3, 10, 5, 14, 7, 8, 9, 0, 11, 16, 1, 18, 15, 12, 17, 4, 13, 2, 19, 6} 17 17 40 49
{3, 14, 5, 12, 7, 18, 9, 6, 11, 0, 1, 16, 15, 10, 17, 4, 13, 2, 19, 8} 17 17 48 45
{3, 8, 5, 14, 7, 2, 9, 0, 11, 4, 13, 16, 15, 10, 17, 18, 19, 6, 1, 12} 17 18 44 46
{3, 0, 5, 8, 7, 12, 9, 6, 11, 14, 13, 4, 15, 10, 17, 18, 1, 2, 19, 16} 17 17 36 40
{3, 10, 5, 16, 7, 12, 9, 6, 11, 14, 13, 8, 15, 2, 17, 18, 1, 4, 19, 0} 16 17 40 47
{3, 0, 5, 14, 7, 16, 9, 6, 11, 12, 1, 8, 15, 10, 13, 18, 19, 2, 17, 4} 17 17/18 40 40
{3, 14, 5, 0, 7, 4, 9, 16, 11, 6, 13, 10, 15, 2, 17, 18, 19, 8, 1, 12} 16 17 40 40
{3, 0, 5, 16, 7, 14, 9, 12, 11, 4, 13, 8, 15, 6, 1, 18, 19, 10, 17, 2} 16 17 49 45
{3, 4, 5, 0, 7, 16, 9, 12, 11, 6, 13, 14, 1, 18, 17, 2, 19, 10, 15, 8} 17 17 47 50
{3, 6, 5, 16, 7, 14, 9, 12, 11, 0, 13, 4, 15, 8, 1, 18, 17, 2, 19, 10} 16 17 40 51
{3, 6, 5, 0, 7, 14, 9, 10, 11, 12, 1, 18, 15, 16, 17, 4, 13, 8, 19, 2} 17 17 49 40
{3, 16, 5, 8, 7, 4, 9, 12, 11, 6, 13, 14, 15, 0, 17, 18, 1, 2, 19, 10} 17 17/18 40 48
{3, 0, 5, 12, 7, 2, 9, 10, 11, 4, 13, 16, 15, 6, 17, 18, 1, 14, 19, 8} 16 17 40 40
{3, 4, 5, 12, 7, 18, 9, 10, 11, 0, 13, 8, 1, 14, 17, 2, 15, 16, 19, 6} 17 17 49 49
{3, 6, 5, 16, 7, 10, 9, 14, 11, 8, 13, 2, 15, 12, 1, 18, 19, 0, 17, 4} 17 18/17 50 41
{3, 14, 5, 2, 7, 16, 9, 12, 11, 6, 13, 10, 15, 4, 1, 18, 19, 8, 17, 0} 16 17 32 40
{3, 8, 5, 14, 7, 12, 9, 10, 11, 4, 13, 2, 15, 6, 17, 18, 1, 16, 19, 0} 16 17 50 40
{3, 12, 5, 6, 7, 2, 9, 14, 11, 0, 13, 4, 15, 8, 17, 18, 1, 16, 19, 10} 17 18/17 49 49
{3, 6, 5, 12, 7, 4, 9, 10, 11, 2, 13, 16, 15, 8, 17, 18, 1, 14, 19, 0} 17 17/18 40 51
{3, 8, 5, 0, 7, 14, 9, 2, 11, 4, 13, 10, 15, 6, 17, 18, 1, 12, 19, 16} 17 17 26 39
{3, 12, 5, 6, 7, 2, 9, 0, 11, 16, 13, 14, 15, 10, 1, 18, 19, 8, 17, 4} 17 18/17 39 39
{3, 0, 5, 16, 7, 4, 9, 12, 1, 6, 13, 14, 15, 8, 11, 18, 19, 10, 17, 2} 16 17 40 40
{3, 14, 5, 6, 7, 12, 9, 16, 11, 2, 13, 0, 15, 4, 1, 18, 17, 8, 19, 10} 17 17 40 48
{3, 12, 5, 8, 7, 0, 9, 16, 11, 14, 1, 4, 15, 10, 13, 18, 17, 6, 19, 2} 17 17/18 48 48
{3, 12, 5, 10, 7, 0, 9, 16, 1, 6, 13, 8, 15, 4, 17, 18, 19, 2, 11, 14} 16 17 47 45
{3, 0, 5, 8, 7, 12, 9, 16, 11, 14, 13, 6, 15, 2, 1, 18, 17, 10, 19, 4} 17 18 48 51
{3, 0, 5, 12, 7, 10, 9, 6, 11, 2, 13, 16, 15, 4, 17, 18, 1, 14, 19, 8} 16 17 40 40
{3, 14, 5, 8, 7, 18, 1, 6, 11, 2, 13, 16, 9, 10, 17, 4, 15, 12, 19, 0} 16 17 50 50
{3, 0, 5, 14, 7, 12, 9, 10, 11, 8, 13, 16, 15, 2, 17, 18, 1, 4, 19, 6} 16 18/17 49 40
{3, 8, 5, 14, 7, 0, 9, 12, 11, 18, 13, 4, 1, 16, 17, 2, 15, 6, 19, 10} 17 17/18 46 46
{3, 10, 5, 8, 7, 12, 9, 0, 11, 14, 13, 6, 15, 4, 17, 18, 1, 16, 19, 2} 17 17/18 48 50
{3, 6, 5, 10, 7, 14, 9, 0, 11, 16, 13, 2, 1, 8, 17, 18, 15, 12, 19, 4} 16 17 48 48
{3, 12, 5, 10, 7, 14, 9, 4, 11, 8, 13, 2, 15, 16, 1, 18, 17, 6, 19, 0} 17 17 26 39
{3, 6, 5, 14, 7, 10, 9, 16, 1, 12, 13, 0, 15, 8, 17, 18, 19, 4, 11, 2} 17 17 49 32
{3, 14, 5, 12, 7, 2, 9, 16, 11, 8, 13, 0, 15, 6, 17, 18, 1, 4, 19, 10} 16 17 48 48
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Table 19: Optimal even-odd permutations for k = 22 up to extended pair-equivalence

Optimal Permutations k = 22, DR(π) = 8 Imp. Intg. Diff. Lin.
{3, 0, 5, 14, 7, 10, 9, 2, 11, 12, 13, 18, 15, 6, 17, 4, 19, 20, 1, 16, 21, 8} 15 16 40 40
{3, 18, 5, 8, 7, 14, 9, 0, 1, 12, 13, 10, 15, 4, 17, 2, 19, 20, 11, 16, 21, 6} 15 16 40 40

Table 20: Optimal even-odd permutations for k = 24 up to extended pair-equivalence

Optimal Permutations k = 24, DR(π) = 9 Imp. Intg. Diff. Lin.
{3, 4, 5, 0, 7, 22, 9, 6, 11, 18, 1, 16, 15, 20, 17, 12, 13, 10, 21, 2, 19, 14, 23, 8} 16 17 34 34
{3, 0, 5, 20, 7, 12, 9, 22, 11, 8, 13, 16, 15, 4, 1, 18, 19, 14, 17, 2, 23, 6, 21, 10} 16 17 52 30
{3, 8, 5, 20, 7, 4, 9, 22, 11, 0, 13, 16, 15, 12, 1, 18, 19, 14, 17, 2, 23, 6, 21, 10} 16 17 30 52
{3, 20, 5, 6, 7, 4, 9, 22, 11, 12, 1, 16, 15, 18, 17, 0, 13, 10, 21, 2, 19, 14, 23, 8} 16 17 40 26
{3, 20, 5, 14, 7, 12, 9, 22, 11, 0, 1, 10, 15, 4, 17, 18, 13, 6, 21, 2, 19, 16, 23, 8} 16 17 26 40
{3, 8, 5, 14, 7, 0, 9, 6, 11, 20, 13, 18, 15, 4, 17, 10, 19, 16, 1, 22, 23, 12, 21, 2} 16 17 38 26
{3, 16, 5, 10, 7, 4, 9, 18, 11, 20, 13, 6, 15, 0, 17, 14, 19, 8, 1, 22, 23, 12, 21, 2} 16 17 26 38
{3, 22, 5, 12, 7, 16, 9, 18, 11, 0, 1, 20, 15, 4, 17, 14, 13, 6, 21, 2, 19, 10, 23, 8} 17 17 53 53
{3, 12, 5, 6, 7, 0, 9, 16, 11, 14, 13, 8, 15, 2, 17, 18, 19, 4, 21, 22, 1, 20, 23, 10} 17 17 51 40
{3, 4, 5, 12, 7, 16, 9, 2, 11, 8, 13, 14, 15, 0, 17, 20, 19, 6, 21, 22, 1, 18, 23, 10} 17 17 40 51
{3, 10, 5, 6, 7, 12, 9, 0, 11, 18, 1, 22, 15, 20, 17, 14, 19, 8, 21, 4, 13, 16, 23, 2} 17 17 40 40
{3, 16, 5, 6, 7, 14, 9, 18, 11, 4, 1, 8, 15, 2, 17, 0, 19, 10, 21, 22, 13, 20, 23, 12} 17 17 40 40
{3, 22, 5, 0, 7, 4, 9, 18, 11, 6, 1, 16, 15, 20, 17, 12, 13, 10, 21, 2, 19, 14, 23, 8} 17 17 40 40
{3, 10, 5, 16, 7, 8, 9, 14, 11, 18, 13, 6, 15, 4, 17, 2, 19, 0, 21, 22, 1, 20, 23, 12} 17 17 42 32
{3, 18, 5, 14, 7, 10, 9, 16, 11, 20, 13, 8, 15, 4, 17, 0, 19, 6, 1, 22, 21, 12, 23, 2} 17 17 38 26
{3, 18, 5, 14, 7, 0, 9, 16, 11, 20, 13, 8, 15, 4, 17, 10, 19, 6, 1, 22, 21, 2, 23, 12} 17 17 38 26
{3, 6, 5, 0, 7, 14, 9, 18, 11, 20, 13, 16, 15, 10, 17, 4, 19, 8, 1, 22, 21, 12, 23, 2} 17 17 26 38
{3, 18, 5, 8, 7, 2, 9, 20, 11, 4, 13, 16, 15, 10, 17, 14, 19, 6, 21, 22, 1, 12, 23, 0} 17 17/18 56 40
{3, 0, 5, 14, 7, 12, 9, 10, 11, 8, 13, 2, 15, 18, 17, 20, 19, 4, 1, 22, 23, 6, 21, 16} 17 17/18 32 48
{3, 4, 5, 20, 7, 18, 9, 16, 11, 14, 13, 10, 15, 0, 17, 6, 19, 2, 21, 22, 1, 8, 23, 12} 17 17/18 32 42
{3, 22, 5, 14, 7, 16, 9, 12, 11, 18, 1, 20, 15, 8, 13, 0, 19, 10, 17, 6, 21, 4, 23, 2} 17 18/17 59 59
{3, 12, 5, 10, 7, 8, 9, 6, 11, 20, 13, 18, 15, 4, 17, 14, 19, 2, 1, 22, 23, 0, 21, 16} 17 18/17 48 32
{3, 0, 5, 14, 7, 12, 9, 4, 11, 8, 13, 2, 15, 18, 17, 20, 19, 10, 1, 22, 23, 6, 21, 16} 17 18/17 30 40
{3, 12, 5, 10, 7, 18, 9, 6, 11, 20, 13, 8, 15, 4, 17, 14, 19, 2, 1, 22, 23, 0, 21, 16} 17 18/17 40 30
{3, 18, 5, 6, 7, 20, 1, 2, 11, 8, 13, 16, 15, 12, 9, 22, 19, 14, 17, 4, 23, 0, 21, 10} 17 18 58 58
{3, 0, 5, 8, 7, 16, 9, 14, 11, 20, 13, 4, 15, 18, 17, 6, 19, 10, 1, 22, 23, 12, 21, 2} 17 18 56 56
{3, 22, 5, 12, 7, 10, 9, 16, 11, 0, 13, 18, 15, 6, 1, 4, 19, 14, 21, 2, 17, 20, 23, 8} 17 18 55 55
{3, 18, 5, 8, 7, 4, 9, 20, 11, 6, 13, 16, 15, 2, 17, 10, 19, 14, 21, 22, 1, 12, 23, 0} 17 18 40 56
{3, 16, 5, 20, 7, 14, 9, 10, 11, 8, 13, 22, 15, 0, 1, 6, 19, 4, 21, 2, 17, 18, 23, 12} 17 18 40 30
{3, 16, 5, 20, 7, 8, 9, 0, 11, 22, 13, 14, 15, 12, 1, 6, 19, 4, 21, 2, 17, 18, 23, 10} 17 18 30 40
{3, 16, 5, 0, 7, 14, 9, 18, 11, 20, 13, 6, 15, 10, 17, 4, 19, 8, 1, 22, 21, 2, 23, 12} 17 18 26 38

Table 21: One optimal even-odd permutation for k = 26

One even-odd optimal Permutation k = 26, DR(π) = 9 Imp. Intg. Diff. Lin.
{3, 20, 5, 6, 7, 12, 9, 24, 11, 18, 1, 16, 15,
10, 17, 22, 19, 4, 13, 0, 23, 14, 25, 8, 21, 2} 17 18 44 44
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Table 22: Best known permutations k = 32

Best known Permutations k = 32, DR(π) = 10 Imp. Intg. Diff. Lin.
{1, 2, 5, 6, 11, 8, 15, 12, 19, 16, 23, 20, 25, 26, 29, 30,
3, 0, 7, 4, 9, 10, 13, 14, 17, 18, 21, 22, 27, 24, 31, 28} 18 19 70 70
{1, 2, 7, 4, 11, 8, 13, 14, 17, 18, 23, 20, 27, 24, 29, 30,
3, 0, 5, 6, 9, 10, 15, 12, 19, 16, 21, 22, 25, 26, 31, 28} 18 19 70 70
{3, 0, 5, 6, 9, 10, 15, 12, 19, 16, 21, 22, 25, 26, 31, 28,
1, 2, 7, 4, 11, 8, 13, 14, 17, 18, 23, 20, 27, 24, 29, 30} 18 19 70 70
{3, 0, 7, 4, 9, 10, 13, 14, 17, 18, 21, 22, 27, 24, 31, 28,
1, 2, 5, 6, 11, 8, 15, 12, 19, 16, 23, 20, 25, 26, 29, 30} 18 19 70 70
{1, 2, 7, 4, 11, 8, 13, 14, 19, 16, 21, 22, 25, 26, 31, 28,
3, 0, 5, 6, 9, 10, 15, 12, 17, 18, 23, 20, 27, 24, 29, 30} 18 19 65 65
{3, 0, 5, 6, 9, 10, 15, 12, 17, 18, 23, 20, 27, 24, 29, 30,
1, 2, 7, 4, 11, 8, 13, 14, 19, 16, 21, 22, 25, 26, 31, 28} 18 19 65 65
{1, 2, 5, 6, 9, 10, 13, 14, 19, 16, 23, 20, 27, 24, 31, 28,
3, 0, 7, 4, 11, 8, 15, 12, 17, 18, 21, 22, 25, 26, 29, 30} 19 20 71 71
{1, 2, 7, 4, 9, 10, 15, 12, 17, 18, 23, 20, 25, 26, 31, 28,
3, 0, 5, 6, 11, 8, 13, 14, 19, 16, 21, 22, 27, 24, 29, 30} 19 20 71 71
{3, 0, 5, 6, 11, 8, 13, 14, 19, 16, 21, 22, 27, 24, 29, 30,
1, 2, 7, 4, 9, 10, 15, 12, 17, 18, 23, 20, 25, 26, 31, 28} 19 20 71 71
{3, 0, 7, 4, 11, 8, 15, 12, 17, 18, 21, 22, 25, 26, 29, 30,
1, 2, 5, 6, 9, 10, 13, 14, 19, 16, 23, 20, 27, 24, 31, 28} 19 20 71 71
{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30} 19 20 23 23
{2, 0, 6, 4, 10, 8, 14, 12, 18, 16, 22, 20, 26, 24, 30, 28,
3, 1, 7, 5, 11, 9, 15, 13, 19, 17, 23, 21, 27, 25, 31, 29} 19 20 23 23

Table 23: Best known permutations k = 64

Best known Permutations k = 64, DR(π) = 11 Imp. Intg.
{1, 2, 5, 6, 11, 8, 15, 12, 19, 16, 23, 20, 25, 26, 29, 30,
35, 32, 39, 36, 41, 42, 45, 46, 49, 50, 53, 54, 59, 56, 63, 60,
3, 0, 7, 4, 9, 10, 13, 14, 17, 18, 21, 22, 27, 24, 31, 28,
33, 34, 37, 38, 43, 40, 47, 44, 51, 48, 55, 52, 57, 58, 61, 62}

21 21/22

{3, 0, 7, 4, 9, 10, 13, 14, 17, 18, 21, 22, 27, 24, 31, 28,
33, 34, 37, 38, 43, 40, 47, 44, 51, 48, 55, 52, 57, 58, 61,
62, 1, 2, 5, 6, 11, 8, 15, 12, 19, 16, 23, 20, 25, 26, 29,
30, 35, 32, 39, 36, 41, 42, 45, 46, 49, 50, 53, 54, 59, 56, 63, 60}

21 21/22

{1, 2, 7, 4, 11, 8, 13, 14, 19, 16, 21, 22, 25, 26, 31, 28,
33, 34, 39, 36, 43, 40, 45, 46, 51, 48, 53, 54, 57, 58, 63,
60, 3, 0, 5, 6, 9, 10, 15, 12, 17, 18, 23, 20, 27, 24, 29,
30, 35, 32, 37, 38, 41, 42, 47, 44, 49, 50, 55, 52, 59, 56, 61, 62}

21 22/21

{3, 0, 5, 6, 9, 10, 15, 12, 17, 18, 23, 20, 27, 24, 29, 30,
35, 32, 37, 38, 41, 42, 47, 44, 49, 50, 55, 52, 59, 56, 61,
62, 1, 2, 7, 4, 11, 8, 13, 14, 19, 16, 21, 22, 25, 26, 31,
28, 33, 34, 39, 36, 43, 40, 45, 46, 51, 48, 53, 54, 57, 58, 63, 60}

21 22/21
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Table 24: Best known permutations k = 128

Best known Permutations k = 128, DR(π) = 13 Imp. Intg.
{1, 2, 5, 6, 11, 8, 15, 12, 19, 16, 23, 20, 25, 26, 29, 30, 35, 32, 39, 36, 41, 42, 45, 46,
49, 50, 53, 54, 59, 56, 63, 60, 67, 64, 71, 68, 73, 74, 77, 78, 81, 82, 85, 86, 91, 88, 95, 92,
97, 98, 101, 102, 107, 104, 111, 108, 115, 112, 119, 116, 121, 122, 125, 126, 3, 0, 7, 4,
9, 10, 13, 14, 17, 18, 21, 22, 27, 24, 31, 28, 33, 34, 37, 38, 43, 40, 47, 44, 51, 48, 55, 52,
57, 58, 61, 62, 65, 66, 69, 70, 75, 72, 79, 76, 83, 80, 87, 84, 89, 90, 93, 94, 99, 96, 103, 100,
105, 106, 109, 110, 113, 114, 117, 118, 123, 120, 127, 124}

24 25

{3, 0, 5, 6, 9, 10, 15, 12, 17, 18, 23, 20, 27, 24, 29, 30, 33, 34, 39, 36, 43, 40, 45, 46,
51, 48, 53, 54, 57, 58, 63, 60, 67, 64, 69, 70, 73, 74, 79, 76, 81, 82, 87, 84, 91, 88, 93, 94,
97, 98, 103, 100, 107, 104, 109, 110, 115, 112, 117, 118, 121, 122, 127, 124, 1, 2, 7, 4,
11, 8, 13, 14, 19, 16, 21, 22, 25, 26, 31, 28, 35, 32, 37, 38, 41, 42, 47, 44, 49, 50, 55, 52,
59, 56, 61, 62, 65, 66, 71, 68, 75, 72, 77, 78, 83, 80, 85, 86, 89, 90, 95, 92, 99, 96, 101, 102,
105, 106, 111, 108, 113, 114, 119, 116, 123, 120, 125, 126}

24 25

{3, 0, 7, 4, 9, 10, 13, 14, 17, 18, 21, 22, 27, 24, 31, 28, 33, 34, 37, 38, 43, 40, 47, 44,
51, 48, 55, 52, 57, 58, 61, 62, 65, 66, 69, 70, 75, 72, 79, 76, 83, 80, 87, 84, 89, 90, 93, 94,
99, 96, 103, 100, 105, 106, 109, 110, 113, 114, 117, 118, 123, 120, 127, 124, 1, 2, 5, 6,
11, 8, 15, 12, 19, 16, 23, 20, 25, 26, 29, 30, 35, 32, 39, 36, 41, 42, 45, 46, 49, 50, 53, 54,
59, 56, 63, 60, 67, 64, 71, 68, 73, 74, 77, 78, 81, 82, 85, 86, 91, 88, 95, 92, 97, 98, 101, 102,
107, 104, 111, 108, 115, 112, 119, 116, 121, 122, 125, 126}

24 25

{1, 2, 7, 4, 11, 8, 13, 14, 17, 18, 23, 20, 27, 24, 29, 30, 35, 32, 37, 38, 41, 42, 47, 44,
51, 48, 53, 54, 57, 58, 63, 60, 67, 64, 69, 70, 73, 74, 79, 76, 83, 80, 85, 86, 89, 90, 95, 92,
97, 98, 103, 100, 107, 104, 109, 110, 113, 114, 119, 116, 123, 120, 125, 126, 3, 0, 5, 6,
9, 10, 15, 12, 19, 16, 21, 22, 25, 26, 31, 28, 33, 34, 39, 36, 43, 40, 45, 46, 49, 50, 55, 52,
59, 56, 61, 62, 65, 66, 71, 68, 75, 72, 77, 78, 81, 82, 87, 84, 91, 88, 93, 94, 99, 96, 101, 102,
105, 106, 111, 108, 115, 112, 117, 118, 121, 122, 127, 124}

24 25

{1, 2, 7, 4, 11, 8, 13, 14, 19, 16, 21, 22, 25, 26, 31, 28, 35, 32, 37, 38, 41, 42, 47, 44,
49, 50, 55, 52, 59, 56, 61, 62, 65, 66, 71, 68, 75, 72, 77, 78, 83, 80, 85, 86, 89, 90, 95, 92,
99, 96, 101, 102, 105, 106, 111, 108, 113, 114, 119, 116, 123, 120, 125, 126, 3, 0, 5, 6,
9, 10, 15, 12, 17, 18, 23, 20, 27, 24, 29, 30, 33, 34, 39, 36, 43, 40, 45, 46, 51, 48, 53, 54,
57, 58, 63, 60, 67, 64, 69, 70, 73, 74, 79, 76, 81, 82, 87, 84, 91, 88, 93, 94, 97, 98, 103, 100,
107, 104, 109, 110, 115, 112, 117, 118, 121, 122, 127, 124}

24 25

{3, 0, 5, 6, 9, 10, 15, 12, 19, 16, 21, 22, 25, 26, 31, 28, 33, 34, 39, 36, 43, 40, 45, 46,
49, 50, 55, 52, 59, 56, 61, 62, 65, 66, 71, 68, 75, 72, 77, 78, 81, 82, 87, 84, 91, 88, 93, 94,
99, 96, 101, 102, 105, 106, 111, 108, 115, 112, 117, 118, 121, 122, 127, 124, 1, 2, 7, 4,
11, 8, 13, 14, 17, 18, 23, 20, 27, 24, 29, 30, 35, 32, 37, 38, 41, 42, 47, 44, 51, 48, 53, 54,
57, 58, 63, 60, 67, 64, 69, 70, 73, 74, 79, 76, 83, 80, 85, 86, 89, 90, 95, 92, 97, 98, 103, 100,
107, 104, 109, 110, 113, 114, 119, 116, 123, 120, 125, 126}

24 25

{3, 0, 5, 6, 11, 8, 13, 14, 17, 18, 23, 20, 25, 26, 31, 28, 35, 32, 37, 38, 43, 40, 45, 46,
49, 50, 55, 52, 57, 58, 63, 60, 65, 66, 71, 68, 73, 74, 79, 76, 83, 80, 85, 86, 91, 88, 93, 94,
97, 98, 103, 100, 105, 106, 111, 108, 115, 112, 117, 118, 123, 120, 125, 126, 1, 2, 7, 4,
9, 10, 15, 12, 19, 16, 21, 22, 27, 24, 29, 30, 33, 34, 39, 36, 41, 42, 47, 44, 51, 48, 53, 54,
59, 56, 61, 62, 67, 64, 69, 70, 75, 72, 77, 78, 81, 82, 87, 84, 89, 90, 95, 92, 99, 96, 101, 102,
107, 104, 109, 110, 113, 114, 119, 116, 121, 122, 127, 124}

25 25

{1, 2, 7, 4, 9, 10, 15, 12, 19, 16, 21, 22, 27, 24, 29, 30, 33, 34, 39, 36, 41, 42, 47, 44,
51, 48, 53, 54, 59, 56, 61, 62, 67, 64, 69, 70, 75, 72, 77, 78, 81, 82, 87, 84, 89, 90, 95, 92,
99, 96, 101, 102, 107, 104, 109, 110, 113, 114, 119, 116, 121, 122, 127, 124, 3, 0, 5, 6,
11, 8, 13, 14, 17, 18, 23, 20, 25, 26, 31, 28, 35, 32, 37, 38, 43, 40, 45, 46, 49, 50, 55, 52,
57, 58, 63, 60, 65, 66, 71, 68, 73, 74, 79, 76, 83, 80, 85, 86, 91, 88, 93, 94, 97, 98, 103, 100,
105, 106, 111, 108, 115, 112, 117, 118, 123, 120, 125, 126}

25 25

{3, 0, 7, 4, 11, 8, 15, 12, 19, 16, 23, 20, 27, 24, 31, 28, 33, 34, 37, 38, 41, 42, 45, 46,
49, 50, 53, 54, 57, 58, 61, 62, 65, 66, 69, 70, 73, 74, 77, 78, 81, 82, 85, 86, 89, 90, 93, 94,
99, 96, 103, 100, 107, 104, 111, 108, 115, 112, 119, 116, 123, 120, 127, 124, 1, 2, 5, 6,
9, 10, 13, 14, 17, 18, 21, 22, 25, 26, 29, 30, 35, 32, 39, 36, 43, 40, 47, 44, 51, 48, 55, 52,
59, 56, 63, 60, 67, 64, 71, 68, 75, 72, 79, 76, 83, 80, 87, 84, 91, 88, 95, 92, 97, 98, 101, 102,
105, 106, 109, 110, 113, 114, 117, 118, 121, 122, 125, 126}

25 25/26

{1, 2, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22, 25, 26, 29, 30, 35, 32, 39, 36, 43, 40, 47, 44,
51, 48, 55, 52, 59, 56, 63, 60, 67, 64, 71, 68, 75, 72, 79, 76, 83, 80, 87, 84, 91, 88, 95, 92,
97, 98, 101, 102, 105, 106, 109, 110, 113, 114, 117, 118, 121, 122, 125, 126, 3, 0, 7, 4,
11, 8, 15, 12, 19, 16, 23, 20, 27, 24, 31, 28, 33, 34, 37, 38, 41, 42, 45, 46, 49, 50, 53, 54,
57, 58, 61, 62, 65, 66, 69, 70, 73, 74, 77, 78, 81, 82, 85, 86, 89, 90, 93, 94, 99, 96, 103, 100,
107, 104, 111, 108, 115, 112, 119, 116, 123, 120, 127, 124}

25 25/26

{1, 2, 7, 4, 9, 10, 15, 12, 17, 18, 23, 20, 25, 26, 31, 28, 35, 32, 37, 38, 43, 40, 45, 46,
51, 48, 53, 54, 59, 56, 61, 62, 65, 66, 71, 68, 73, 74, 79, 76, 81, 82, 87, 84, 89, 90, 95, 92,
99, 96, 101, 102, 107, 104, 109, 110, 115, 112, 117, 118, 123, 120, 125, 126, 3, 0, 5, 6,
11, 8, 13, 14, 19, 16, 21, 22, 27, 24, 29, 30, 33, 34, 39, 36, 41, 42, 47, 44, 49, 50, 55, 52,
57, 58, 63, 60, 67, 64, 69, 70, 75, 72, 77, 78, 83, 80, 85, 86, 91, 88, 93, 94, 97, 98, 103, 100,
105, 106, 111, 108, 113, 114, 119, 116, 121, 122, 127, 124}

25 25/26
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Table 25: Best known permutations k = 128 (continued)

Best known Permutations k = 128, DR(π) = 13 Imp. Intg.
{3, 0, 5, 6, 11, 8, 13, 14, 19, 16, 21, 22, 27, 24, 29, 30, 33, 34, 39, 36, 41, 42, 47, 44, 49,
50, 55, 52, 57, 58, 63, 60, 67, 64, 69, 70, 75, 72, 77, 78, 83, 80, 85, 86, 91, 88, 93, 94, 97, 98,
103, 100, 105, 106, 111, 108, 113, 114, 119, 116, 121, 122, 127, 124, 1, 2, 7, 4, 9, 10, 15, 12,
17, 18, 23, 20, 25, 26, 31, 28, 35, 32, 37, 38, 43, 40, 45, 46, 51, 48, 53, 54, 59, 56, 61, 62,
65, 66, 71, 68, 73, 74, 79, 76, 81, 82, 87, 84, 89, 90, 95, 92, 99, 96, 101, 102, 107, 104, 109,
110, 115, 112, 117, 118, 123, 120, 125, 126}

25 25/26

{3, 0, 7, 4, 9, 10, 13, 14, 19, 16, 23, 20, 25, 26, 29, 30, 35, 32, 39, 36, 41, 42, 45, 46, 51,
48, 55, 52, 57, 58, 61, 62, 65, 66, 69, 70, 75, 72, 79, 76, 81, 82, 85, 86, 91, 88, 95, 92, 97, 98,
101, 102, 107, 104, 111, 108, 113, 114, 117, 118, 123, 120, 127, 124, 1, 2, 5, 6, 11, 8, 15, 12,
17, 18, 21, 22, 27, 24, 31, 28, 33, 34, 37, 38, 43, 40, 47, 44, 49, 50, 53, 54, 59, 56, 63, 60, 67,
64, 71, 68, 73, 74, 77, 78, 83, 80, 87, 84, 89, 90, 93, 94, 99, 96, 103, 100, 105, 106, 109,
110, 115, 112, 119, 116, 121, 122, 125, 126}

25 26/25

{3, 0, 5, 6, 9, 10, 15, 12, 19, 16, 21, 22, 25, 26, 31, 28, 35, 32, 37, 38, 41, 42, 47, 44, 51,
48, 53, 54, 57, 58, 63, 60, 67, 64, 69, 70, 73, 74, 79, 76, 83, 80, 85, 86, 89, 90, 95, 92, 99, 96,
101, 102, 105, 106, 111, 108, 115, 112, 117, 118, 121, 122, 127, 124, 1, 2, 7, 4, 11, 8, 13, 14,
17, 18, 23, 20, 27, 24, 29, 30, 33, 34, 39, 36, 43, 40, 45, 46, 49, 50, 55, 52, 59, 56, 61, 62, 65,
66, 71, 68, 75, 72, 77, 78, 81, 82, 87, 84, 91, 88, 93, 94, 97, 98, 103, 100, 107, 104, 109,
110, 113, 114, 119, 116, 123, 120, 125, 126}

25 26/25

{1, 2, 7, 4, 11, 8, 13, 14, 17, 18, 23, 20, 27, 24, 29, 30, 33, 34, 39, 36, 43, 40, 45, 46, 49,
50, 55, 52, 59, 56, 61, 62, 65, 66, 71, 68, 75, 72, 77, 78, 81, 82, 87, 84, 91, 88, 93, 94, 97, 98,
103, 100, 107, 104, 109, 110, 113, 114, 119, 116, 123, 120, 125, 126, 3, 0, 5, 6, 9, 10, 15, 12,
19, 16, 21, 22, 25, 26, 31, 28, 35, 32, 37, 38, 41, 42, 47, 44, 51, 48, 53, 54, 57, 58, 63, 60, 67,
64, 69, 70, 73, 74, 79, 76, 83, 80, 85, 86, 89, 90, 95, 92, 99, 96, 101, 102, 105, 106, 111,
108, 115, 112, 117, 118, 121, 122, 127, 124}

25 26/25

{1, 2, 5, 6, 11, 8, 15, 12, 17, 18, 21, 22, 27, 24, 31, 28, 33, 34, 37, 38, 43, 40, 47, 44, 49,
50, 53, 54, 59, 56, 63, 60, 67, 64, 71, 68, 73, 74, 77, 78, 83, 80, 87, 84, 89, 90, 93, 94, 99, 96,
103, 100, 105, 106, 109, 110, 115, 112, 119, 116, 121, 122, 125, 126, 3, 0, 7, 4, 9, 10, 13, 14,
19, 16, 23, 20, 25, 26, 29, 30, 35, 32, 39, 36, 41, 42, 45, 46, 51, 48, 55, 52, 57, 58, 61, 62, 65,
66, 69, 70, 75, 72, 79, 76, 81, 82, 85, 86, 91, 88, 95, 92, 97, 98, 101, 102, 107, 104, 111,
108, 113, 114, 117, 118, 123, 120, 127, 124}

25 26/25

{3, 0, 7, 4, 9, 10, 13, 14, 17, 18, 21, 22, 27, 24, 31, 28, 33, 34, 37, 38, 43, 40, 47, 44, 51,
48, 55, 52, 57, 58, 61, 62, 67, 64, 71, 68, 73, 74, 77, 78, 81, 82, 85, 86, 91, 88, 95, 92, 97, 98,
101, 102, 107, 104, 111, 108, 115, 112, 119, 116, 121, 122, 125, 126, 1, 2, 5, 6, 11, 8, 15, 12,
19, 16, 23, 20, 25, 26, 29, 30, 35, 32, 39, 36, 41, 42, 45, 46, 49, 50, 53, 54, 59, 56, 63, 60, 65,
66, 69, 70, 75, 72, 79, 76, 83, 80, 87, 84, 89, 90, 93, 94, 99, 96, 103, 100, 105, 106, 109,
110, 113, 114, 117, 118, 123, 120, 127, 124}

25 26

{1, 2, 5, 6, 11, 8, 15, 12, 19, 16, 23, 20, 25, 26, 29, 30, 35, 32, 39, 36, 41, 42, 45, 46, 49,
50, 53, 54, 59, 56, 63, 60, 65, 66, 69, 70, 75, 72, 79, 76, 83, 80, 87, 84, 89, 90, 93, 94, 99, 96,
103, 100, 105, 106, 109, 110, 113, 114, 117, 118, 123, 120, 127, 124, 3, 0, 7, 4, 9, 10, 13, 14,
17, 18, 21, 22, 27, 24, 31, 28, 33, 34, 37, 38, 43, 40, 47, 44, 51, 48, 55, 52, 57, 58, 61, 62, 67,
64, 71, 68, 73, 74, 77, 78, 81, 82, 85, 86, 91, 88, 95, 92, 97, 98, 101, 102, 107, 104, 111,
108, 115, 112, 119, 116, 121, 122, 125, 126}

25 26
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