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Abstract. The boomerang attack is a cryptanalysis technique that allows an attacker
to concatenate two short differential characteristics. Several research results (ladder
switch, S-box switch, sandwich attack, Boomerang Connectivity Table (BCT), ...)
showed that the dependency between these two characteristics at the switching round
can have a significant impact on the complexity of the attack, or even potentially
invalidate it. In this paper, we revisit the issue of boomerang switching effect, and
exploit it in the case where multiple rounds are involved. To support our analysis,
we propose a tool called Boomerang Difference Table (BDT), which can be seen as
an improvement of the BCT and allows a systematic evaluation of the boomerang
switch through multiple rounds. In order to illustrate the power of this technique,
we propose a new related-key attack on 10-round AES-256 which requires only 2
simple related-keys and 275 computations. This is a much more realistic scenario
than the state-of-the-art 10-round AES-256 attacks, where subkey oracles, or several
related-keys and high computational power is needed. Furthermore, we also provide
improved attacks against full AES-192 and reduced-round Deoxys.

Keywords: Boomerang attack · Switching effect · BCT · Boomerang Difference Table
· AES · Deoxys

1 Introduction
Differential cryptanalysis [BS91] is one of the most significant technique applicable to
symmetric-key block ciphers, which exploits the high probability of a differential. The
boomerang attack [Wag99] is an extension of the traditional differential attack, where two
differentials are combined in an elegant way to provide a distinguishing property of the
cipher. More precisely, it regards the targeted cipher E as a cascade of two sub-ciphers,
i.e., E = E1 ◦E0 as depicted in Figure 1. Assume that there is a differential α→ β with
probability p for E0 and a differential γ → δ with probability q for E1, the boomerang
attack exploits the probability of the following differential:

Pr[E−1(E(x)⊕ δ)⊕ E−1(E(x⊕ α)⊕ δ) = α] = p2q2. (1)

The basic boomerang attack requires an adaptive chosen-plaintext/ciphertext scenario
as the attacker needs to ensure the α difference on the encryption queries and the δ
difference on the decryption queries. Later, the amplified boomerang attack [KKS01] was
proposed, which only requires a chosen-plaintext scenario and where a right quartet is
obtained with probability p2q22−n. Furthermore, it was pointed out in [BDK01,BDK02]
that any value of β and γ is allowed as long as β 6= γ. As a result, the probability of the right
quartet is increased to 2−np̂2q̂2, where p̂ =

√
ΣiPr2(α −→ βi) and q̂ =

√
ΣjPr2(γj −→ δ),

which is known as the rectangle attack.
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Figure 1: The boomerang attack
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Figure 2: The sandwich attack

In boomerang-style attacks, the probability of obtaining a right quartet is computed
based on the assumption that the two sub-ciphers E0 and E1 are independent. However,
Murphy [Mur11] pointed out that the independence assumption is not always legitimate. He
provided some counterexamples where two independently chosen differential characteristics
may be incompatible, which causes a zero probability of the boomerang distinguisher.
Interestingly, he also showed that some other cases lead in contrary to a much higher
probability. Besides, many improvements taking advantages of the dependency between
the two differential characteristics have been proposed, such as the middle round S-box
trick [BDD03], ladder switch, S-box switch and Feistel switch [BK09].

Those observations can be captured in the framework of sandwich attack [DKS10,
DKS14], which decomposes the cipher as E = E1 ◦ Em ◦ E0, with the middle part Em

consisting of relatively short transformations (as depicted in Figure 2). The differential
characteristics of E0 and E1 specify the input difference β and output difference γ to Em

separately. Then, a small boomerang distinguisher is applied on Em with probability r
computed by:

r = Pr[E−1
m (Em(x)⊕ γ)⊕ E−1

m (Em(x⊕ β)⊕ γ) = β] (2)

The entire boomerang distinguisher succeeds only if a right quartet of Em is generated,
thus the overall success probability becomes p2q2r. Then, the boomerang switching effects
can be unified as the dependency between the two characteristics lie now in Em. We call
the interaction between the two characteristics boomerang switch, just as the name chosen
in [BK09].

At Eurocrypt 2018, Cid et al. [CHP+18] proposed an efficient and systematic method
to evaluate r. It narrows the switching effect of a state to a single S-box with a newly
created table, called Boomerang Connectivity Table (BCT). The entries in the BCT record
the probability of generating a right quartet for each input/output difference at the S-box
level, such that the boomerang incompatibility, ladder switch and S-box switch can easily
be detected. Moreover, the BCT provides a potentially stronger switching effect than
those in the previous observations. Later, a follow-up work on the uniformity of the BCT
was produced in [BC18].

Note that all the switching effects and the BCT tool are derived under the scenario
where Em is a simple operation, such as one S-box layer. However, practical experiments
from [CHP+17] show that additional improvements might be obtained when Em contains
two rounds, and the analysis of SKINNY cipher [BJK+16] in [CHP+18] also highlights that
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boomerang switching effect in 2-round Em is possible. Then, from the research results
summarized above, the following questions naturally arise:

• What is the maximum number of rounds that can compose Em, such that the
boomerang switching effect still exists?

• Can we directly apply the current switching techniques to Em when it is composed
of multiple rounds? If not, are there other switching techniques that can provide a
systematic evaluation?

Our contributions. In this paper, we provide a systematic analysis of the boomerang
switching effect in multiple rounds for S-box based ciphers. First, we exploit the principle
behind the ladder switch and show that the boomerang switch is applicable in multiple
rounds, e.g., a 4-round boomerang distinguisher of SKINNY can be constructed with
probability 1. Then, the applicability of the BCT in multiple rounds is shown to be
defective with an incompatibility example on two rounds of AES. In order to capture the
switching effect in multiple rounds, we propose a new tool, so-called Boomerang Difference
Table (BDT). The BDT is created at the S-box level and is a combination of the BCT
and the DDT (Difference Distribution Table). It represents the differential propagation
and the boomerang switch in a unified manner. With the help of the BDT, we present a
general evaluation of the 2-round boomerang switch for the first time.

To illustrate the power of the boomerang switch in multiple rounds, we exhibit a full
key recovery related-key attack on 10-round AES-256 with only 275 computations and
2 related-keys. Previously, the best attack [BDK+10] on this reduced-round variant of
AES-256 required 244 computations, but only recovered 35 subkey bits (the rest of the key
having to be brute-forced). Moreover, it has to be conducted under a much less realistic
related-subkey scenario, where the attacker is allowed to choose differences on different
subkeys. Known attacks [BDK05,KHP07] on 10-round AES-256 in the classical related-key
scenario require much more related keys (64 or 256) and computations effort (2172).

Besides, we further showcase the practical usage of the BDT by extending from one
round to two rounds the boomerang switch in the attacks against full AES-192 [BK09,BN10]
(the attack from [BN10] remained the best publicly known attack on full round AES-192).

Finally, we describe how to improve the boomerang attack [CHP+17] against 10-round
Deoxys-BC [JNPS16] by accurately detecting from which parts of the attack the differential
probabilities are coming from.

Organization. In Section 2, we provide a brief description of boomerang attacks and the
current switching techniques, followed by the notations adopted throughout the paper. In
Section 3, we discuss the boomerang switch in the case of multiple rounds, and introduce the
boomerang difference table as a method to evaluate the switching effect and its applications
on 2-round boomerang switch. In Section 4, the boomerang attack on 10-round AES-256 is
proposed by applying the 2-round boomerang switch. The applications on AES-192 and
Deoxys-BC with the 2-round boomerang switch is presented in Section 5 and 6. Section 7
summarizes this paper.

2 Preliminaries
2.1 Related-Key Boomerang Attacks
Boomerang attacks under the related-key setting were formulated in [BDK05]. Let ∆K
and ∇K be the key differences for subciphers E0 and E1, respectively. The attacker
needs to access four related-key oracles with K1 ∈ K, where K denotes the key space:
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K2 = K1⊕∆K, K3 = K1⊕∇K and K4 = K1⊕∆K⊕∇K. The attack is then performed
with the following process:

1. Choose a plaintext P1 at random, compute another plaintext P2 = P1 ⊕ α.

2. Ask for the encryption of P1 and P2 with secret key K1 and K2 separately, denote
the ciphertexts C1 and C2 respectively.

3. Compute C3 = C1 ⊕ δ and C4 = C2 ⊕ δ.

4. Ask for the decryption of C3 and C4 with K3 and K4 separately, denote the new
plaintexts P3 and P4 respectively.

5. Check whether P3 ⊕ P4 = α.

2.2 Boomerang Switch and Boomerang Connectivity Table.
The boomerang switch, proposed in [BK09], was used to obtain free rounds in the middle
of the cipher in the attacks against full AES-192 and AES-256. The idea was to optimize the
transition between the sub-paths of E0 and E1 in order to minimize the overall complexity
of the distinguisher. In [BK09], two S-box based switches were introduced: the ladder
switch, and the S-box switch. The idea of the ladder switch is to realize that instead of
necessarily decomposing the cipher into rounds, one can decompose it into smaller parallel
transformations and this may lead to better distinguishers. The idea of the S-box switch
is that when a same S-box is activated in both E0 and E1, and when the output difference
in E0 is identical to the input difference in E1, then the differential transition through the
S-box is free in one of the two directions.

These switches were further generalized with the boomerang connectivity table [CHP+18]
and we provide here the definition.

Definition 1 ( [CHP+18]). Let S be an invertible function from Fn
2 to Fn

2 , and ∆0, ∇0 ∈
Fn

2 . The boomerang connectivity table (BCT) of S is defined by a 2n × 2n table, in which
the entry for (∆0,∇0) is computed by:

BCT (∆0,∇0) = #{x ∈ {0, 1}n|S−1(S(x)⊕∇0)⊕ S−1(S(x⊕∆0)⊕∇0) = ∆0}.

The generation of the BCT can be visualized in Figure 3. The ladder switch is captured
by the BCT in the case where at least one of the index equals to zero. The S-box switch
is captured by the BCT in the case where ∇0 equals ∆1. Moreover, the incompatibility
pointed out by Murphy [Mur11] simply corresponds to zero entries in the BCT.
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Figure 3: Generation of a right quartet at the S-box level



146 Boomerang Switch in Multiple Rounds

2.3 Notations
The subkey of round i is denoted by Ki, i starting from 0, K0 being the master key. We
use (i, j) to point the position located at the i-th row and j-th column of the state array.
We denote by xr

i,j the cell at position (i, j) before the S-box layer at round r, and by yr
i,j

the cell after the S-box layer. Besides, by ∆ we denote the difference in the upper trail,
and by ∇ the same for the lower trail.

In this paper, we mainly focus on the iterative ciphers with substitution-permutation
network (SPN), which consists of predefined S-box and linear layer.

3 Boomerang Switch
In this section, we analyze the boomerang switching effect in Em. The notations in
Figure 2 and 3 are adopted. Note that the linear layers at the head and the tail of the
round operations in Em are not considered, because linear layers make no difference on
the switching effect.

3.1 Determining The Number of Rounds in Em

At FSE 2018 [CHP+17], Cid et al. proposed a MILP-based method to exploit the switching
effect in two rounds of Deoxys-BC [JNPS16]. Their method adopts the idea of ladder
switch that the round function can be divided into two independent parts. Suppose one
part is only active in E0 and the other part is only active in E1, then by assigning the
former as a part of E1 and the latter as a part of E0, the differential probability of all the
S-boxes becomes 1. Since the round function of Deoxys-BC can operate on two independent
parts for two rounds, Cid et al. set the length of Em to 2 rounds in their search tool.

Recalling the procedure of boomerang attack, the differential characteristic of E0 is
used in the forward direction for the pair (P1, P2) and the backward direction for the pair
(P3, P4), and the differential characteristic of E1 is used in the backward direction for both
pairs (C1, C3) and (C2, C4). The principle behind the ladder switch in Em is that the
backward diffusion of the active cells in γ has no interaction with the forward diffusion
of the active cells in β, thus the difference between y3 and y4 can backtrack to β with
probability 1. We formalize it into the following lemma:

Lemma 1. In Em, if the forward diffusion of the active cells in β has no interaction with
the backward diffusion of the active cells in γ, a right quartet of Em can be generated with
probability 1.

The effect of Lemma 1 is not exactly the same as the ladder switch and we use the
following example to highlight the difference.

Example 1. Let SKINNY [BJK+16] be the block cipher considered (its round function is
given in Appendix A). By applying Lemma 1, we find that a right quartet of Em can be
generated with probability 1 up to four rounds with nonzero β and γ. One example is
depicted in Figure 4, which is composed of two truncated differential characteristics. With
any instantiated values of β and γ, the boomerang can always return to β with probability
1, i.e., r = 1. However, by the original definition of ladder switch the round function of
SKINNY cannot be divided into two independent parts for more than two rounds.

Thus, using Lemma 1, the maximal number of rounds for Em can be easily determined
for a specific cipher. Briefly, start from a 1-round Em, iterate the truncated difference of
β and γ to meet the condition in Lemma 1, if it is satisfied, increase the number of rounds
in Em by 1 and repeat the previous process until the condition cannot be met, then the
maximal number of rounds for Em is the one of the last Em that meets the condition.
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Figure 4: An example of 4-round Em for SKINNY, the two differential characteristics are given in
truncated notation (gray denotes an active nibble, white denotes an inactive nibble), the above
one is used for encryption and the below one is used for decryption.

In particular, Em can contain more rounds for the ciphers with a sparser diffusion layer.
Besides, we note that the above Em is actually a 4-round distinguisher of SKINNY with
probability 1, which is an interesting observation.

3.2 Incompatibility in Multiple Rounds
As stated in [CHP+18], the BCT provides a unified representation of the existing obser-
vations on the boomerang switch. Nevertheless, it was proposed to evaluate Em when
composed of a single S-box layer, the applicability of the BCT to the boomerang switch in
multiple rounds remaining unknown so far.

We give an example in Figure 5 and show that the BCT is actually incapable of
detecting incompatibilities when Em consists of two rounds.
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Figure 5: A 2-round Em example for AES, with the actual β and γ values, which will never
generate a right quartet. The differences are represented in hexadecimal.

In Figure 5, both differential characteristics are established with probability 2−7. In
the first S-box layer, the upper differential characteristic fixes the ∆0 of the active S-box to
0xdf and the lower differential characteristic fixes ∇0 = 0xa9, with which the BCT entry
is 2. At the second S-box layer, for the targeted S-box, the BCT entry is 2 for ∆0 = 0xf9
and ∇0 = 0xc6. All the other S-boxes in the two rounds will be bypassed with probability
1 (entries of the BCT are 28). Thus, according to the BCT, the difference pairs (∆0,∇0) of
all S-boxes in the two S-box layers are compatible, which implies that the two differential
characteristics of Em are compatible in a boomerang distinguisher. Let us focus on the
Sbox at position (0, 0) in the first S-box layer, a right quartet requires that the DDT entry
for (0xdf, 0xf1) and the BCT entry for (0xdf, 0xa9) are nonzero simultaneously. However,
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a brute-force search of Fn
2 shows that there is no value satisfying this condition. Hence, a

right quartet will never be generated for the Em, which contradicts the conclusion derived
by the BCT.

3.3 Generalized Switching Effect in Multiple Rounds
The above incompatible example implies that the BCT has limitation on the evaluation of
boomerang switch in multiple rounds. In the definition of the BCT, it takes into account
∆0 and ∇0 to evaluate the switching probability of a single S-box. ∆0 and ∇0 correspond
to β and γ respectively when Em only consists in one S-box layer, and only β and γ matter
in computing the switching probability (as shown in formula 2). Thus, the BCT measures
the switching effect nicely for one S-box layer. However, when it comes to multiple S-box
layers, this correspondence no longer exists. Consecutive multiple S-box layers are highly
related. Such as the S-box with input difference ∆0 = 0xdf in the first round in Figure 5,
the first round switch requires ∇0 = 0xa9, while the second round switch requires the
output difference ∆1 to be 0xf1, which causes an incompatibility. This fact reveals that
several independent compatible boomerang switches could lead to incompatibilities when
they are combined together. Therefore, it is necessary to find a way to consider consecutive
rounds in a unified manner.

The above example shows a contradiction of the 3-tuple (∆0,∆1,∇0) for a S-box.
Hence, it is crucial to analyze the relation among them. In the following, we provide two
lemmas which are applicable to any S-box.

Lemma 2. For any fixed ∆0 and ∆1, for which the DDT entry is 2l, l being a nonzero
integer, the maximum number of nontrivial values of ∇0, for which a right quartet could
be generated, is 2

(
l
2
)

+1.

Proof. The straightforward case is when ∇0 can always take the value of ∆1. Apart from
that case, when l > 1, there are l paired values satisfying the differential propagation, then
each two paired values can construct a quartet. In total,

(
l
2
)
distinct quartets can be built.

For each quartet, we denote the two paired values of S-box outputs by {(y1, y2), (y3, y4)}.
There are two new ways to define ∇0 such that a boomerang quartet could be generated:
y1 ⊕ y3 and y1 ⊕ y4. Hence, there are 2

(
l
2
)

+1 nontrivial choices of ∇0.

Lemma 3. For any fixed ∆0 and ∇0, for which the BCT entry is 2l and the DDT entry
is 2l′, l and l′ being nonzero integers, the maximum number of choices of ∆1, for which a
right quartet could be generated, is 1 + (2l − 2l′)/4.

We omit the proof here, as it follows the same idea as the lemma above.
In order to capture all these observations and to easily analyze the switching effect, we

propose a new tool: the Boomerang Difference Table (BDT).

Definition 2 (Boomerang Difference Table (BDT)). Let S be an invertible function
from Fn

2 to Fn
2 , and (∆0,∆1,∇0) ∈ Fn

2 . The boomerang difference table (BDT) of S is a
three-dimensional table, in which the entry for (∆0,∆1,∇0) is computed by:

BDT (∆0,∆1,∇0) =#{x ∈ {0, 1}n|S−1(S(x)⊕∇0)⊕ S−1(S(x⊕∆0)⊕∇0) = ∆0,

S(x)⊕ S(x⊕∆0) = ∆1}.

The BDT reveals the probability of generating a boomerang quartet with a certain
differential trail at the S-box level. Inspired by the efficient construction of the BCT
proposed by Orr Dunkelman [Dun18], we show that the time complexity for generating
the BDT for an n-bit S-box is O(22n), the algorithm is depicted in Algorithm 1.
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Algorithm 1: The algorithm for constructing the BDT
for all values of ∇0 do

Initialize an empty table T of 2n lists
for all values of x do

Compute y = x⊕ S−1(S(x)⊕∇0)
Concatenate x to T [y]

end
Initialize a two-dimensional array Slice of 2n × 2n entries
for all entries in T do

if the entry is not empty then
for all pairs of values (xi, xj) in the entry do

Increment Slice[xi ⊕ xj , S(xi)⊕ S(xj)] by 1
end

end
end
The entries of Slice corresponds to the entries of the BDT with the fixed ∇0

end

It is easy to see that the BDT is a combination of the BCT and the DDT. Their
relations and a property of the BDT are listed below:

DDT (∆0,∆1) = BDT (∆0,∆1, 0) = BDT (∆0,∆1,∆1) (3)

BCT (∆0,∇0) =
2n∑

∆1=0

BDT (∆0,∆1,∇0) (4)

BDT (0, 0,∇0) = 2n (5)

As we can see from Equation (4), the BDT undermines the switching effect offered by
the BCT with the additional requirement of ∆1. To illustrate this point, we provide the
following example.

Example 2. The S-box of AES is used as illustration here. Suppose that the DDT entry
is 4 for a fixed difference pair (∆0,∆1), then a right quartet can be generated by two new
choices of ∇0 according to Lemma 1. Take ∇′0 as one of them for example, the BCT entry
for (∆0,∇′0) would be 6 (for any fixed ∆0 in AES, the value of two positions in the BCT,
for which the DDT value is 2, will increase by 4). However, among the three paired values,
only two pairs lead to output difference of the S-box to ∆1, and the other pair leads to ∇′0.
Thus, the BDT entry for (∆0,∆1,∇′0) is 4, and the entry for (∆0,∇′0,∇′0) is 2, both are
lower than the BCT entry for (∆0,∇′0). If the output difference is required to be either ∆1
or ∇′0, the switching probability from ∆0 to ∇′0 for the S-box is lower than the probability
6/28 evaluated by the BCT.

The above observation can be incorporated into the following lemma. Note that we
define the uniformity of the BDT as the maximal value in the table, except the values
where ∆0 and ∆1 are zero.

Lemma 4. For any S-box, the uniformity of the BDT equals to the uniformity of the
DDT.

Proof. Firstly, the BDT entry for (∆0,∆1,∇0) is no greater than DDT(∆0,∆1) and
BCT(∆0,∇0). Secondly, for any choices of (∆0,∆1), the entry in the DDT is smaller
than or equal to the one in the BCT1. Thirdly, Equation (3) always holds. The lemma is
accordingly proved by the three observations.

1Lemma 1 in [CHP+18].
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Incompatibility. A 3-tuple (∆0,∆1,∇) is incompatible if the corresponding entry of the
BDT is 0. The incompatible difference pair (∆0,∇) detected by the BCT can also be
detected by the BDT through Equation (4). Moreover, the BDT is able to detect new
incompatibilities even if the corresponding values of the BCT and the DDT are nonzero.

With the help of the BDT, the incompatibility exhibited in Section 3.2 can be easily
detected: the BDT entry for (0xdf, 0xf1, 0xa9) is 0.

Variants of BDT. When the boomerang returns back in the decryption direction, the ∇1
of the S-box in the last S-box layer of Em determines the differential characteristic in the
backward rounds. Thus, naturally a variant BDT′ that takes into account (∇0,∇1,∆0)
can be proposed to evaluate the last S-box layer:

BDT ′(∇0,∇1,∆0) =#{x ∈ {0, 1}n|S(S−1(x)⊕∆0)⊕ S(S−1(x⊕∇0)⊕∆0) = ∇0,

S−1(x)⊕ S−1(x⊕∇0) = ∇1}.

From the symmetry of the boomerang, all the previous analysis of the BDT also applies
to the BDT′. Furthermore, another variant of the BDT to capture all the four factors
(∆0,∇0,∆1,∇1) is needed when analyzing the middle S-box layers in the case where Em

consists of more than two rounds. The analysis is also similar, but as it is not used in this
paper, we ignore it to prevent redundancy.

3.4 Boomerang Switch in Two Rounds
In this section, we discuss the application of the BDT (BDT′) to the boomerang switch in
two rounds. Em consists of two S-box layers and one linear layer in between — as depicted
in Figure 6, the S-box layer being denoted by SL and the linear layer by R. The switching
probability of the first S-box layer is denoted by p1, and the switching probability of the
second S-box layer is denoted by p2, the whole probability of Em is then computed by
r = p1p2.

SL

R

SL

SL

R

SL

SL

R

SL

SL

R

SL

β

β′

β′′

γ′′

γ′′

γ′

γ′

γ

γ

β

β′

β′′

x1

x2

y1

y2

x3

x4

y3

y4

Figure 6: A 2-round Em which consists of two S-box layers and one linear layer.

In the analysis of the boomerang switch, the BDT is applied at the first S-box layer,
and the BDT′ is applied at the second S-box layer. In general, the probability p1 and p2
are the product of the switching probability of each S-box in the internal state, and are
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computed by:

p1 =
∏

(∆0,∆1,∇0)∈L1

BDT (∆0,∆1,∇0)/2n, (6)

p2 =
∏

(∇0,∇1,∆0)∈L2

BDT ′(∇0,∇1,∆0)/2n, (7)

where L1 contains the 3-tuple difference of the S-box in (β, β′, γ′′), and L2 contains the
same in (γ, γ′, β′′).

Notice that given Em with the fixed β and γ, there might exist several differential
characteristics satisfying this differential, which could contribute to increase the probability.

In practice, the 2-round boomerang switch can be classified into three cases:

(a) The two differential characteristics have no same active S-box in both S-box layers.

(b) The two differential characteristics activate the same S-boxes only in one of the two
S-box layers.

(c) The two differential characteristics activate the same S-boxes in both S-box layers.

Examples of the three cases are presented in Figure 7. In the following, we explain the
three cases and provide simplified analysis for the first two cases.
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Figure 7: Examples of three cases for the boomerang switch in two rounds

Analysis of The Three Cases

Due to the relation among the BDT, the BCT and the DDT, in the BDT-based analysis, we
are able to switch the BDT to the BCT when there is no requirement for ∆1 (Equation (4)),
and to switch the BDT to the DDT when ∇0 equals to zero (Equation (3)). And the
BDT′ can be handled similarly.

Case (a). If each S-box layer is evaluated independently, no S-box differential probability
has to be paid due to the ladder switch. However, the result is different when they are
combined together.

Recalling that the BDT entry is 2n when both ∆0 and ∆1 equal to zero, the S-box with
zero input/output difference can be switched with probability 1. Then, regarding the first
S-box layer, the switching probability only comes from the active S-boxes corresponding
to β (β′). Since the difference ∇0 equals to zero for those S-boxes, we can utilize the
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DDT to evaluate their switching probabilities instead of the BDT. Thus, p1 equals to
the probability of the differential propagation from β to β′, i.e., p1 = pr(β SL−−→ β′). In
particular, the probability is 1 if no specific value of β′ is required.

The analysis is similar for the second S-box layer with the help of the BDT′, and
p2 = pr(γ SL−1

−−−→ γ′). Also, p2 equals to 1 if there is no requirement for the value of γ′.

Case (b). If the same active S-boxes are present in the first S-box layer, the analysis for
the second S-box layer is similar to Case (a), i.e., p2 = pr(γ SL−1

−−−→ γ′).
As for the first S-box layer, the switching probability p2 can be directly computed

from the analysis of the BCT if there is no requirement for β′. Otherwise, the 3-tuple
(∆0,∆1,∇0) has to be evaluated in the BDT, and the switching probability should be
computed by Equation 6.

Finally, the case where the same active S-boxes are located in the second S-box layer
can be analyzed similarly because of the symmetry of the boomerang attack.

Case (c). The BDT has to be applied to both S-box layers. Since specific values of
all the intermediate states (β′, β′′, γ′ and γ′′) are required, there is a high chance of
incompatibility.

4 Attack on 10-Round AES-256
In this section, we propose a related-key attack on 10-round AES-256 by applying the
2-round boomerang switch. The best previously published attack on this variant required
245 time to partially obtain 35 subkey bits [BDK+10] (the rest of the key having to be
brute-forced for full recovery), and it used a strong type of related-subkey oracles. The
related-subkey setting requires a complex key access scheme [BK03] when compared to the
related-key setting, and it could be too contrived for academic interest according to [?]. Our
boomerang attack is mounted under a much realistic scenario: a simple related-key setting
with only two related keys, instead of four (or more) for most related-key boomerang
attacks. We are able to recover the full 256-bit key with 275 computations. This also
compares favourably to previously known attacks in the same setting [BDK05,KHP07],
which require more related-keys and much more computations. We summarize the current
attacks in Table 1.

Table 1: Summary of attacks on 10-round AES-256.

Scenario # keys Time Data Result Reference
Key Diff. 64/256 2172 2114 Full key [KHP07]/ [BDK05]
Subkey Diff. 2 245 244 35 subkey bits [BDK+10]
Key Diff. 2 275 275 Full key this paper

4.1 A Short Description of AES
The Advanced Encryption Standard (AES) [DR02] is an iterated block cipher which encrypts
128-bit plaintexts with a secret key of size 128, 192, or 256 bits. Its internal state can be
represented as a 4× 4 matrix whose elements are byte values, seen as elements of the finite
field GF (28). The round function consists of four basic transformations in the following
order:
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- SubBytes (SB) is a nonlinear substitution that applies the same S-box to each byte
of the internal state.

- ShiftRows (SR) is a cyclic rotation of the byte positions, where the i-th row of the
internal state is rotated by i positions to the left, for i = 0, 1, 2, 3.

- MixColumns (MC) is a multiplication of each column of the internal state with a
Maximum Distance Separable (MDS) matrix over GF (28).

- AddRoundKey (AK) is an exclusive-or of the incoming round key to the internal state.

SB
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0 1 2 3
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S
S
S

S
S
S
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S
S
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S
S
S
S

SR MC AK

Figure 8: AES round function

At the very beginning of the encryption, an additional whitening key addition is
performed, and the last round does not contain MixColumns. AES-128, AES-192, and
AES-256 share the same round function with different number of rounds: 10, 12, and 14,
respectively.

The key schedule of AES transforms the master key into subkeys which are used in each
of the rounds. Here, we describe the key schedule of AES-256. The 256-bit master key is
divided into 8 32-bit words (W [0],W [1], ...,W [7]), then W [i] for i > 8 is computed as

W [i] =


W [i− 8]⊕ SB(RotByte(W [i− 1]))⊕Rcon[i/8] i ≡ 0 mod 8,
W [i− 8]⊕ SB(W [i− 1]) i ≡ 4 mod 8,
W [i− 8]⊕W [i− 1] otherwise

The i-th round key is the concatenation of 4 wordsW [i] ‖W [i+1] ‖W [i+2] ‖W [i+3].
RotByte is a cyclic shift by one byte to the left, and Rcon are the round byte constants.
We denote the 256-bit i-th subkey by Ki, and K0 is the master key. The key schedule of
AES-128 and AES-192 is slightly different due to the different key sizes, we refer to [DR02]
for full details.

4.2 The Boomerang Distinguisher
The boomerang distinguisher2 is given in Figure 14. The trail used in E0 is a 9-round
related-key differential characteristic which is produced with the local collision strategy
introduced in [BKN09]. There are five active S-boxes in rounds 1-7, and we require all
of them use the optimal S-box differential transition 0x02 → 0x14. The key relation
∆K = KA ⊕KB is chosen as shown in Figure 14. The trail used in E1 is a single-key
differential characteristic that covers rounds 8-10, while round 10 is used for key recovery.
The switching state is located at rounds 8 and 9.

Let us now compute the probability of this 9-round boomerang distinguisher. There
are five active S-boxes in rounds 1-7, each of them is passed with differential probability
2−6. Thus the overall differential probability for the first seven rounds is 2−30.

Since rounds 8 and 9 are for boomerang switch and round 10 is for key recovery, the
9-round distinguisher is actually composed of E0 and Em, without E1. The 2-round
boomerang switch is depicted in Figure 9, and the actual values are specified in Table 3.

2As we use colors in the diagrams of the trails, we advise the reader to refer to the color scheme defined
in Appendix B.
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The value of ∆y8
0,0 is fixed to 0x14 so that the three S-boxes in round 9 are inactive. In

order to generate a right quartet, ∇y8
0,0 can take three values according to Lemma 2, and

the values are 0x14, 0x8c and 0x98. Hence, we can obtain three trails for the boomerang
switch. Since the active S-boxes marked with are not concerned, the switching probability
in round 8 only comes from the first S-box, and the BDT entries for (0x02, 0x14, 0x14),
(0x02, 0x14, 0x8c) and (0x02, 0x14, 0x98) are all 4 so that the switching probability is 2−6

for all the three trails. Regarding the boomerang switch in round 9, only the first S-box is
concerned, and the BDT entries for the three trails are 2, 2 and 4 respectively. Finally the
switching probability in the two rounds are 2−6 · 2−7 + 2−6 · 2−7 + 2−6 · 2−6 = 2−11. In
the end, the probability of the 9-round boomerang distinguisher is 2−30−30−11 = 2−71.

SB SR

MC

SB

SR

MC

AK,SB SR

MC

8 9

E0

E1

Figure 9: 2-round boomerang switch for the 9-round distinguisher against AES-256

Experimental Verification. In order to verify the switching probability in round 8 and 9,
we mounted an experiment following the algorithm in Section 2.1. The amount of data
used in each test is 220, and the test is iterated for 1000 randomly chosen key quartets
satisfying the required key difference. In the end, the average number of right quartets
obtained was 510, so the switching probability is 510/220 = 2−11, which matches our
evaluation.

4.3 Key Recovery
In the key recovery attack, round 10 is added at the end of the distinguisher. The attack
works in the reverse direction of the normal boomerang attack, i.e., we first choose the
ciphertexts then choose the plaintexts. The algorithm is as follows.

1. Prepare a structure F of 232 ciphertexts, by exhausting all possible values of the

dark bytes while keeping the other bytes fixed.

2. Ask for decryption of F with KA, and denote by G the set of plaintexts obtained.

3. For each plaintext P ∈ G, compute P ′ = P ⊕ α, and denote by H the new set of
values P ′ .

4. Ask for encryption of H with KB and insert the obtained ciphertexts into a hash

table according to the 12 bytes which are inactive in .

5. In case of a collision of ciphertexts (C3, C4) in the hash table: we search the
corresponding ciphertext pair (C1, C2) in F . Then, save all the candidates of the
32-bit K10

A and K10
B for which DbKA

(C1)⊕DbKA
(C2) = DbKB

(C3)⊕DbKB
(C4) = δ.

By Db we denote the last decryption round.
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6. Repeat steps 1-5 241.5 times.

From each structure we can compose 263 unordered pairs, 263−32 = 231 of them pass
the last round. Thus, we expect 231−71 = 2−40 right quartet per structure, and 3 right
quartets out of 241.5 structures.

Let us now compute the number of candidate quartets. The ciphertext has a 96-bit
filter, so we are left with 263+41.5−96 = 28.5 candidate quartets. On average, each remaining
quartet suggests 24 guesses for the 32-bit of K10

A and K10
B , respectively, or 28 in total.

Thus, the 28.5 candidate quartets would propose 28+8.5 = 216.5 key guesses for the 64
subkey bits, while 3 right quartets would all vote for the correct 64-bit subkey. No wrong
key guesses survive and we can get the 32-bit subkeys k10

0,0, k10
3,1, k10

2,2, k10
1,3 of KA and KB

as a result.
Notice that the trail in E1 can follow two other truncated differential characteristics,

see Figure 10. For either of the two, we can produce the actual differences similarly to the
previous one, and the final probability of the two new distinguishers will remain unchanged.
When we run the above algorithm, a right quartet is captured as long as it belongs to one
of the three distinguishers. On average, we expect one right quartet per 240 structures for
each distinguisher, then 240 structures are enough in order to have 3 right quartets.
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Figure 10: 2 other truncated differential characteristics for E1 on AES

Recovering other key bytes We can change the trail in E1 to derive other subkey bytes
of K10. We can construct three differential characteristics (see Figure 11) to recover the
left 12 bytes of K10. The algorithm and complexity analysis are similar to the previous
case and this allows to derive the full K10 subkey. Eventually, from the knowledge of this
subkey, we can now reduce the cipher to 9 round and recover the full key with various
approaches with lower costs (for example, one can use the attack from [BDK+10] that
requires only 239 computations to recover the key on 9 round of AES-256).

Complexity Analysis. The memory complexity is dominated by the hash table whose size
is 232. As for the time and data complexity, step 2 and 4 need 233 encryption/decryption
oracle accesses for each structure, step 3 and 5 are negligible, thus we need 233+40+2 = 275

time and data to complete the attack.

5 Applications to AES-192
In [BK09] Biryukov and Khovratovich proposed the first related-subkey amplified boomerang
attack against full AES-192. Later, improvements were made [BN10] by slightly modifying
the trail of E0, and this attack remains the best one as of today. In this section, by
exploiting the boomerang switch in two rounds, we show an improvement of the attack
in [BN10] and that the actual probability in [BK09] is much higher. Table 2 summarizes the
attacks and the improvements. Note that both attacks use the optimal S-box differential:
0x01→ 0x1f in the boomerang trail.
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Figure 11: Recovery of other subkey bytes in the boomerang attack against 10-round AES-256

Table 2: Summary of existing attacks against full-round AES-192 and the corresponding improve-
ments with the help of 2-round boomerang switch.

Reference Time Data Improvement
[BN10] 2169 2116 21.3

[BK09] 2176 2123 24.8

5.1 Improvement of The Attack from [BN10]
The attack in [BN10] uses 6-round differential characteristics for both E0 and E1, and the
first and last round is used for key extraction. The ladder switch is applied to round 6.
Since the boomerang switching effect could exist in two rounds for AES, we tried to analyze
their distinguisher with the method we developed. However, we found that it is hard
to apply the 2-round boomerang switch in their attack, due to the smaller dependency
between the two differential characteristics. Hence, we are supposed to create a higher
dependency in order to gain additional advantages from the 2-round boomerang switch.
Finally, we managed to produce a new differential characteristic for E0, while keeping
the same differential characteristic for E1 as in [BN10]. The distinguisher is shown in
Figure 15 of the Appendix.

We switch the boomerang at rounds 6 and 7, and the switching states are depicted in
Figure 12. For the boomerang switch in round 6, we do not pay the S-boxes in the first
three rows, and since the values of are not concerned, the three S-boxes in the last row
are free due to the analysis from the BDT. Thus only the S-box at position (3, 1) should
be counted. For the boomerang switch in round 7, only the S-box at position (0, 2) has
to be counted due to analysis of the BDT′. The choices of input/output differences of
these two S-boxes might lead to different cases of 2-round boomerang switch described in
Section 3.4.

After we iterated all possible input/output differences, four trails were found and they
are given in Table 4. Take the first trail for example, it belongs to case (a). Although there
is no overlapped S-box in the two rounds, a cost has to be paid. At the first S-box layer,
the value of ∆y6

3,1 is fixed to 0x1f, then the 3-tuple (∆0,∆1,∇0) of the S-box at (3, 1)
equals to (0x01, 0x1f, 0x00), for which the BDT entry is 4. At the second S-box layer, the
value of ∇x7

0,2 is fixed to 0x01, then the 3-tuple (∇0,∇1,∆0) equals to (0x1f, 0x01, 0x00),
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Figure 12: The middle two rounds of the boomerang attack against full AES-192 in Section 5.1.
The differences of the bytes marked with slash are not fixed.

for which the BDT′ entry is 4. Thus the 2-round boomerang switch has probability
4/28 · 4/28 = 2−12 for the first trail. As for the other three trails, whose differential
probabilities can be computed by a similar analysis of the BDT (BDT′), they have the
same probability 2−13. To sum up, the switching probability for rounds 6 and 7, for the
given β and γ, is 212 + 3 ·2−13 = 2−10.7. Compared to the cost of the two rounds in [BN10],
which is 2−12, we get a speed-up of 21.3, and the other parts of the attack remain the
same: the new boomerang attack requires 2114.7 data and 2167.7 time.

Experimental Verification. Following the algorithm in Section 2.1, we mounted an
experiment to search for right quartets for the 2-round Em in Figure 12. In the experiment,
we set the data amount to 220 and iterated the test for 1000 randomly chosen key quartets
satisfying the required key difference. Finally the average number of right quartets obtained
was 640. Hence, the success probability is 640/220 = 2−10.7, which matches our analysis.

5.2 Evaluation and Improvement on The Attack from [BK09]
The attack in [BK09] is the first published attack against the full AES-192. Here, we
evaluate the boomerang distinguisher from their attack, and point out some mistakes in
their evaluation. It turns out that their attack can actually be even more powerful. The
boomerang trail is depicted in Figure 15 of the Appendix.

Their attack uses 6-round differential characteristics for both E0 and E1, and applies
the ladder switch in round 7. In their evaluation, they fix the value of ∆y6

0,2 to 0x1f with
probability 2−6 in the upper trail so that they can get a ladder switch in round 7. They
claim that the output difference of the other two active S-boxes (∆y6

0,1, ∆y6
0,3) can be any

value such that it is the same as in the second related-key pair. Thus, in their analysis
round 7 is free, and round 6 requires probability 2(−6−2·3.5)·2 = 2−26 for the both sides of
the boomerang.

However, when considering the switching effect in round 6 and 7, we found out that
the values of ∆y6

0,1 and ∆y6
0,3 should be fixed as shown in Figure 13. For the two S-boxes

in round 6, the value of ∆1 has no effect on the boomerang switch in the round 7, which
means that ∆1 could be any value. However, ∆0 and ∇0 are fixed to 0x01 and 0x1f, so the
number of choices of ∆1 is only 1 according to Lemma 3: since the entries of the DDT and
the BCT for (0x01, 0x1f) are both 4, ∆1 can only take the value 0x1f. The corresponding
BDT entry is 4, hence the switching probability of the two S-boxes is 2−6−6 = 2−12. Now,
we are only left with two S-boxes: the one at (0, 2) in round 6 and the other one at (0, 2)
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in round 7. In order to get non-zero entries of the BDT (BDT′) on the two S-boxes at the
same time, we iterated all the values of ∆y6

0,2 and obtained several valid trails which are
recorded in Table 5. The probability of each trail can be computed from the analysis of
the BDT (BDT′). To sum up, the probability of the 2-round boomerang switch is 2−22.4.
Compared to the previous evaluation, we get a speed-up of 23.6.
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γ

Figure 13: The middle two rounds of the boomerang attack against full AES-192 in Section 5.2.
The differences of the bytes marked with slash are not fixed.

Experimental Verification. Following the algorithm in Section 2.1, we mounted a test
on this reduced 2-round boomerang distinguisher using 228 data, and iterated it for 100
randomly chosen key quartets. The result shows that the average success probability is
2−22.45, which demonstrates the validity of our analysis.

Further Improvement and Summary. Recall that the maximum switching probability
for AES S-box is 6/28 = 2−5.4. Moreover, note that we can directly apply the BCT to the
two S-boxes at (0, 1) and (0, 3) in round 6, because the output difference ∆1 is not required
to be a specific value. Hence, we can choose ∇0 = 0x06 with which the entry of the BCT
is 6 so that the switching probability for each of the two S-boxes is 2−5.4, instead of 2−6.
We can simply replace the difference of the truncated characteristic for E1 by using the
optimal S-box differential transition: 0xbc→ 0x06 instead. The probability of other parts
remains the same, so the attack can be further improved by a factor of 21.2.

Although the improvement fails to beat the result in Section 5.1, our point is that it
indicates that the boomerang switch in multiple rounds do exist in a boomerang attack.
The previous boomerang attacks that ignore the switching effect are thus unlikely to be
evaluated properly.

6 Applications to Deoxys-BC
In this section, we apply our method to improve the boomerang switch in the related-
tweakey boomerang attacks against Deoxys-BC [CHP+17].

6.1 A Short Description of Deoxys-BC
Deoxys [JNPS16] is an authenticated encryption scheme and was selected as one of the
CAESAR finalist. Its internal primitive Deoxys-BC is a 128-bit AES-based tweakable
block cipher following the TWEAKEY framework [JNP14]. It has a linear tweakey
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schedule and the same round function as AES3. Deoxys-BC has two versions: Deoxys-
BC-256 and Deoxys-BC-384. Both versions take three inputs: a plaintext, a key and a
tweak. The concatenation of key and tweak is named as tweakey, whose size is 256-bit for
Deoxys-BC-256 and 384-bit for Deoxys-BC-384. In this paper, we focus on the attack of
Deoxys-BC-256.

6.2 Improved 10-Round Boomerang Attack

At FSE 2018, Cid et al. [CHP+17] proposed a boomerang attack against 10-round Deoxys-
BC-256 including a 9-round boomerang distinguisher with probability 2−122, as shown in
Table 6. The distinguisher is produced by taking into account the ladder switch in two
rounds, which are rounds 5 and 6. However, they did not provide a concrete analysis of
the two rounds. Here, our goal is to provide a specific BDT-based analysis, then search for
new differential characteristics with higher probability.

As we can see in Table 6, both differential characteristics for E0 and E1 have an active
S-box at position (1, 1) in round 6, and the S-box is regarded as a part of E1 by the
ladder switch. The characteristic for E1 specifies the input and output difference (from
0x32 to 0x2f), which has differential probability 2−7, and the differential characteristics
for E0 and E1 have no same active S-box in round 5, so the probability for rounds 5
and 6 is 2−14 in the boomerang distinguisher. In their analysis, the differential for the
S-box at position (1, 1) in round 6 of E0 is denoted with **, which means its value is not
crucial to the distinguisher. However, we show that the differential in E0 is crucial by
the analysis on the BDT′. For the targeted S-box, the characteristic for E1 fixes the ∇0
and ∇1 to 0x2f and 0x32, respectively. We confirmed that there exists only one choice
of ∆0 such that the BDT′ entry for (0x2f, 0x32,∆0) is nonzero. The value is 0x32 (0x00
is excluded due to the characteristics for E0), and the BDT entry is 2. Then, we can
uniquely obtain the value ∆y5

1,2 = 0x19 in the characteristic for E0 through the inverse
MixColumns. For the S-box at position (1, 2) in round 5, the differential characteristic for
E0 fixes the ∆0 = 0x80 and ∆1 = 0x19, and the characteristic for E1 fixes ∇1 = 0. The
BDT entry for (0x80, 0x19, 0x00) is 2. Therefore, the probability 2−14 of the two rounds
comes from the two bytes in round 5 and round 6, respectively.

Since the switching probability is determined, the possible direction to improve the
attack becomes clear. Recall that the optimal switching probability is 2−5.4 for the AES
S-box, thus a potential direction is to try to improve the switching probability in round 5 or
round 6 or both. Due to the careful optimization done in [CHP+17], we will use the same
truncated differential characteristics and only replace the difference. We borrowed the
strategy of using an automated search tool from [CHP+17], and obtained a new differential
characteristic for E1, as shown in Table 7. At position (1, 2) in round 5, the BDT entry
for (0x80, 0xae, 0x00) is 4 which gives probability 2−6, and the switching probability
at position (1, 1) in round 6 is 2−7 because the BDT′ entry is 2 for (0xe1, 0x47, 0x47).
Moreover, there exists another differential characteristic with the same differential and has
probability 2−14, as shown in Table 8. In the end, the switching probability in rounds 5
and 6 is 2−13 + 2−14 = 2−12.4. We get a speed-up of 21.6 and the probability of the new
boomerang distinguisher is 2−120.4.

Experimental Verification. In the experiment, we used 220 data, and iterated it for 1000
randomly chosen key quartets. The result shows that the average success probability is
2−12.4, which confirms our improvement evaluation.

3We omit the specification of Deoxys-BC here, the reader can refer to Section 4.1
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7 Conclusions
In this paper, we performed an extensive analysis of the switching effect between the
two differential characteristics of a boomerang distinguisher. Specifically, we exploited
the principle behind the ladder switch, and showed that the sparser the diffusion layer
is, the more rounds the switching effect exists. Moreover, we introduced the BDT as a
generalized method to easily evaluate the boomerang switching probability in multiple
rounds. The extended switching effect was demonstrated by several applications, which
includes the currently best related-key attack on 10-round AES-256, two improved attacks
on full AES-192 and an improved attack on Deoxys-BC.

Finally, we would like to emphasize that the boomerang switching effect can exist in
multiple rounds, regardless of the attacker creating it deliberately or not. This phenomenon
was so far widely ignored by the cryptanalysis community.
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A The Round Function of SKINNY
The internal state of SKINNY [BJK+16] is represented as a 4× 4 array, the round function
consisting of five operations:

1. Subcells - The S-box is applied to all cells (4-bit S-box for SKINNY-64, 8-bit S-box for
SKINNY-128).

2. AddRoundConstants - Three round constants are added to the first column of the
internal state.

3. AddRoundTweakey - The round tweakey is XORed to the first two rows of the
internal state.

4. ShiftRows - A cyclic shift of the i-th row by i positions is applied to the right, for
i = 0, 1, 2, 3.

5. MixColumns - Each array column is multiplied by a binary matrix M . The matrix
M−1 of the inverse MixColumns is also shown below.

M =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 M−1 =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0


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B Differential Paths and Boomerang Distinguishers
In this section, we give all the details of the differential characteristics that are used in this
paper. By ∆A we denote the upper trail difference in the internal state, and by ∇A the
same for the lower trail. The differences are represented in hexadecimal and differences
that are not crucial to the distinguishers are denoted with “∗∗”. The S-boxes that are
crucial for the boomerang switch are highlighted in red.

Color Scheme. We extensively use colors in our figures in order to provide better
understanding. Here is the color scheme utilized.

– Fixed S-box input difference.

– Fixed S-box output difference.

– Arbitrary difference.

– Unfixed difference, depending on different characteristics.

– MixColumns expansion of .

Table 3: Internal state difference for rounds 8 and 9 in the 9-round distinguisher of AES-256.
The trails denoted with † have the same ∆A as trail 1.

trail round 8 round 9 prob.before SB after SB before SB after SB

1

∆A

02 02 02 02
00 00 00 00
00 00 00 00
00 00 00 00

14 ∗∗ ∗∗ ∗∗
00 00 00 00
00 00 00 00
00 00 00 00

00 ∗∗ ∗∗ ∗∗
00 ∗∗ ∗∗ ∗∗
00 ∗∗ ∗∗ ∗∗
∗∗ ∗∗ ∗∗ ∗∗

00 ∗∗ ∗∗ ∗∗
00 ∗∗ ∗∗ ∗∗
00 ∗∗ ∗∗ ∗∗
∗∗ ∗∗ ∗∗ ∗∗ 2−6 · 2−7

∇A

∗∗ 00 00 00
00 ∗∗ 00 00
00 00 ∗∗ 00
00 00 00 ∗∗

14 00 00 00
00 1e 00 00
00 00 a9 00
00 00 00 c8

6b 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

c0 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

2† ∇A

∗∗ 00 00 00
00 ∗∗ 00 00
00 00 ∗∗ 00
00 00 00 ∗∗

8c 00 00 00
00 ca 00 00
00 00 a2 00
00 00 00 fe

1a 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

c0 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

2−6 · 2−7

3† ∇A

∗∗ 00 00 00
00 ∗∗ 00 00
00 00 ∗∗ 00
00 00 00 ∗∗

98 00 00 00
00 d4 00 00
00 00 0b 00
00 00 00 36

71 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

c0 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

2−6 · 2−6
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Table 4: Differential characteristic of the middle two rounds that is used in the boomerang
attack against AES-192 in Section 5.1.

trail round 6 round 7 prob.before SB after SB before SB after SB

1

∆A

00 00 00 00
00 00 00 00
00 00 00 00
01 01 01 01

00 00 00 00
00 00 00 00
00 00 00 00
∗∗ 1f ∗∗ ∗∗

∗∗ ∗∗ 00 ∗∗
∗∗ ∗∗ 00 ∗∗
∗∗ ∗∗ ∗∗ ∗∗
∗∗ ∗∗ 01 ∗∗

∗∗ ∗∗ 00 ∗∗
∗∗ ∗∗ 00 ∗∗
∗∗ ∗∗ ∗∗ ∗∗
∗∗ ∗∗ ∗∗ ∗∗ 2−6 · 2−6

∇A

∗∗ ∗∗ ∗∗ ∗∗
00 00 00 00
00 00 00 00
00 00 00 00

1f 1f 1f 1f
00 00 00 00
00 00 00 00
00 00 00 00

00 00 01 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 1f 00
00 00 00 00
00 00 00 00
00 00 00 00

2

∆A

00 00 00 00
00 00 00 00
00 00 00 00
01 01 01 01

00 00 00 00
00 00 00 00
00 00 00 00
∗∗ 1f ∗∗ ∗∗

∗∗ ∗∗ 00 ∗∗
∗∗ ∗∗ 00 ∗∗
∗∗ ∗∗ ∗∗ ∗∗
∗∗ ∗∗ 01 ∗∗

∗∗ ∗∗ 00 ∗∗
∗∗ ∗∗ 00 ∗∗
∗∗ ∗∗ ∗∗ ∗∗
∗∗ ∗∗ ∗∗ ∗∗ 2−6 · 2−7

∇A

∗∗ ∗∗ ∗∗ ∗∗
00 00 00 ∗∗
∗∗ 00 00 00
00 01 00 00

1f 1f ce 1f
00 00 00 34
62 00 00 00
00 1f 00 00

00 00 99 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 1f 00
00 00 00 00
00 00 00 00
00 00 00 00

3

∆A

00 00 00 00
00 00 00 00
00 00 00 00
01 01 01 01

00 00 00 00
00 00 00 00
00 00 00 00
∗∗ a3 ∗∗ ∗∗

∗∗ ∗∗ bc ∗∗
∗∗ ∗∗ bc ∗∗
∗∗ ∗∗ ∗∗ ∗∗
∗∗ ∗∗ 62 ∗∗

∗∗ ∗∗ 06 ∗∗
∗∗ ∗∗ ∗∗ ∗∗
∗∗ ∗∗ ∗∗ ∗∗
∗∗ ∗∗ ∗∗ ∗∗ 2−7 · 2−6

∇A

∗∗ ∗∗ ∗∗ ∗∗
00 00 00 00
00 00 00 00
00 00 00 00

1f 1f 1f 1f
00 00 00 00
00 00 00 00
00 00 00 00

00 00 01 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 1f 00
00 00 00 00
00 00 00 00
00 00 00 00

4

∆A

00 00 00 00
00 00 00 00
00 00 00 00
01 01 01 01

00 00 00 00
00 00 00 00
00 00 00 00
∗∗ 1e ∗∗ ∗∗

∗∗ ∗∗ 01 ∗∗
∗∗ ∗∗ 01 ∗∗
∗∗ ∗∗ ∗∗ ∗∗
∗∗ ∗∗ 03 ∗∗

∗∗ ∗∗ 1f ∗∗
∗∗ ∗∗ ∗∗ ∗∗
∗∗ ∗∗ ∗∗ ∗∗
∗∗ ∗∗ ∗∗ ∗∗ 2−7 · 2−6

∇A

∗∗ ∗∗ ∗∗ ∗∗
00 00 00 00
00 00 00 00
00 00 00 00

1f 1f 1f 1f
00 00 00 00
00 00 00 00
00 00 00 00

00 00 01 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 1f 00
00 00 00 00
00 00 00 00
00 00 00 00
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Table 5: Differential characteristic of the middle two rounds that is used in the boomerang
attack against AES-192 in Section 5.2. The trails denoted with † have the same ∆A as trail 1.

trail round 6 round 7 prob.before SB after SB before SB after SB

1

∆A

00 01 01 01
00 00 00 00
00 00 00 00
00 00 00 00

00 1f 1f 1f
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 ∗∗
00 00 00 00
00 00 00 00
∗∗ ∗∗ ∗∗ ∗∗

00 00 00 ∗∗
00 00 00 00
00 00 00 00
∗∗ ∗∗ ∗∗ ∗∗ 2−18 · 2−6

∇A

∗∗ 01 01 01
00 00 00 00
00 00 00 00
00 00 00 00

1f 1f 1f 1f
00 00 00 00
00 00 00 00
00 00 00 00

00 00 01 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 1f 00
00 00 00 00
00 00 00 00
00 00 00 00

2† ∇A

∗∗ 01 00 01
00 00 00 ∗∗
∗∗ 00 00 00
00 ∗∗ 00 00

1f 1f 00 1f
00 00 00 9d
45 00 00 00
00 f1 00 00

00 00 37 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 1f 00
00 00 00 00
00 00 00 00
00 00 00 00

2−18 · 2−7

3† ∇A

∗∗ 01 bc 01
00 00 00 ∗∗
∗∗ 00 00 00
00 ∗∗ 00 00

1f 1f 06 1f
00 00 00 98
fb 00 00 00
00 2c 00 00

00 00 5f 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 1f 00
00 00 00 00
00 00 00 00
00 00 00 00

2−18 · 2−7

4† ∇A

∗∗ 01 bd 01
00 00 00 ∗∗
∗∗ 00 00 00
00 ∗∗ 00 00

1f 1f 19 1f
00 00 00 05
be 00 00 00
00 d5 00 00

00 00 69 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 1f 00
00 00 00 00
00 00 00 00
00 00 00 00

2−18 · 2−7

5

∆A

00 01 01 01
00 00 00 00
00 00 00 00
00 00 00 00

00 1f 89 1f
00 00 00 00
00 00 00 00
00 00 00 00

00 00 37 ∗∗
00 00 96 00
00 00 96 00
∗∗ ∗∗ ∗∗ ∗∗

00 00 1f ∗∗
00 00 ∗∗ 00
00 00 ∗∗ 00
∗∗ ∗∗ ∗∗ ∗∗ 2−19 · 2−7

∇A

∗∗ 01 00 01
00 00 00 ∗∗
∗∗ 00 00 00
00 ∗∗ 00 00

1f 1f 00 1f
00 00 00 9d
45 00 00 00
00 f1 00 00

00 00 37 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 1f 00
00 00 00 00
00 00 00 00
00 00 00 00

6

∆A

00 01 01 01
00 00 00 00
00 00 00 00
00 00 00 00

00 1f b2 1f
00 00 00 00
00 00 00 00
00 00 00 00

00 00 41 ∗∗
00 00 ad 00
00 00 ad 00
∗∗ ∗∗ ∗∗ ∗∗

00 00 1f ∗∗
00 00 ∗∗ 00
00 00 ∗∗ 00
∗∗ ∗∗ ∗∗ ∗∗ 2−19 · 2−7

∇A

∗∗ 01 01 01
00 00 00 ∗∗
∗∗ 00 00 00
00 ∗∗ 00 00

∗∗ 01 b2 01
00 00 00 76
6d 00 00 00
00 f6 00 00

00 00 41 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 1f 00
00 00 00 00
00 00 00 00
00 00 00 00
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Table 6: The 9-round distinguisher of Deoxys-BC-256 from [CHP+17]
round initial ∆ tweakey ∆ before SB after SR prob.

1

00 00 7b 00 00 00 7b 00 00 00 00 00 00 00 00 00

1b0 c0 00 00 b0 c0 00 00 00 00 00 00 00 00 00 00
00 00 af 00 00 00 af 00 00 00 00 00 00 00 00 00
00 00 00 c2 00 00 00 c2 00 00 00 00 00 00 00 00

2

00 00 00 00 e0 80 00 00 e0 80 00 00 b4 c9 00 00

2−2800 00 00 00 00 4d 00 00 00 4d 00 00 21 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 ea 00 00 00 ea 73 00 00 00

3

63 89 00 00 00 89 00 00 63 00 00 00 8d 00 00 00

2−1485 c9 00 00 85 00 00 00 00 c9 00 00 8c 00 00 00
00 c9 00 00 00 c9 00 00 00 00 00 00 00 00 00 00
00 40 00 00 00 40 00 00 00 00 00 00 00 00 00 00

4

8e 00 00 00 8e 00 00 00 00 00 00 00 00 00 00 00

18e 00 00 00 8e 00 00 00 00 00 00 00 00 00 00 00
01 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

5

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 80 03 00 00 80 03 00 ∗∗ ∗∗ 00
00 00 00 00 13 00 00 00 13 00 00 00 00 00 ∗∗ 00
00 00 00 00 00 98 00 00 00 98 00 00 00 00 ∗∗ 00

6

00 ∗∗ ∗∗ 00 00 00 81 07 00 ∗∗ ∗∗ 07 00 ∗∗ ∗∗ ∗∗

100 ∗∗ ∗∗ 00 00 00 00 35 00 ∗∗ ∗∗ 35 ∗∗ ∗∗ ∗∗ 00
00 ∗∗ ∗∗ 00 00 00 00 b4 00 ∗∗ ∗∗ b4 ∗∗ ∗∗ 00 ∗∗
00 ∗∗ ∗∗ 00 00 1d 00 00 00 ∗∗ ∗∗ 00 00 00 ∗∗ ∗∗

5

∗∗ ∗∗ 00 ∗∗ 00 00 00 00 ∗∗ ∗∗ 00 ∗∗ ∗∗ e4 00 ∗∗

1∗∗ ∗∗ 00 55 00 00 00 55 ∗∗ ∗∗ 00 00 ∗∗ 00 00 ∗∗
00 ∗∗ ∗∗ ∗∗ 00 00 00 00 00 ∗∗ ∗∗ ∗∗ ∗∗ 8f 00 ∗∗
∗∗ 00 ∗∗ ∗∗ 00 00 00 84 ∗∗ 00 ∗∗ ∗∗ ∗∗ 5c 00 ∗∗

6

∗∗ 00 00 49 00 00 00 49 ∗∗ 00 00 00 ee 00 00 00

2−700 32 00 00 00 00 00 00 00 32 00 00 2f 00 00 00
00 05 00 00 00 05 00 00 00 00 00 00 00 00 00 00
00 00 00 ∗∗ 00 00 00 00 00 00 00 ∗∗ b6 00 00 00

7

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

106 00 00 00 06 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
71 00 00 00 71 00 00 00 00 00 00 00 00 00 00 00

8

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

9

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

2−1200 00 00 00 00 e3 00 00 00 e3 00 00 72 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 0c 00 00 00 0c 00 00 00 00 9d 00
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Table 7: Improved 9-round distinguisher for Deoxys-BC-256. The probabilities marked with †
are only counted once due to the 2-round boomerang switch.

round initial ∆ tweakey ∆ before SB after SR prob.

5

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

2−6 †00 00 00 00 00 00 80 03 00 00 80 03 00 ae ∗∗ 00
00 00 00 00 13 00 00 00 13 00 00 00 00 00 ∗∗ 00
00 00 00 00 00 98 00 00 00 98 00 00 00 00 ∗∗ 00

6

00 e9 ∗∗ 00 00 00 81 07 00 e9 ∗∗ 07 00 ∗∗ ∗∗ ∗∗

100 47 ∗∗ 00 00 00 00 35 00 47 ∗∗ 35 ∗∗ ∗∗ ∗∗ 00
00 ae ∗∗ 00 00 00 00 b4 00 ae ∗∗ b4 ∗∗ ∗∗ 00 ∗∗
00 ae ∗∗ 00 00 1d 00 00 00 b3 ∗∗ 00 00 00 ∗∗ ∗∗

5

∗∗ ∗∗ 00 ∗∗ 00 00 00 00 ∗∗ ∗∗ 00 ∗∗ ∗∗ ab 00 ∗∗

1∗∗ ∗∗ 00 2a 00 00 00 2a ∗∗ ∗∗ 00 00 ∗∗ 00 00 ∗∗
00 ∗∗ ∗∗ ∗∗ 00 00 00 00 00 ∗∗ ∗∗ ∗∗ ∗∗ dd 00 ∗∗
∗∗ 00 ∗∗ ∗∗ 00 00 00 11 ∗∗ 00 ∗∗ ∗∗ ∗∗ 90 00 ∗∗

6

∗∗ 00 00 24 00 00 00 24 ∗∗ 00 00 00 e9 00 00 00

2−7 †00 47 00 00 00 00 00 00 00 47 00 00 e1 00 00 00
00 a1 00 00 00 a1 00 00 00 00 00 00 00 00 00 00
00 00 00 ∗∗ 00 00 00 00 00 00 00 ∗∗ f1 00 00 00

7

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

1c1 00 00 00 c1 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
38 00 00 00 38 00 00 00 00 00 00 00 00 00 00 00

8

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

9

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

2−1200 00 00 00 00 71 00 00 00 71 00 00 c0 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 83 00 00 00 83 00 00 00 00 8f 00

Master tweakey difference ∇K
00 00 00 00 00 d0 00 7e 00 00 00 00 00 00 00 00
00 00 00 00 00 df 00 66 00 00 00 00 00 00 00 00

Table 8: Another 2-round differential characteristic of the boomerang distinguisher in Table 7.
The probabilities marked with † are only counted once due to the 2-round boomerang switch.

round initial ∆ tweakey ∆ before SB after SR prob.

5

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

2−7 †00 00 00 00 00 00 80 03 00 00 80 03 00 96 ∗∗ 00
00 00 00 00 13 00 00 00 13 00 00 00 00 00 ∗∗ 00
00 00 00 00 00 98 00 00 00 98 00 00 00 00 ∗∗ 00

6

00 a1 ∗∗ 00 00 00 81 07 00 a1 ∗∗ 07 00 ∗∗ ∗∗ ∗∗

100 37 ∗∗ 00 00 00 00 35 00 37 ∗∗ 35 ∗∗ ∗∗ ∗∗ 00
00 96 ∗∗ 00 00 00 00 b4 00 96 ∗∗ b4 ∗∗ ∗∗ 00 ∗∗
00 96 ∗∗ 00 00 1d 00 00 00 8b ∗∗ 00 00 00 ∗∗ ∗∗

5

∗∗ ∗∗ 00 ∗∗ 00 00 00 00 ∗∗ ∗∗ 00 ∗∗ ∗∗ 96 00 ∗∗

1∗∗ ∗∗ 00 2a 00 00 00 2a ∗∗ ∗∗ ∗∗ 00 ∗∗ 96 00 ∗∗
00 ∗∗ ∗∗ ∗∗ 00 00 00 00 00 ∗∗ ∗∗ 00 ∗∗ 00 00 ∗∗
∗∗ 00 ∗∗ ∗∗ 00 00 00 11 ∗∗ 00 ∗∗ ∗∗ ∗∗ 96 00 ∗∗

6

∗∗ 00 00 24 00 00 00 24 ∗∗ 00 00 00 e9 00 00 00

2−7 †00 37 00 00 00 00 00 00 00 37 00 00 e1 00 00 00
00 a1 00 00 00 a1 00 00 00 00 00 00 00 00 00 00
00 00 00 ∗∗ 00 00 00 00 00 00 00 ∗∗ f1 00 00 00
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Figure 14: Boomerang attack on 10-round AES-256. The red rectangles depict the locations of
2-round boomerang switch.
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Figure 15: Two boomerang attacks on full-round AES-192. For E0, the left trail is the one used
in [BK09] and is evaluated in Section 5.2, the middle trail is the one used in Section 5.1. Both
attacks use the same trail for E1 as shown on the right-hand side. The red rectangles depict the
locations of 2-round boomerang switch.
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