
Hydrol. Earth Syst. Sci., 23, 1633–1648, 2019
https://doi.org/10.5194/hess-23-1633-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Geostatistical interpolation by quantile kriging
Henning Lebrenz1,2 and András Bárdossy2

1University of Applied Sciences and Arts – Northwestern Switzerland, Institute of Civil Engineering, Muttenz, Switzerland
2University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems, Stuttgart, Germany

Correspondence: Henning Lebrenz (henning.lebrenz@fhnw.ch)

Received: 18 May 2018 – Discussion started: 30 May 2018
Revised: 1 March 2019 – Accepted: 5 March 2019 – Published: 20 March 2019

Abstract. The widely applied geostatistical interpolation
methods of ordinary kriging (OK) or external drift kriging
(EDK) interpolate the variable of interest to the unknown lo-
cation, providing a linear estimator and an estimation vari-
ance as measure of uncertainty. The methods implicitly pose
the assumption of Gaussianity on the observations, which
is not given for many variables. The resulting “best linear
and unbiased estimator” from the subsequent interpolation
optimizes the mean error over many realizations for the en-
tire spatial domain and, therefore, allows a systematic under-
(over-)estimation of the variable in regions of relatively high
(low) observations. In case of a variable with observed time
series, the spatial marginal distributions are estimated sepa-
rately for one time step after the other, and the errors from
the interpolations might accumulate over time in regions of
relatively extreme observations.

Therefore, we propose the interpolation method of quan-
tile kriging (QK) with a two-step procedure prior to in-
terpolation: we firstly estimate distributions of the variable
over time at the observation locations and then estimate the
marginal distributions over space for every given time step.
For this purpose, a distribution function is selected and fit-
ted to the observed time series at every observation loca-
tion, thus converting the variable into quantiles and defin-
ing parameters. At a given time step, the quantiles from all
observation locations are then transformed into a Gaussian-
distributed variable by a 2-fold quantile–quantile transfor-
mation with the beta- and normal-distribution function. The
spatio-temporal description of the proposed method accom-
modates skewed marginal distributions and resolves the spa-
tial non-stationarity of the original variable. The Gaussian-
distributed variable and the distribution parameters are now
interpolated by OK and EDK. At the unknown location, the
resulting outcomes are reconverted back into the estimator

and the estimation variance of the original variable. As a
summary, QK newly incorporates information from the tem-
poral axis for its spatial marginal distribution and subsequent
interpolation and, therefore, could be interpreted as a space–
time version of probability kriging.

In this study, QK is applied for the variable of observed
monthly precipitation from raingauges in South Africa. The
estimators and estimation variances from the interpolation
are compared to the respective outcomes from OK and EDK.
The cross-validations show that QK improves the estimator
and the estimation variance for most of the selected objective
functions. QK further enables the reduction of the temporal
bias at locations of extreme observations. The performance
of QK, however, declines when many zero-value observa-
tions are present in the input data. It is further revealed that
QK relates the magnitude of its estimator with the magnitude
of the respective estimation variance as opposed to the tradi-
tional methods of OK and EDK, whose estimation variances
do only depend on the spatial configuration of the observa-
tion locations and the model settings.

1 Introduction

Many environmental variables (e.g., precipitation, ore
grades) are only measured at some distinct observation lo-
cations, but possess a highly variable and unknown spatial
distribution (Armstrong, 1998). The regionalization of the
variable, i.e., the interpolation of the variable to the unknown
locations, attempts the full description of its spatial distri-
bution as a prerequisite for practical objectives (e.g., hydro-
logical modeling, efficient exploitation of resources). How-
ever, a deterministic description of the spatial distribution is
severely hampered for many variables since they incorporate
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a complex genesis which is neither fully known nor under-
stood.

Therefore, the assessment of the distribution by geosta-
tistical models arose, whose theoretical fundamentals were
firstly laid out by Matheron (1962). The theory regards the
(observed) values of a variable z as one realization z(x) of a
random variable (RV) Z at the specific location x (= {x1,x2}

for R2). Since the variable is often only partially known at a
few distinct measurement locations xi , ergodicity is assumed
and the intrinsic hypothesis for ordinary kriging (OK, Math-
eron, 1965) is given as

E[Z(x)] =m(x)= const., (1)
VAR[Z(x+h)−Z(x)] = 2γ (h), (2)

in which γ (h) is the semi-variogram. The increment Z(x+
h)−Z(x) is assumed as a stationary random function and its
variance only depends on the translation vector h. The set of
outcomes by the interpolation to the unknown location x is
described by the linear estimator Z∗(x) as a measure of their
centrality and by the estimation (or kriging) variance σ 2

K(x)

as a measure of the associated uncertainty.
The stated hypothesis entails three implications: the first

condition of the intrinsic hypothesis (Eq. 1) demands the
variable to be spatially stationary and yields an unbiased
estimation error in the entire domain (Chilès and Delfiner,
1999). Therefore, a systematic under-(over-)estimation is in-
duced for regions of high (low) observations. Secondly, the
marginal distribution of the observed data should ideally be
Gaussian in order to be adequately described. Unfortunately,
the distribution often departs from the ideal case (Journal and
Alabert, 1989), necessitating an a priori transformation of the
marginal distribution. And last, the second condition (Eq. 2)
implies that the magnitude of the kriging variance σ 2

K(x) only
depends on the spatial configuration of the observation lo-
cations, the a priori variance of all observations and on the
selected variogram model, but not on the magnitude of the
linear estimator Z∗(x) itself (Goovaerts, 2000).

The theoretical extension of external drift kriging (EDK,
Ahmed and deMarsily, 1987) addresses the first implication.
EDK can be attributed to the non-stationary geostatistical in-
terpolation methods and has been frequently applied in var-
ious disciplines of practice and science (e.g., Bourennane
et al., 2000, van de Kassteele et al., 2009, Motaghian and
Mohammadi, 2011). It incorporates additional information
from external variables (or drifts) Yj (x) for the estimation
of the variable at the unknown location. The mean m(x) is
non-stationary but linearly depends on the external variables.
Thus, the first condition (Eq. 1) is reformulated to

E [Z(x)]= a+
k∑
i=1

bi ·Yi((x)), (3)

where k is the number of the incorporated external drifts
Yi(x), while a, bi are the unknown constants. The drifts are

required to be known prior to interpolation at all relevant lo-
cations. Ideally, EDK still requires a marginal Gaussian dis-
tribution.

The non-parametric methods of indicator kriging and
probability kriging (Journel, 1983) are further derivatives and
allow an a priori transformation of the skewed marginal dis-
tribution. Indicator kriging transforms the variable z into a
binary variable by defining a threshold value zth and restates
the first condition (Eq. 1) of the random function I (x;zth)=

1Z(x)<zth to

E [I (x;zth)]=m= const. (4)

This nonlinear transformation is relatively robust and limits
the effect of high values on the description of the variable at
the unknown location. However, a loss of information comes
along by the transformation into a binary variable. Therefore,
probability kriging defines multiple thresholds and uses the
order relation of the observed variable (Carr and Mao, 1993),
being implemented by using co-kriging in the derived multi-
variate context. Both non-parametric methods have been sub-
ject to research, especially for detection limit problems of
groundwater contamination (e.g., Goovaerts et al., 2005; Lee
et al., 2007; Adhikary et al., 2011).

In summary, geostatistical methods have been derived in
the past in order to address the stated shortfalls of the intrin-
sic hypothesis. However, all present methods only regard the
observations from the one respective time step for the estima-
tion of their marginal spatial distribution, but do not incorpo-
rate observations from other time steps. The inclusion of a
temporal behavior into the geostatistical models is mostly ir-
relevant for the original geological variables. However, the
temporal variability of a variable becomes more prominent
for other sciences, e.g., hydrology, where observations from
raingauges over several time steps are implemented into the
geostatistical models in order to generate spatial precipitation
estimates. These estimates subsequently serve as input to the
hydrological modeling (e.g., Syed et al., 2003; Basistha et al.,
2008; Cole and Moore, 2008) over multiple time steps. As-
sociated errors in the precipitation estimates may ultimately
lead to greater errors in the subsequent discharge modeling
(Kobold and Sušelj, 2005). These errors strongly depend on
the spatial and temporal distribution of the input precipitation
(Gabellani et al., 2007; Moulin et al., 2009) and may limit the
accuracy of rainfall–runoff simulations. There are geostatis-
tical space–time models in order to incorporate the temporal
variability of the variable, but they are primarily aiming on
the extrapolation of the variable in time (Snepvangers et al.,
2003). Therefore, they require a strong dependence of the
variable over time, suited, e.g., for groundwater modeling
where temporal changes occur relative slowly. This temporal
dependence might be absent for other variables, e.g., monthly
precipitation.

In the following section, we introduce quantile kriging as a
spatio-temporal description of the variable Z, addressing the
three shortfalls: non-stationary variables, skewed marginal
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distributions over space and the independence of the error
distribution from the magnitude of the observation.

2 Materials and methods

The theory of quantile kriging (QK) is outlined along with
the major theoretical implications, followed by a general dis-
cussion of the underlying geostatistical model and a case
study for the variable of monthly precipitation is presented.

A preliminary analysis of the selected variable exemplary
reveals (Fig. 1) the non-Gaussianity within the data and that
the first assumption of the intrinsic hypothesis (see Eq. 1) is
not fulfilled since, e.g., Et [Z(x57, t)] 6= Et [Z(x29, t)].

2.1 Theory of quantile kriging

QK presumes the existence of observations of the variable
z over consecutive time steps t (= 1,2, . . .,J ) at every ob-
servation location xi = (x1i,x2i) (for the two-dimensional
space R2), providing an observed time series z(xi, t) at every
observation location i (= 1,2, . . .,ni). QK proceeds first with
a two-step procedure prior to interpolation (see Sect. 2.1.1)
and second with the interpolation itself (see Sect. 2.1.2).

2.1.1 Estimation of the temporal and the spatial
marginal distribution

At first, the distribution over time is estimated at every obser-
vation location location xi : an appropriate theoretical cumu-
lative distribution function (cdf) F is selected and fitted to the
corresponding time series of observations z(xi, t), yielding
ni specific distributions F(z(xi, t)). The distributions are de-
fined by their corresponding parameter sets 2(xi) (= ϑk(xi)
with k = 1,2, . . .,K) of the K-parametric distribution func-
tion F . The quantiles w(xi, t) (= F(z(xi, t);2(xi)) are cal-
culated from the observed values of the variable z(xi, t) and
the defining parameter set2(xi). The quantilesw(xi, t) pos-
sess a uniform distribution over time on the interval [0,1] for
a given observation location xi . However, their empirical dis-
tribution in space is not uniform on [0,1]. In order to profit
from the optimality of kriging, it requires a transformation
into a Gaussian distribution as a prerequisite of the subse-
quent interpolation.

The marginal spatial distribution corresponding to a time
step t is, therefore, estimated by a 2-fold quantile–quantile
conversion as the second step: the two-parametric beta dis-
tribution is fitted to the quantiles w(xi, t) of a given time
step t , whose cdf G(w;α,β) is defined as

G(w;α,β)=

α+β−1∑
n=α

(5)[
(α+β − 1)!

n! · (α+β − 1− n)!
·wn · (1−w)(α+β−1−n)

]

on the interval [0,1] by the two parameters α > 0 and β > 0.
The quantilesG(w(xi, t);α(t),β(t)) from Eq. (5) are finally
transformed by a normal score transformation into the stan-
dard Gaussian variable u(xi, t) with Nu[0|1], which ulti-
mately serves as spatial marginal distribution to the subse-
quent geostatistical interpolation.

The transformation via the quantiles into the variable u ac-
counts for spatially non-stationary distributions of the orig-
inal variable z with E[Z(x, t)] 6=m and exchanges the two
conditions of Eqs. (1) and (2) to

E[Fx(Z(x, t))] =m= const., (6)
VAR[Fx+h(Z(x+h, t))−Fx(Z(x, t))] = 2γ (h), (7)

resolving the problem of spatial non-stationarity. QK can
accommodate skewed marginal distributions of the original
variable Z, which is similar to probability kriging, but it
newly incorporates the temporal behavior of Z into its es-
timation of the spatial marginal distribution.

2.1.2 Interpolation to the unknown location

The outlined conversion of the variable z(xi, t) into the vari-
able u(xi, t) and its corresponding parameter set 2(xi) en-
tails separate interpolations to the unknown location x.

The inherent assumption of second-order stationarity im-
plies the existence of a constant spatial mean for the variable
u within the domain for every time step t . The transformed
quantiles are implicitly assumed to be more homogeneously
distributed over space than the original variable z. The vari-
able u is subject to a stationary geostatistical interpolation
method (e.g., OK), providing a linear estimator U∗(x, t) and
the estimation variance σ 2

K,U (x, t). They jointly describe the
Gaussian distribution of the random variable U(x, t) with
N [U∗|σ 2

K,U ].
The defining parameters ϑk (for k = 1,2, . . .,K) of the

K-parametric distribution function F are independent from
the time step t and they are separately interpolated to the
unknown location x. The separate interpolation, however,
requires the independence of the parameters ϑk from each
other. Therefore, a principal component analysis examines
the “observed” parameters ϑk(xi) in the Cartesian coordi-
nate system (ϑ1|ϑ2|. . .|ϑK) and determines the correspond-
ing rotation angle α and translation vector k. The coordinate
system is then rotated and translated accordingly prior to in-
terpolation in order to ensure independence. A possible spa-
tial non-stationarity of the parameters can be accounted for
by the choice of an appropriate non-stationary interpolation
method (e.g., EDK). The interpolation of the independent pa-
rameters yields their estimators at the unknown location x,
which are rotated and translated back to the original coor-
dinate system. Thus, the estimators ϑ∗k (x) are defining the
distribution function at the unknown location x.

At last, the resulting Gaussian distribution of the ran-
dom variable U(x, t) is reconverted into a distribution of the
original variable Z(x, t) by the outlined steps of conversion

www.hydrol-earth-syst-sci.net/23/1633/2019/ Hydrol. Earth Syst. Sci., 23, 1633–1648, 2019



1636 H. Lebrenz and A. Bárdossy: Geostatistical interpolation by quantile kriging

Figure 1. Histogram from the times series of observed monthly precipitation for two random stations: “Laingsnek”, x57 with z=

81.3 mm (a) and “Tambotieboom”, x29 with z= 38.3 mm (b).

(Sect. 2.1.1), but in reverse order: first the distribution of the
quantiles G(W(x, t);α,β) of the beta distribution is calcu-
lated by the inverse of the normal score transformation. The
distribution of the quantilesW(x, t) are calculated next using
the inverse of Eq. (5) and last, the distribution of the original
variable Z(x, t) is estimated by using the inverse of the se-
lected cdf, being defined by the estimators of its parameters
ϑ∗k (x). The reconversion of the distribution of U(x, t) to the
distribution of Z(x, t) can be implemented by the simple nu-
merical Rosenblueth point estimation method (Rosenblueth,
1975). The resulting distribution of the original variable Z
is then described by the expectation value Z∗(x, t) and the
variance σ 2

K(x, t). Note that the resulting asymmetrical dis-
tribution of Z(x, t) is non-Gaussian due to the conversion
with the nonlinear but monotonic theoretical cdf F .

The basic methodology of the proposed QK is illustrated
in Fig. 2.

2.2 Discussion of the geostatistical model

Since the proposed method of QK is applied for the variable
of monthly precipitation (see Sect. 2.3), the discussion of the
underlying process model is based on the following proper-
ties of precipitation fields:

– The monthly (and even daily) precipitation amounts
z(x, t) for a given time step t often show a skewed
distribution and cannot be considered as stationary
over space. The differences in expected precipitation
amounts become especially obvious for long time ac-
cumulations.

– The meteorological processes, which are generating
precipitation, are usually of large spatial extent: if one
location receives heavy precipitation, it is likely that
other locations also receive heavy precipitation.

– Correlations between time series of precipitation indi-
cate a strong spatial dependence, while the spatial de-
pendence of precipitation at one given time step (e.g.,
day, month) usually show a much weaker spatial depen-
dence.

A possible process model reflecting the above properties can
be described as follows.

Let U(x, t) be independent (for each different time step t)
normal stationary spatial fields with E[U ] = 0 andD2(U)=

1 for each time step t . Now, the process M(t) is introduced
in order to reflect large-scale meteorological processes. High
M(t) values correspond to heavy precipitation covering the
area, while low values correspond to dry conditions, as it is
reflected by seasonal variations of precipitation amounts. The
introduced M modifies the spatial process to

G(x, t)= U(x, t)+M(t), (8)

where M(t) is a process (only in time) with a mean of
zero. We may assume that the distribution of M(t) is normal
and, therefore, G(x, t) would be normally distributed with

N(0,d) (with d =
√

1+ σ 2
M ) at every location x.

For each individual time step t , the distribution of G(x, t)
is N(M(t),1) and the resulting spatial field W is the tempo-
ral non-exceedance probability at location x being confined
to 0≤W(x, t)≤ 1 and formally described as

W(x, t)=80,d(G(x, t)), (9)

where 80,d is the distribution function of N(0,d). The pre-
cipitation is then generated as

Z(x, t)= F−1
x (W(x, t)), (10)

where Fx is the distribution function of precipitation at the
location x. The distribution functions Fx may vary between
different locations x due to topography and other influenc-
ing factors, and they could be subject to interpolation (e.g.,
Mosthaf and Bárdossy, 2017).

We useW(x, t) for each time step t and assume that it fol-
lows a beta distribution. In fact, its distribution depends on
M(t). If M(t)= 0 for all time steps t , then monthly precipi-
tation can be fully characterized by independent realizations
over space. In this case, the distribution of W is uniform for
each t .

However, this is not the case with observed data because
wet and dry conditions occur simultaneously over the entire
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Figure 2. Flowchart for the basic methodology of quantile kriging.

domain. This is controlled byM(t), which can be taken, e.g.,
as an independent random variable or to follow an ARMA
process. If M(t) 6= 0 then the distribution of W(x, t) is not
uniform for this specific time step t . The exact form of the
corresponding distribution would be something like

Gt (v)=80,1

(
8−1
M(t),1(v)

)
. (11)

However, the use of Eq. (11) would require the estimation of
M(t) for each time step t . We decided to use a simple beta
distribution instead. The reason for assuming a beta distri-
bution is due to their flexibility and their ability to describe
distributions well within the interval [0,1].

The introduction of M(t) is reasonable as it explains the
difference between the correlation between stations and the
spatial correlation calculated using a variogram type ap-
proach for a given time step. The later correlations are usu-
ally lower (smaller ranges), which are increased by the com-
mon large-scale weather described by M(t). Note that the
introduction of M(t) leads to a correlation of the precipita-
tion time series even if the individual snapshots of U(x, t)
are independent in space.

We estimate and subsequently interpolate Fx within the
proposed methodology by the preceding conversion of the
variable Z(xi, t). In addition, we calculate W(xi, t) for the
observation locations xi and interpolate it to the unknown
location x in order to come back to Z(x, t). In here, spa-
tial variograms are calculated for W for each time step t ,
assuming W to be spatially stationary. Non-Gaussian and
non-stationary distributions only occur for the precipitation
amounts (i.e., the variable Z).

Non-Gaussianity should be considered due to the usually
skewed distribution of precipitation amounts and it only ap-
plies to the marginal distribution at a given time step t . The
suggested model should enable a simulation of the precipi-
tation amounts. The spatial dependencies are considered to
correspond to a multi-Gaussian copula, being a type of trans-
formation frequently used (e.g., for lognormal kriging).

The distributions Fx , fitted to the individual locations, are
supposed to have a spatial dependence. They are further as-
sumed to follow the same distribution (e.g., 0 or Weibull dis-
tribution) and are subsequently interpolated. In here, we as-
sume that the large-scale meteorological processes, generat-
ing precipitation, are better reflected by the distributions than
by a single monthly (or daily) realization. Therefore, the use
of external covariates, e.g., elevation, is deemed more appro-
priate for their interpolation. The usage of these distributions
transforms the process into a stationary one, which is then in-
terpolated using the beta distribution of the non-exceedance
probabilities.

2.3 Application of quantile kriging

The proposed method of QK is applied for the variable of
monthly precipitation in South Africa and the outcomes are
compared to those from OK and EDK.

2.3.1 Study area and data

The rectangular study area (3.5◦× 3.5◦, Fig. 3) covers ap-
prox. 132 000 km2 and is located within the Republic of
South Africa. The second release of the digital elevation
model from the Shuttle Radar Topography Mission (USGS,
2003) serves as elevation input. The original resolution
was upscaled from 3 arcsec (approx. 92 m) to 2 arcmin (ap-
prox. 3700 m) by spatial averaging, resulting in a mean of
1442 m and ranging from 669 to 2197 m (a.m.s.l.). The up-
scaled elevation ultimately serves as external drift for EDK
of the parameters within QK and for the reference EDK with
the original variable.

The observations of monthly precipitation were retrieved
from raingauges of four different sources: the Department of
Water Affairs (DWA, 2008), the Global Historical Climatol-
ogy Network (Vose et al., 1992), the Climate Research Unit
(Mitchell and Jones, 2005) and the internal database of the
University of KwaZulu-Natal (Lynch, 2004). Accumulation
of daily recordings yield monthly values for the 264 (= J )

www.hydrol-earth-syst-sci.net/23/1633/2019/ Hydrol. Earth Syst. Sci., 23, 1633–1648, 2019



1638 H. Lebrenz and A. Bárdossy: Geostatistical interpolation by quantile kriging

Figure 3. Study area, elevation and location of raingauges.

consecutive months from January 1986 to December 2007.
A total of 226 (= ni) raingauges (Fig. 3) provided 32 226
(=N ) monthly precipitation values, which ultimately serve
as input data.

The observed average monthly precipitation over the 12
calendar months c is illustrated in Fig. 4 along with the per-
centage of zero-value observations over all observations of
the specific calender month c (hereafter referred to as the
dry ratio), revealing a seasonal variation. High precipitation
is typically encountered in the calendar months from Octo-
ber to March, being characterized by a low dry ratio < 3%.
The study area receives relatively low precipitation amounts
during the calender months from April (dry ratio = 11%) to
September (dry ratio = 25%).

2.3.2 Adaptation to monthly precipitation

At first, we subdivided the observations of monthly precipita-
tion into the corresponding calendar month c (= 1,2, . . .,12)
prior to the fitting of the selected distribution function due to
two reasons: the seasonal variation in monthly precipitation
(Fig. 4) and to ensure independence of the individual sample
members as a theoretical requirement for the fitting method.
We used the maximum likelihood estimation method for fit-
ting the selected distribution function to the respective mea-
surements values z(xi, tc) of every calender month c and ev-
ery measurement location xi , resulting in a total of 2712
(= 12× 226) fittings. In this context, the two-parametric 0
and Weibull distribution were selected, whose cdf F(z;2)

Figure 4. Average monthly precipitation (in mm) and dry ratio (in
%) from 226 raingauges. Note that the dry ratio (dashed brown line)
is indicated on the right axis.

are defined as

0− distribution : F(z;2)=
γ (µ,λ · z)

0(µ)
, (12)

Weibull− distribution : F(z;2)= 1− exp
[
−

( z
λ

)k]
, (13)

where 0(µ) is the gamma function and γ (µ,λ·z) is the lower
incomplete gamma function. The parameter set 2c(xi) is
composed for the 0 distribution out of µc(xi) (= ϑ1,c(xi))

and λc(xi) (= ϑ2,c(xi)) and for the Weibull distribution out
of kc(xi) (= ϑ1,c(xi)) and λc(xi) (= ϑ2,c(xi)). All parame-
ters are restrained to values greater than zero and both cdfs
are defined for z(xi, t)≥ 0.

Thus, the original observations of monthly precipitation
z(xi, t) are converted by Eq. (12) or Eq. (13) into the cor-
responding quantiles w(xi, t) (= F(z(xi, t);2c)) and their
defining parameter set 2c(xi). As outlined in Sect. 2.1, the
quantiles w(xi, t) were further converted into the standard
Gaussian variable u(xi, t), ultimately subject to the subse-
quent OK as our chosen geostatistical interpolation method.
Note that the stationary assumption of more homogeneously
distributed quantiles in space appear more plausible in the
case of monthly precipitation. In total, the variable u(xi, t)
was interpolated 264 times by OK to the unknown location x.
The corresponding variograms are calculated using Kendall’s
tau for a robust interpolation (Lebrenz and Bárdossy, 2017).

We further selected EDK as non-stationary interpolation
method for the defining parameters ϑ1,c and ϑ2,c. Elevation
data (Sect. 2.3.1) are taken as external drift since the distribu-
tions of monthly precipitation are assumed to depend on the
altitude of the terrain. However, it was revealed that the direct
use of the parameters may lead to negative or zero estimators
at locations of extreme external drifts. Therefore, the sample
mean zc(xi) and the sample variance σ 2

c (xi) are estimated
instead, using the two statistical moments of the selected dis-
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Figure 5. Scatterplot of sample mean z5 and sample variance σ 2
5 of

calendar month “May” along with the principle components s5 and
r5.

tribution functions, defined as

0− distribution : E[Z] =
µ

λ
;VAR[Z] =

µ

λ2 ; (14)

Weibull− distribution : E[Z] = λ ·0(1+ 1/k);

VAR[Z] = λ2
·0(1+ 2/k)−E[Z]2. (15)

The dependence of the two derived parameters z and σ 2 on
each other appears obvious in the case of monthly precip-
itation: a high mean is likely to be associated with a high
variance and vice versa. Their dependence is exemplary il-
lustrated for the calender month “May” in Fig. 5.

The principal component analysis allows for the transfor-
mation into the new Cartesian coordinate system with the
new coordinates rc(xi) and sc(xi). They are now indepen-
dent and subject to a separate interpolation by EDK. A total
of 24 (= 12× 2) interpolations by EDK to the unknown lo-
cation x is performed for each selected type of distribution.

3 Results and discussion

The proposed interpolation method of QK, using either a 0
distribution (QK-0) or a Weibull distribution (QK-Wei), is
implemented and compared to the traditional geostatistical
interpolation methods of OK and EDK. The respective per-
formances are evaluated by cross-validation for the result-
ing estimators Z∗ and the associated kriging variances σ 2

K. In
here, cross-validation eliminates all values z(xi, t) in turns
from the input data, and subsequently calculates the estima-
tor Z∗(xi) and the associated kriging variance σ 2

K(xi) from
the remaining data. Only the 32 226 data points of the actu-
ally recorded values were considered for the cross-validation
and the resulting outcomes are compared to the actual obser-
vations.

3.1 Implementation of quantile kriging

The outcomes from the interpolation by OK, EDK and QK-0
are exemplary displayed and examined for a month with low
precipitation and a high dry ratio (August 1993) and a month
with high precipitation and a low dry ratio (January 1996).
The respective spatial patterns of the estimatorZ∗(x) and the
associated standard deviation σK(x) are illustrated in Figs. 6
and 7.

The estimator Z∗ displays similar spatial patterns and
value ranges for all the interpolation methods. However, the
local contours of the isohyets are more rugged for QK-0
(Figs. 6e and 7e) than for OK (Figs. 6a and 7a), but smoother
than for EDK (Figs. 6c and 7c).

QK utilizes elevation for the interpolation of the two dis-
tribution parameters ϑ1,c and ϑ2,c. The two parameters in-
corporate information from all time steps tc of the specific
calendar month c and, thus, transfer information over time.
They are further combined with the ordinary kriged quan-
tiles W(x, t), leading to more smooth contours of the iso-
hyets than EDK (compare Fig. 3). We regard the resulting
spatial patterns of QK as more plausible, assuming that the
accumulated monthly precipitation is hardly affected by local
features in elevation.

The standard deviations σK of the associated estimation
error show notable deviations in spatial pattern for the im-
plemented interpolation methods. The range of error is no-
tably higher for QK (Figs. 6f and 7f) and its spatial pat-
terns deviates from the typical, bull-eye-shaped patterns of
OK (Figs. 6b and 7b) or EDK (Figs. 6d and 7d).

The estimation error from OK and EDK depends on the
spatial configuration of the observation locations xi , their
global variance and the selected variogram model. This typ-
ical spatial pattern of the error distribution from the ordi-
nary kriged quantiles W(x) is converted within QK by the
monotonic cdf (Eq. 12). The resulting σK(x) of the original
variable Z(x) is, therefore, increased by relatively flat slopes
of the cdfs, which are encountered for relatively high val-
ues of W(x). A relationship between the magnitude of the
estimator Z∗ and the magnitude of the associated standard
deviation σK is suggested by Figs. 6 and 7.

3.1.1 Relationship between estimator and standard
deviation

A relationship between the magnitude of the estimator Z∗

and the associated standard deviation σK would be possibly
an improvement to geostatistical interpolation and is, there-
fore, examined next by cross-validation. The Spearman rank
correlation coefficient ρS is chosen for its description, being
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Figure 6. Spatial patterns of the estimator Z∗(x) and the standard deviation σK(x) from OK, EDK and QK-0 for August 1993. Note that
crosses indicate positions of raingauges.
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Figure 7. Spatial patterns of the estimator Z∗(x) and the standard deviation σK(x) from OK, EDK and QK-0 for January 1996. Note that
crosses indicate positions of raingauges.
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Figure 8. Evolution of the Spearman rank correlation coefficient ρS
between the estimator Z∗ and the standard deviation σK.

defined as

ρS = (16)
n∑
i=1
(rg(Z∗(xi, t))− rgZ∗)× (rg(σK(xi, t))− rgσ )√

n∑
i=1
(rg(Z∗(xi, t))− rgZ∗)2×

n∑
i=1
(rg(σK(xi, t))− rgσ )2

,

where rg(Z∗(xi, t)) and rg(σK(xi, t)) are the ranks of the es-
timator Z∗ and the associated standard deviation σK within
a set of data, while rgZ∗ and rgσ are the respective average
ranks. The non-parametric Spearman rank correlation ρS de-
scribes the monotonic relation between the estimator Z∗ and
estimation standard deviation σK, ranging from −1 (nega-
tive) to +1 (positive) with 0 indicating its absence. A set
of data consists of all n values of the corresponding calen-
dar month c. The evolution of the Spearman rank correla-
tion coefficient ρS over all 12 calendar months is displayed
in Fig. 8.

The rank correlation varies over the calendar months for
all implemented interpolation methods and reach their sea-
sonal maximums in June or July (Fig. 8), being characterized
by a high dry ratio and low precipitation.

An improvement in the relationship between the estimator
Z∗ and the associated standard deviation σK can be observed
for QK-0 and QK-Wei, exhibiting superior rank correlation
coefficients for all calender months with the exception of
QK-Wei in December (Fig. 8). QK-0 deploys the strongest
relation during the wetter months from October to March,
while QK-Wei is superior from May to September. The re-
sulting spread of the error distribution is increased by de-
creasing slopes of the theoretical cdfs (Eqs. 12 and 13) and
vice versa. The slope is effectively the probability density
function (pdf). Both selected theoretical distributions imply
a monotonic decrease in their respective pdfs for small pa-
rameters, being typically encountered during the dry season,
and evoke a higher spread of the error distribution for higher

monthly precipitation. Thus, the almost perfect rank corre-
lation ρS(c) of QK during the months of low precipitation
can be explained. The rank correlation between the estima-
tor and the standard deviation is weakened for the months
with higher precipitation due to the departure from the strict
monotonic decrease in the pdfs, which is induced by increas-
ing distribution parameters.

The inferior correlation coefficients of OK and EDK are
nearly congruent due to their inherent geostatistical defini-
tion: although the kriging weights are altered by the drift,
they influence the linear estimator Z∗ and the standard devi-
ation σK by the same extent. Therefore, the non-parametric
Spearman descriptor hardly differentiates between OK and
EDK.

3.2 Cross-validation of the estimator

The estimator Z∗(xi, tj ) from the cross-validation is eval-
uated by six objective functions: the Pearson correlation
coefficient ρ, the Nash–Sutcliffe efficiency coefficient NSE
(Nash and Sutcliffe, 1970), the overall bias B1 and the root
mean square error (RMSE) are complemented by the tempo-
ral bias B2 and the spatial bias B3 (Bárdossy and Pegram,
2012), which are defined as

ρ =

ni∑
i=1

J∑
j=1
(Z∗(xi , tj )−Z

∗
)× (z(xi , tj )− z)√

ni∑
i=1

J∑
j=1

[
Z∗(xi , tj )−Z

∗
]2
×

ni∑
i=1

J∑
j=1

[
z(xi , tj )− z

]2 [−] (17)

NSE= 1−
ni∑
i=1

J∑
j=1

[
z(xi, tj )−Z

∗(xi, tj )
]2[

z(xi, tj )− z
]2 [−] (18)

B1=
1
ntot

ni∑
i=1

J∑
j=1

[
z(xi, tj )−Z

∗(xi, tj )
]

[mm] (19)

B2=
1
ntot

ni∑
i=1

[
J∑
j=1

(
z(xi, tj )−Z

∗(xi, tj )
)]2 [

mm2
]

(20)

B3=
1
ntot

J∑
j=1

[
ni∑
i=1

(
z(xi, tj )−Z

∗(xi, tj )
)]2 [

mm2
]

(21)

RMSE=

√√√√ 1
ntot

ni∑
i=1

J∑
j=1

[
z(xi, tj )−Z

∗(xi, tj )
]2 [mm] (22)

where J is the number of time steps, ni is the number of
observation locations and ntot is the total number of cross-
validated observations. Note that the cross-validation for
only one time step (J = 1) would yield the following rela-
tions: ntot×B12

= B3 and B2= RMSE2.

3.2.1 Summary results

The overall values of the six objective functions from all
32 226 original observations, along with a separation into
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dry season (calender months: 4–9) and wet season (calender
months: 1–3 and 10–12) are given in Table 1.

The total values of the correlation coefficient ρ, the NSE
coefficient, the temporal bias B2 and the RMSE are better for
QK-0 and QK-Wei than for OK and EDK, evoking from a
superior performance especially during the wet season when
not many of many zero values are present (see Table 1).

Complementary, OK and EDK have superior values for the
biases B1 and B3 as a result of the implicit definition as best
linear and unbiased estimator. OK (and to some extent EDK)
optimize the spatial bias B3 for a given month by adapting
their global mean to the observed mean, according to Eq. (1)
(Eq. 3). However, this evokes a systematic underestimation
in regions of high precipitation and a systematic overestima-
tion in regions of low precipitation. Therefore, a temporal
bias B2 accumulates for a location, which consistently ex-
periences extreme precipitation over time. Especially during
the wet season, QK outperforms OK and EDK with respect to
the temporal bias. The following investigations on raingauge
“Wilgervier” exemplary serve as illustration for the evolution
of a temporal bias.

3.2.2 Temporal bias at raingauge “Wilgervier”

Raingauge “Wilgervier” (i = 125, see Fig. 3) records a rela-
tively high monthly precipitation of 70.1 mm in average com-
pared to the average monthly precipitation of 54.7 mm in the
entire domain.

The evolution of the temporal bias B2 at raingauge
“Wilgervier” is calculated from cross-validation according
to Eq. 20 and illustrated in Fig. 9 (left). In addition, the rel-
ative estimation error εr is estimated from the 218 (out of
the 264 possible) original observations at “Wilgervier”, be-
ing defined as

εr(x125, tj )=
Z∗(x125, tj )− z(x125, tj )

z(x125, tj )
. (23)

The 218 values of εr(x125) are smoothed by a Gaussian ker-
nel with a defined range dG (= 0.35). The distribution of
the relative estimation errors should ideally be symmetrical
around zero. However, the respective distributions are trun-
cated due the confinement to εr ≥−1 for the variable of
monthly precipitation. The smoothed distributions are fac-
tually a summary of the estimation errors and are illustrated
in Fig. 9 (right).

OK displays the highest systematic underestimation over
time (Fig. 9 left) and the relative estimation errors have a
mode of −20% (Fig. 9 right). EDK slightly improves the
systematic bias of the interpolation, but the relative error
distribution still possess a mode of −15%. QK-0 and QK-
Wei can further improve the systematic underestimation over
time and exhibit error distributions with modes of −12%,
and −10% respectively.

Raingauge “Wilgervier” illustrates that OK and EDK
might optimize the spatial bias (Table 1), but they are ham-

pered to minimize the temporal bias in locations of extreme
observations. QK, as a spatio-temporal interpolation method,
is capable of reducing the temporal bias within regions of rel-
atively high (or low) precipitation, which is potentially im-
portant for possible successive water balance considerations.

3.2.3 Cross-validation for different calendar months

The effects of the increased occurrence of zero-value obser-
vations on the Pearson correlation coefficient ρ (Eq. 17) and
the RMSE (Eq. 22) is exemplary examined next. The respec-
tive values are calculated for each calender month from the
cross-validation and are illustrated in Fig. 10 along with the
dry ratio (Fig. 4).

QK-0 and QK-Wei display improved values in compar-
ison to OK and EDK for the two selected objective func-
tions from October to March (Fig. 10). However, their per-
formance deteriorates from May to September, when many
zero-value observations are present, indicated by a dry ra-
tio of at least 25% or above. The correlation coefficient ρ
plunges in July for both versions of QK (Fig. 10 left) and
the respective RMSE shows a similar qualitative behavior
(Fig. 10 right).

The performance of QK is considerably influenced by the
dry ratio. The presence of many zero values in the data leads
to very steep or nearly vertical theoretical cdfs, hampering
the allocation of the quantiles to the respective precipitation
values.

3.3 Cross-validation of the uncertainty

The estimated error distribution of the estimator Z∗(x) is de-
scribed by the associated standard deviation σK(x) as a mea-
sure of associated uncertainty. The quality of the uncertainty
from the cross-validation is assessed by two objective func-
tions: the adapted linear error in the probability space LEPS
(Ward and Folland, 1991) and a test on uniformity (Bárdossy
and Li, 2008).

LEPS compares the values of the estimator Z∗(xi, t) and
the observation z(xi, t) within the estimated cdf FZ∗ of the
error distribution as

LEPS=
1
ntot
·

ntot∑
i=1

∣∣FZ∗(z(xi, t))−FZ∗(Z∗(xi, t))∣∣ , (24)

LEPS is defined on the interval [0,1]: low values indicate
a higher probability for the observation to originate from the
estimated probability density distribution and vice versa. The
average over the differences of all observations ntot yields the
overall LEPS value.

The test on uniformity verifies the estimated, conditional
distribution FZ∗ by calculating its value FZ∗(z(xi, t)) for
every original observation z(xi, t). The resulting values (or
quantiles) should be uniformly distributed on the interval
[0,1] (Bárdossy and Li, 2008). We defined 10 classes of
equal width, which should have the same resulting relative
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Table 1. Summary results from the cross-validation of the estimator Z∗ for the 12 calender months of the entire year, and split into dry
(calender months: 4–9) and wet (calender months: 1–3 and 10–12) season.

ntot ρ NSE B1 B2 B3 RMSE
(–) (–) (–) (mm) (mm2) (mm2) (mm)

Entire year

OK: 32 226 0.902 0.813 0.07 3486.34 49.67 26.48
EDK: 32 226 0.897 0.803 0.02 3539.73 76.41 27.16
QK-0: 32 226 0.905 0.819 −0.45 3480.90 1346.32 26.06
QK-Wei: 32 226 0.903 0.814 0.75 3418.60 2105.09 26.40

Dry season

OK: 16 256 0.908 0.824 0.00 2663.82 11.42 11.05
EDK: 16 256 0.904 0.816 0.01 2731.59 15.82 11.30
QK-0: 16 256 0.897 0.803 0.46 2164.02 1147.99 11.69
QK-Wei: 16 256 0.875 0.748 2.38 2153.02 3323.72 13.24

Wet season

OK: 15 970 0.801 0.637 0.14 2939.87 88.60 35.93
EDK: 15 970 0.790 0.618 0.02 3034.41 138.09 36.86
QK-0: 15 970 0.809 0.654 −1.39 2509.63 1548.21 35.10
QK-Wei: 15 970 0.810 0.654 −0.91 2523.36 864.63 35.05

Figure 9. Errors of the estimator Z∗(x125) at raingauge “Wilgervier”: evolution of temporal bias B2 over the study period (a) and smoothed
distribution of the relative estimation error εr (b).

frequency. The deviation from uniformity is quantified by
the χ2- test variable as the sum of the relative squared differ-
ences between uniformity and empirical distribution, ranging
from zero (perfect) to nine (improper).

3.3.1 Summary results

The values of the two objective functions from cross-
validation of all 32 226 original observations of the entire
year, and divided into dry (calender months: 4–9) and wet
season (calender months: 1–3 and 10–12) are displayed in
Table 2.

The best overall LEPS values are received from the tradi-
tional EDK and OK (Table 2). QK-Wei is superior to QK-0,
but both versions of QK are displaying higher LEPS values

than OK or EDK, originating from the dry season when many
zero values are present in the data.

However, the χ2-test variables (Table 2) exhibit a reverse
hierarchy among the implemented interpolation methods:
QK is superior during the dry season and similar during the
wet season. The χ2-test variables should be read in conjunc-
tion with the corresponding histograms of the FZ∗ values
(Fig. 11). Note that the outer classes of the histograms host
all the observations z(xi, t), which are situated outside the
estimated distribution. These classes exhibit the largest devi-
ation from the ideal uniform distribution.

QK-0 and QK-Wei provide in general a more uniform dis-
tribution of FZ∗ than OK and EDK (Table 2), which possess
the same value of the χ2-test variable and similar histograms
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Table 2. Summary results from the cross-validation of the estimation error for the entire year, and split into dry (calender months: 4–9) and
wet (calender months: 1–3 and 10–12) season.

ntot LEPS χ2 ntot LEPS χ2 ntot LEPS χ2

(–) (–) (–) (–) (–) (–) (–) (–) (–)

Entire year Dry season Wet season

OK: 32 226 0.25 0.13 16 256 0.19 0.32 15 970 0.30 0.17
EDK: 32 226 0.24 0.13 16 256 0.19 0.33 15 970 0.30 0.17
QK-0: 32 226 0.32 0.11 16 256 0.36 0.10 15 970 0.28 0.18
QK-Wei: 32 226 0.26 0.12 16 256 0.27 0.10 15 970 0.25 0.18

Figure 10. Evolution of two objective functions for the estimator over the 12 calendar months: Correlation coefficient ρ (a) and RMSE (b).
Note that the dry ratio (dashed brown line) is indicated as a percentage on the right axis.

Figure 11. Histograms for the FZ∗ -values of four different interpo-
lation methods.

(Table 2 and Fig. 11) due to their implicit affinity in defini-
tion.

3.3.2 Cross-validation for different calendar months

The effect of many zero-value observations on the error dis-
tribution is investigated by the differentiation into calendar
months. The objective functions are recalculated accordingly
and illustrated in Fig. 12.

The temporal evolution of the LEPS values for the two ver-
sions of QK is influenced by the presence of many zero-value
observations. QK-0 and QK-Wei exhibit LEPS values supe-
rior to OK and EDK from September to April, characterized
by a dry ratio of less than 26% (Fig. 12, left). However, the
performance of QK deteriorates from May to August when
many zero-value observations are present. This dependence
explains the overall inferior LEPS values for QK in Table 2.
The LEPS values for OK and EDK are hardly influenced by
the dry ratio (Fig. 12 left) and show a congruent behavior.

The temporal evolution of the χ2 test variable (Fig. 12
right) shows better values for QK-0 and QK-Wei than for OK
or EDK during most calender months. QK maintains a more
uniform distribution of the FZ∗ values even for the months
with a high dry ratio when OK and EDK deteriorate.
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Figure 12. Evolution of the two objective functions for the error distribution over 12 calendar months: LEPS (a) and χ2 (b). Note that the
dry ratio (dashed brown line) is indicated as a percentage on the right axis.

The cross-validation for the uncertainty suggests an im-
provement by QK under the prerequisite of a low dry ratio
within the input data. This improvement is attributed to the
wider range of the error distribution and the increased rela-
tion between the magnitude of the estimator and the spread
of the distribution (see Sect. 3.1).

4 Conclusions

The geostatistical interpolation method of QK addresses the
spatial non-stationarity of a variable of interest by its con-
version into quantiles and defining distribution parameters.
The spatial–temporal description of the variable by QK is
a novelty in applied geostatistics and can be regarded as a
temporal extension of probability kriging. Therefore, the pro-
posed method could be extended to spatially aggregated vari-
ables of streamflows, requiring, however, further investiga-
tions. The proposed method accommodates skewed marginal
distributions and converts them into an ideal Gaussian distri-
bution prior to interpolation as a major theoretical advantage
over the traditional OK or EDK. QK describes an asymmetri-
cal distribution of the random variable Z(x) by the nonlinear
estimator Z∗(x) and the estimation variance σ 2

K(x) of the er-
ror. QK further establishes a relation between the magnitude
of both descriptors.

The variable of monthly precipitation, observed at 226
raingauges over 264 consecutive time steps, serves as in-
put data. We selected the two-parametric 0 distribution and
Weibull distribution, because they are defined on the interval
[0,∞] and are suitable to describe the variable of monthly
precipitation. The selected distributions are fitted to the ob-
servations of a specific calendar month, implying an absence
of temporal dependence between two sample members (e.g.,
between the monthly precipitation of December 2002 and
December 2003). However, QK does accommodate tempo-
ral independence between consecutive observations, unlike
existing spatio-temporal kriging methods. In general, other

types of distributions, with a higher number of parameters
could be selected, especially in case of other variables of in-
terest. Finally, we used elevation as external drift, both for
the interpolation of the parameters within QK as well as for
the reference EDK.

The cross-validation of the estimator revealed an improve-
ment for most of the selected objective functions. In partic-
ular, QK addresses the temporal bias, which remains unat-
tended by the traditional geostatistical methods, which only
optimize the mean spatial bias. In case of the estimator, QK-
0 performs slightly better than QK-Wei for most of the se-
lected objective functions. The cross-validation of the asso-
ciated uncertainty shows an improvement by QK in the de-
scription of the distribution of the estimation errors in com-
parison to the traditional geostatistical interpolation methods.
However, its performance depends on the percentage of zero
values in the input data and declines when many zero values
are present. In general, QK-Wei shows a superior estimation
of the associated uncertainty than QK-0.
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