
Copernican Journal of Finance & Accounting

 e-ISSN 2300-3065
p-ISSN 2300-12402015, volume 4, issue 2

 Date of submission: August 7, 2015: date of acceptance: October 14, 2015.
* Contact information: gediminas.zylius@ktu.edu, Department of Automation, 

Faculty of Electrical and Electronics Engineering, Kaunas University of Technology, 
Studentų g. 50 - 154, LT - 51367 Kaunas, Lithuania, phone: +370 642 04 808.

Žylius G. (2015). Evaluation of ATM Cash Demand Process Factors Applied for Forecasting with CI 
Models. Copernican Journal of Finance & Accounting, 4(2), 211–235. http://dx.doi.org/10.12775/
CJFA.2015.025

Gediminas Žylius*

Kaunas University of Technology

evaluation of atm cash demand process factors  
applied for forecastinG with ci models

Keywords: computational intelligence, regression, time series forecasting, cash mana-
gement, data-based forecasting, daily cash flow.

J E L Classification: C45, C53, G21.

Abstract: The purpose of cash management is to optimize distribution of cash. Effec-
tive cash management brings savings to retail banks that are related to: dormant cash 
reduction; reduced replenishment costs; decrease of cash preparation costs; reduction 
of cash insurance costs.

Optimization of cash distribution for retail banking in ATM and branch networks 
requires estimation of cash demand/supply in the future. This estimation determines 
overall cash management efficiency: accurate cash demand estimation reduces bank 
overall costs. In order to estimate cash demand in the future, cash flow forecasting 
must be performed that is usually based on historical cash point (ATM or branch) cash 
flow data. 

Many factors that are uncertain and may change in time influence cash supply/de-
mand process for cash point. These may change throughout cash points and are related 
to location, climate, holiday, celebration day and special event (such as salary days and 
sale of nearby supermarket) factors. Some factors affect cash demand periodically. Pe-
riodical factors form various seasonality in cash flow process: daily (related to intra-
day factors throughout the day), weekly (mostly related to weekend effects), monthly 
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(related to payday) and yearly (related to climate seasons, tourist and student arrivals, 
periodical celebration days such as New Year) seasons. Uncertain (aperiodic) factors 
are mostly related to celebration days that do not occur periodically (such as Easter), 
structural break factors that form long term or permanent cash flow shift (new shop-
ping mall near cash point, shift of working hours) and some may be temporal (recon-
struction of nearby building that restricts cash point reachability).

Those factors form cash flow process that contains linear or nonlinear trend, mi-
xtures of various seasonal components (intraday, weekly, monthly yearly), level shifts 
and heteroscedastic uncertainty. So historical data-based forecasting models need to 
be able to approximate historical cash demand process as accurately as possible pro-
perly evaluating these factors and perform forecasting of cash flow in the future based 
on estimated empirical relationship.

 Introduction

The aim of this research is to study how cash flow process factors affect cash 
flow forecasting accuracy in ATM network, using computational intelligence 
methods as cash flow forecasting models when performing daily aggregated 
cash flow forecasting. For factor evaluation 8 typical (affected by different fac-
tors) ATM cash withdrawal process flows selected from real ATM network are 
used with historical period of 33 months.

Previous studies of Automatic Tellec Machine (ATM) withdrawal cash flow 
(Rodrigues, Esteves 2010) show that this process is strongly affected by cal-
endar factors (day-of-the-week, week-of-the-month, month-of-the-year and 
holidays). Those effects can be used as numerical input values with CI models. 
Classical neural network regression approach using calendar effects (working 
day, weekday, holiday effect, salary day effect) as inputs were used by Kumar 
and Walia (2006) for cash demand process forecasting. However, cash demand 
varies in time and simply using regression inputs without incorporating re-
cent time series information is usually not enough. Simutis et al. (2007) applied 
more advanced flexibe neural network approach by incorporating both regres-
sion inputs (calendar effects) and time series inputs (such as value of aggregat-
ed cash demand of previous several days). 

During last decade, support vector machines (SVM) for various computa-
tional intelligence task was considered as alternative to neural networks be-
cause of benefits such as decision stability, less overfitting and better gener-
alization abilities when smaller training (historical) data is available. However 
Simutis, Dilijonas and Bastina (2008) show that application of support vector 
machines to cash demand forecasting process has no superiority to neural net-
works and is even less accurate when reasonably long historical data period 
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for model training is available. As an alternative to neural network approach, 
interval type-2 fuzzy neural network (IT2FNN) was applied for cash demand 
forecasting (Darwish 2013). This type of model has both on-line structure and 
parameter learning abilities that lets model automatically adapt to different 
cash flow processes.

CI models for forecasting are considered to be a more advanced approach. 
However, time series models are also used for cash flow process forecasting. 
When comparing classical econometric time series models researches show 
(Gurgul, Suder 2013) that SARIMA (seasonal autoregressive integrated mov-
ing average) models are most accurate. It is shown (Wagner 2010) that SARI MA 
model even outperform joint forecasting approach using vector time series 
models. A comparison between time series probability density forecasting 
models (such as linear, autoregressive and structural and Markov-switching 
time series models) is made by Brentnall, Crowder and Hand (2010b) and re-
sults show that Markov-switching density forecasting model performs best. 

Deeper investigation of cash demand process factors are also useful for 
forecasting. Random-effects models (Brentnall, Crowder & Hand 2008, 2010a) 
are used when modelling of individual client cash withdrawal patterns is 
made for ATM withdrawal forecasting. Laukaitis (2008) presented research 
on cash flow forecasting when intraday cash flow time series is treated as ran-
dom continuous functions projected onto low dimensional subspace and ap-
ply functional autoregressive model as predictor of cash flow and intensity of 
transactions.

Forecasting models

This section presents computational intelligence forecasting models that are 
applied for daily-aggregated ATM cash flow forecasting.

Support vector regression model. Support vector regression (SVR) is appli-
cation of support vector machines (SVM) model for regression problems. SVM 
was originally proposed by Cortes and Vapnik (1995) as a robust linear mod-
el for classification problems. The idea behind SVM is to map input space data 
vectors to output space via high dimensional space called feature space. This 
mapping is performed using so called kernel trick. By doing so, linear nature of 
SVM model can be applied for nonlinear function approximation. The nonline-
ar mapping requires nonlinear kernel function selection. Gaussian kernel func-
tions are usually used because of few parameters. In this paper two types of 
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SVR models are applied: 1) 1) ν-support vector regression (ν-SVR) and 2) least 
squares support vector regression (LSSVR).
 ■ ν-SVR. Let input data vectors to be 
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Where  ix  is kernel function (Gaussian) that performs mapping of input space to high 

dimensional feature space (the space where linear regression is performed); w is a 

parameter vector of n-dimensional hyperplane; b is hyperplane bias parameter; ξi
*, ξi are 

upper and lower training errors (slack variables) subject to ε – insensitive tube; C is a cost 

parameter, that controls the trade-off between allowing training errors and forcing rigid 

margins; ν is regularization parameter that controls parameter number of support vectors; l 

– is number of data points (observations). Data points that lie on the boundaries of ε – 

insensitive tube are called support vectors. Graphical illustration of ν-SVR model is 

depicted in Figure 1 

Figure 1. An illustration of ν-SVR approximation principle 
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Where ei  are error variables and γ is regularization constant.  
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Where ei  are error variables and γ is regularization constant.  

S o u r c e : created by authors.
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In this research ν-SVR code is used that is implemented in LIBSVM library 
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Where ei  are error variables and γ is regularization constant.  
Where ei are error variables and γ is regularization constant. 

Differently from ν-SVR, LS-SVR doesn’t use insensitive tube and is regular-
ized only by parameter γ, so is not as sparse as ν-SVR model (has more support 
vectors). But least squares loss function brings other flexibility benefits for re-
gression problems. As for ν-SVR model, for LS-SVR model Gaussian kernel func-
tions are used.

In this research LS-SVR code is used from LS-SVMlab toolbox presented in 
website (see Pelckmans et al. 2002).

Relevance vector regression model. Relevance vector regression (Tipping 2001) 
is model that has same linear functional form as support vector regression: 
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Feed-forward neural network model. Feed-forward neural network (FFNN) is 
the most popular artificial neural network architecture for nonlinear function 
approximation (classification and regression) problems. The architecture of al-
gorithm was inspired by biological neural networks (brains) and models the in-
terconnection of neurons that can compute values from inputs by feeding infor-
mation through the network. FFNN model architecture is depicted in Figure 2.

Figure 2. An illustration of feed-forward neural network architecture
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In this work, Levenberg – Marquardt (Hagan & Menhaj 1994) backpropagation 
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Figure 3. Illustration of ANFIS model architecture with two membership functions 
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For a 1st order of Sugeno fuzzy model, a typical IF-THEN rule set can be expressed as: 

In this work, Levenberg – Marquardt (Hagan & Menhaj 1994) backpropa-
gation (Rumelhart, Hinton & Williams 1986) training algorithm was used for 
feed-forward neural network model training, which is implemented in MATLAB 
Neural Networks Toolbox.

Generalized regression neural network model. Generalized Regression Neu-
ral Network (GRNN) first proposed by Specht (1991) is special case of radial 
basis function (RBF) neural network. GRNN does not require an iterative train-
ing procedure (error back propagation as with other neural network architec-
tures). GRNN training procedure requires specification of RBF spread param-
eter. It uses those functions to cover input space and approximates function 
as weighted linear combination of radial basis functions. Number of RBF func-
tion is equal to number of observations (number of days in historical daily cash 
flow). Each RBF is formed for each data point vector that is a center of RBF. 
RBF transfer function values are calculated according to Euclidean distance 
from the central point to input vector. In this research GRNN implemented in 
MAT LAB Neural Network Toolbox is used.
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Adaptive neuro-fuzzy inference system model. Adaptive neuro-fuzzy infer-
ence system (ANFIS) (Jang 1993) combines fuzzy inference system and neural 
network features: neural network training capabilities (backpropagation) with 
fuzzy input and output formation (Takagi–Sugeno fuzzy inference system). An ar-
chitecture of ANFIS model that has two membership functions is depicted in Fig-
ure 3. This type of model architecture has 5 layers: fuzzy layer (1), product layer 
(2), normalization layer (3), defuzzification layer (4) and summation layer (5). 
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In this research, two types of ANFIS model training algorithms are used: 
classical gradient steepest descend backpropagation and hybrid training algo-
rithm. Hybrid training combines gradient descend backpropagation and least 
squares methods. Backpropagation is used to tune input layer membership 
function parameters, while least squares method is used for output function 
parameter tuning. 

For input layer membership function parameter initialization fuzzy c- means 
(FCM) clustering algorithms is used, that partitions data of the input space into 
some number (c) of clusters and use them as input membership function ini-
tialization.

In this research ANFIS model that is implemented in MATLAB Fuzzy Logic 
Toolbox is used.
 ■ Extreme learning machine model. Extreme learning machines (ELM) (Hu-

ang, Zhu & Siew 2006) have the same architecture as single hidden layer 
feed-forward neural networks. Differently from conventional neural ne-
twork achitectures, ELM doesn’t require backpropagation for parameter 
tuning. Instead, hidden node weights are chosen randomly and output 
weights are determined analytically. Main advantage of this type of le-
arning is speed, which is many times faster than conventional iterative 
tuning (such as backpropagation). 
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 is Moore – Penrose generalized inverse (pseudoin-
verse) matrix.

A MATLAB implementation of classical ELM is used in this research, which is 
available at webpage (see Huang, Zhu & Siew 2006).

Experimental data

In this research 8 different typical ATM daily withdrawal data is used with his-
torical period up to 990 days. Those 8 ATMs were selected from large database 
and represent typical cash flow factors that occur in cash flow process. Further 
a short explanation of every ATM is conduced:
 ■ ATM number 1 contains cash flow with strong weekly seasonality factor;
 ■ ATM number 2 contains cash flow with strong yearly and weekly seaso-

nality factors, when yearly seasonality is smooth;
 ■ ATM number 3 contains cash flow with strong monthly seasonality factor;
 ■ ATM number 4 contains cash flow with strong yearly and weekly seaso-

nality factors, when yearly seasonality is not smooth (temporal structu-
ral breaks);

 ■ ATM number 5 contains cash flow with weak mixed (weekly and mon-
thly) seasonality, increasing trend and heteroscedasticity factors with 
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permanent structural break factor (sudden cash flow break when ATM 
cash flow decreases);

 ■ ATM number 6 contains cash flow with mixed (weekly and monthly) 
seasonality and permanent structural break factors (sudden cash flow 
break when ATM cash flow increases);

 ■ ATM number 7 contains cash flow with weekly seasonality and temporal 
structural break factors (sudden cash flow break when ATM cash flow 
decreases and again increases to normal cash flow level after some pe-
riod);

 ■ ATM number 8 contains cash flow with weekly seasonality, increasing 
trend and heteroscedasticity factors.

Cash flow pictures together with autocorrelation functions are presented in 
Appendix for every ATM.

Methodology

In order to evaluate forecasting accuracy a specific metric is needed. In this re-
search forecasting accuracy metric called symmetric mean absolute percent-
age error (SMAPE) is used which is calculated with following formula:
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Where ��� is forecasted cash flow value and �� is real cash flow value. 

 Forecasting is performed by training model with one part of historical cash flow dataset 

once and testing (forecasting accuracy evaluation) is done with another part of historical 

cash flow dataset. Four cases of training for every ATM are performed (Figure 4): 1) mod-

els are trained with 2 year (or 800 days for some ATMs) historical period; 2) models are 

trained with 1.5 year (or 400 days for some ATMs) historical period; 3) models are trained 

with 1 year (or 200 days for some ATMs) historical period; 4) models are trained with 0.5 

year (or 100 days for some ATMs) historical period. But for testing, same amount of data 

is used for every training case.  
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Figure 4. Illustration of ATM cash flow data division
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In order to train model for forecasting, some inputs features that represent 
cash flow factors must be constructed. In this research 9 features are construct-
ed as inputs for every forecasting model (i represents forecasting day index):
 ■ 1st input. Month number (numbers 1–12);
 ■ 2nd input. Day of the month (numbers 1–31);
 ■ 3rd input. Day of the week (numbers 1–7);
 ■ 4th input. Withdrawal amount of i-1 day (previous day);
 ■  5th input. Withdrawal amount of i-7 day (previous week day);
 ■ 6th input. Withdrawal amount of i-14 day (previous 2nd week day);
 ■ 7th input. Withdrawal amount of i-21 day (previous 3rd week day);
 ■ 8th input. Withdrawal amount of i-28 day (previous 4th week day);
 ■ 9th input. Sum of withdrawals of last 5 days (i-5 to i-1).

Those features were selected after experimental studies. In order to evalu-
ate what features (factors) are best for each particular type of ATM cash flow 
forecasting, one must perform forecasting with all combinations of features 
which using binomial formula is  number of training cases. However, using 
knowledge from previous experimental studies features from 5 to 8 are con-
sidered as one set. So the combination set reduces from 9 to 6 and so number of 
combinations reduces from 511 to 63.

CI forecasting models have specific external parameters that need to be 
adjusted properly during training phase. In order to statistically minimize CI 
forecasting model overfitting and underfitting during training phase, a 10-fold 
cross-validation procedure is used with every forecasting model that needs pa-
rameter tuning. Tuned parameters during training phase are used for testing 
phase.
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Results

This section presents forecasting accuracy results. Forecasting accuracy re-
sults averaged over all 7 forecasting models are presented in Table 1. The first 
row in the table represents ATM numbers according to their type, which is 
described in section 3. Second to fifth rows show average SMAPE (averaged 
over all model forecasts) for particular training type when inputs that yield 
best average SMAPE amongst all forecasting models and training types (aver-
aged over all seven models and all four training types) are selected. Sixth row 
show those best average input numbers according to their type as described in 
section 4. Seventh row show best averaged over all models SMAPE when best 
input set for particular training type (not for all training types) is selected. 
Eighth row show those best input numbers for particular training type. Other 
rows show same kind of results for other training types. Forecasting results 
averaged for all forecasting models and sorted according to average of all fore-
casting models and training types for each particular input type (sorted 63 in-
puts) are depicted in Appendix. Further an explanation of forecasting results 
for each ATM is made: 
 ■ ATM number 1: worst accuracy is achieved with shortest training histo-

ry (0.5 year) mostly for all training inputs (see figure in Appendix). Tra-
ining with long history (2 years) doesn’t improve average forecasting re-
sults and best results are achieved with 1.5 year training – a trade-off 
between overfitting because of too short history and overfitting becau-
se of learning patterns that do not reoccur in the future. Best average in-
put set is weekly values of cash flow (1–4 weeks before, see Table 1). Ho-
wever week number wasn’t selected as best input over all models, this 
shows that cash flow is non-stationary and recent history update of cash 
flow pattern improves forecasting even for strong weekly seasonality.

 ■ ATM number 2: as for ATM 1, worst results are achieved with shortest 
history training. Now long history is more significant than for ATM 1 
and best results are achieved with 2 year training (mostly over all in-
put sets, see figure in Appendix). However best average input set do-
esn’t include month number and day of month in best input set. Week 
number, 1–4 previous weeks cash flows are related to strong weekly 
seasonality and moving average (9th input) lets model more adaptively 
react to recent cash flow trend variations because of yearly seasonality 
(see Table 1).
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 ■ ATM number 3: results are not so affected by history period length as for 
ATM 2 case, but worst results are obtained using 0.5year training also. 
Month and day of the week numbers weren’t included in best input set, 
this shows that no significant weekly or yearly seasonality that may af-
fect forecasting took place. Other included inputs are related to monthly 
periodicity and help to forecast changing monthly pattern.

 ■ ATM number 4: surprisingly as for yearly seasonality in ATM 2, month 
number inputs weren’t included in best input set, even though this type 
of ATM has not so smooth transition of yearly pattern. This might be 
explained by more strong recent cash flow value impacts (moving ave-
rage, cash flow day before, or 1–4 previous week cash flows) for sudden 
change in cash flow than yearly-related (month number, day of month) 
regression input effects even though yearly seasonality is strong, it has 
a quasi-periodic structure and values of last year only partially reoccur 
in current year on the same day. However as for ATM number 2, long hi-
story is more necessary in order to forecast more accurately.

 ■ ATM number 5: interesting results are obtained for this kind of ATM. As 
expected, most accurate results for most of the inputs (see figure in Ap-
pendix) are achieved when shortest history (after sudden cash flow pro-
cess structural break occurs) is used. This is because cash flow training 
data after structural break concludes relatively larger part of training 
examples than for longer period training data. So model adapts to recent 
break. But it is interesting that this affect is only partial: the results are 
worse for 1.5 year training, but for 2 year training accuracy increases. 
This is explained integral part of ATM cash flow (increasing trend) and 
at the beginning model learns small level cash flow relationship, which 
is similar to that after the structural break. As expected, for this kind of 
ATMs with structural break, inputs that encode recent past are more ef-
fective than regression inputs.

 ■ ATM number 6: even though this ATM has structural break as ATM num-
ber 5, the structural break impact is less obvious. This might be related 
to the direction of structural break and break level difference. An expla-
nation of forecasting results is more difficult: shortest history learning 
is not the best (but looking at figure in Appendix seems worst) because 
of overfitting (even though it contains history without structural break) 
because of too short history training. Long history contains structural 
break so this disturbs model training and overfittig also takes place. Day 
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of month input is included in best input set because of monthly seaso-
nality, and 1–4 previous week inputs add to both weekly and monthly 
(because of 4 weeks) pattern forecasting. But moving average and pre-
vious day cash flow inputs were not included. This might be because of 
too small structural break. However 1–4 previous week cash flow inputs 
contain recent past information together encoding weekly and monthly 
seasonality patterns.

 ■ ATM number 7: because temporal structural break was relatively short, 
2 year training still performed best. 1 year training performed worst 
because full temporal break was included and concluded biggest part of 
training data compared to 2 or 1.5 year training cases and this lead to 
model overfitting. 0.5 year training didn’t include temporal structural 
break part, but didn’t perform best because of too short training history. 
Because of weekly seasonality, best input set included related inputs.

 ■ ATM number 8: looking at figure in Appendix it is seen that using 2 year 
history training is worst case for most input sets, so this means that if 
ATM has growing tendency, forgetting the past is good, but too few tra-
ining values will not train the model with maximum accuracy, so proper 
decision for model training is needed because of short and long history 
training trade-off. Moving average input is selected to best input set and 
helps when with trend forecasting, weekly-related inputs correspond to 
weekly seasonality factors in ATM cash flow process.

Table 1. Forecasting results (in SMAPE, %) over all forecasting models for every ATM

ATM Number 1 2 3 4 5 6 7 8

2 Year/800 Days Training  
(Best Avg. Inputs)

40.64 59.84 66.30 55.00 83.27 39.30 50.94 43.04

1.5 Year/400 Days Training  
(Best Avg. Inputs)

39.88 61.53 67.02 56.70 85.38 40.21 51.16 43.09

1 Year/200 Days Training  
(Best Avg. Inputs)

40.55 64.66 70.05 57.35 80.89 39.76 51.80 42.60

0.5 Year/100 Days Training  
(Best Avg. Inputs)

40.95 67,07 69.96 57.27 82.48 42.61 51.24 43.26

Best Avg. Inputs 5 6 7 8 3 5 6 7 
8 9

2 4 5 6 7 
8 9

3 4 9 5 6 7 8 9 2 3 5 6 
7 8

3 5 6 7 8 3 5 6 7 
8 9

2 Year/800 Days Training  
(Best 2 Year/800 Days Inputs)

40.64 59.84 66.30 55.00 82.40 39.30 50.71 43.04
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ATM Number 1 2 3 4 5 6 7 8

Best 2 Year/800 Days Inputs 5 6 7 8 3 5 6 7 
8 9

2 4 5 6 7 
8 9

3 4 9 9 2 3 5 6 
7 8

2 3 5 6 
7 8

3 5 6 7 
8 9

1.5 Year/400 Days Training  
(Best 1.5 Year/400 Days Inputs)

39.42 61.53 66.92 55.71 83.31 40.21 51.16 43.09

Best 1.5 Year/400 Days Inputs 3 5 6 7 8 3 5 6 7 
8 9

2 4 5 6 
7 8

3 9 9 2 3 5 6 
7 8

3 5 6 7 8 3 5 6 7 
8 9

1 Year/200 Days Training  
(Best 1 Year/200 Days Inputs)

40.55 64.66 67.24 56.72 80.89 39.76 51.74 42.60

Best 1 Year/200 Days Inputs 5 6 7 8 3 5 6 7 
8 9

1 2 4 5 6 
7 8

1 3 4 5 6 
7 8 9

5 6 7 8 9 2 3 5 6 
7 8

2 3 4 5 6 
7 8

3 5 6 7 
8 9

0.5 Year/100 Days Training  
(Best 0.5 Year/100 Days Inputs)

40.95 66.88 67.17 57.27 75.45 41.48 51.08 42.52

Best 0.5 Year/100 Days Inputs 5 6 7 8 3 4 5 6 7 
8 9

2 3 4 3 4 9 1 2 3 2 4 5 6 
7 8

2 3 5 6 
7 8

3 4 5 6 
7 8

S o u r c e : own studies.

 Conclusions and future works

After obtaining forecasting results for various types of ATM cash flows two im-
portant conclusions can be made: 
 ■ Choosing model training history is very important. Using long history is 

useful if yearly seasonality factors are relatively important in ATM cash 
flow process. If cash flow is relatively stationary (as ATM number 1 and 
ATM number 3) and has strong monthly or weekly seasonality, using 
too much history will not increase forecasting accuracy. But if ATM cash 
flow process has structural breaks or various trend components, tra-
ining history length must be selected carefully in order to avoid overfit-
ting.

 ■ Proper input selection is even more important than training history pe-
riod selection. Time-series inputs such as previous day cash flow value, 
moving average and 1–4 previous week cash flow values proved to be 
more efficient input features than regression inputs and contain time-va-
rying information with recent history encoding. So calendar effect fore-
casting inputs are not as important as time-series feature inputs. Purely 
regression inputs are effective only when stationarity of cash flow could 
be assumed. Combination of both may increase forecasting accuracy.
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In future works an investigation of multiple-day-ahead forecasting will be 
performed, which is more practical for cash flow forecasting. However, multi-
ple-day-forecasting is far more challenging research object with CI models, be-
cause of various factors related to error accumulation, conditional probability 
estimation. Also, automatic statistical methods that would be useful for ATM 
type identification for input and history period selection will be investigated.
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