
Copernican Journal of Finance & Accounting

 e-ISSN 2300-3065
p-ISSN 2300-12402015, volume 4, issue 2

 Date of submission: August 7, 2015: date of acceptance: October 14, 2015.
* Contact information: gediminas.zylius@ktu.edu, Department of Automation,

Faculty of Electrical and Electronics Engineering, Kaunas University of Technology,
Studentų g. 50 - 154, LT - 51367 Kaunas, Lithuania, phone: +370 642 04 808.

Žylius G. (2015). Evaluation of ATM Cash Demand Process Factors Applied for Forecasting with CI
Models. Copernican Journal of Finance & Accounting, 4(2), 211–235. http://dx.doi.org/10.12775/
CJFA.2015.025

Gediminas Žylius*

Kaunas University of Technology

evaluation of atm cash demand process factors
applied for forecastinG with ci models

Keywords: computational intelligence, regression, time series forecasting, cash mana-
gement, data-based forecasting, daily cash flow.

J E L Classification: C45, C53, G21.

Abstract: The purpose of cash management is to optimize distribution of cash. Effec-
tive cash management brings savings to retail banks that are related to: dormant cash
reduction; reduced replenishment costs; decrease of cash preparation costs; reduction
of cash insurance costs.

Optimization of cash distribution for retail banking in ATM and branch networks
requires estimation of cash demand/supply in the future. This estimation determines
overall cash management efficiency: accurate cash demand estimation reduces bank
overall costs. In order to estimate cash demand in the future, cash flow forecasting
must be performed that is usually based on historical cash point (ATM or branch) cash
flow data.

Many factors that are uncertain and may change in time influence cash supply/de-
mand process for cash point. These may change throughout cash points and are related
to location, climate, holiday, celebration day and special event (such as salary days and
sale of nearby supermarket) factors. Some factors affect cash demand periodically. Pe-
riodical factors form various seasonality in cash flow process: daily (related to intra-
day factors throughout the day), weekly (mostly related to weekend effects), monthly

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201153776?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Gediminas Žylius212

(related to payday) and yearly (related to climate seasons, tourist and student arrivals,
periodical celebration days such as New Year) seasons. Uncertain (aperiodic) factors
are mostly related to celebration days that do not occur periodically (such as Easter),
structural break factors that form long term or permanent cash flow shift (new shop-
ping mall near cash point, shift of working hours) and some may be temporal (recon-
struction of nearby building that restricts cash point reachability).

Those factors form cash flow process that contains linear or nonlinear trend, mi-
xtures of various seasonal components (intraday, weekly, monthly yearly), level shifts
and heteroscedastic uncertainty. So historical data-based forecasting models need to
be able to approximate historical cash demand process as accurately as possible pro-
perly evaluating these factors and perform forecasting of cash flow in the future based
on estimated empirical relationship.

 Introduction

The aim of this research is to study how cash flow process factors affect cash
flow forecasting accuracy in ATM network, using computational intelligence
methods as cash flow forecasting models when performing daily aggregated
cash flow forecasting. For factor evaluation 8 typical (affected by different fac-
tors) ATM cash withdrawal process flows selected from real ATM network are
used with historical period of 33 months.

Previous studies of Automatic Tellec Machine (ATM) withdrawal cash flow
(Rodrigues, Esteves 2010) show that this process is strongly affected by cal-
endar factors (day-of-the-week, week-of-the-month, month-of-the-year and
holidays). Those effects can be used as numerical input values with CI models.
Classical neural network regression approach using calendar effects (working
day, weekday, holiday effect, salary day effect) as inputs were used by Kumar
and Walia (2006) for cash demand process forecasting. However, cash demand
varies in time and simply using regression inputs without incorporating re-
cent time series information is usually not enough. Simutis et al. (2007) applied
more advanced flexibe neural network approach by incorporating both regres-
sion inputs (calendar effects) and time series inputs (such as value of aggregat-
ed cash demand of previous several days).

During last decade, support vector machines (SVM) for various computa-
tional intelligence task was considered as alternative to neural networks be-
cause of benefits such as decision stability, less overfitting and better gener-
alization abilities when smaller training (historical) data is available. However
Simutis, Dilijonas and Bastina (2008) show that application of support vector
machines to cash demand forecasting process has no superiority to neural net-
works and is even less accurate when reasonably long historical data period

 Evaluation of atm cash dEmand procEss factors… 213

for model training is available. As an alternative to neural network approach,
interval type-2 fuzzy neural network (IT2FNN) was applied for cash demand
forecasting (Darwish 2013). This type of model has both on-line structure and
parameter learning abilities that lets model automatically adapt to different
cash flow processes.

CI models for forecasting are considered to be a more advanced approach.
However, time series models are also used for cash flow process forecasting.
When comparing classical econometric time series models researches show
(Gurgul, Suder 2013) that SARIMA (seasonal autoregressive integrated mov-
ing average) models are most accurate. It is shown (Wagner 2010) that SARI MA
model even outperform joint forecasting approach using vector time series
models. A comparison between time series probability density forecasting
models (such as linear, autoregressive and structural and Markov-switching
time series models) is made by Brentnall, Crowder and Hand (2010b) and re-
sults show that Markov-switching density forecasting model performs best.

Deeper investigation of cash demand process factors are also useful for
forecasting. Random-effects models (Brentnall, Crowder & Hand 2008, 2010a)
are used when modelling of individual client cash withdrawal patterns is
made for ATM withdrawal forecasting. Laukaitis (2008) presented research
on cash flow forecasting when intraday cash flow time series is treated as ran-
dom continuous functions projected onto low dimensional subspace and ap-
ply functional autoregressive model as predictor of cash flow and intensity of
transactions.

Forecasting models

This section presents computational intelligence forecasting models that are
applied for daily-aggregated ATM cash flow forecasting.

Support vector regression model. Support vector regression (SVR) is appli-
cation of support vector machines (SVM) model for regression problems. SVM
was originally proposed by Cortes and Vapnik (1995) as a robust linear mod-
el for classification problems. The idea behind SVM is to map input space data
vectors to output space via high dimensional space called feature space. This
mapping is performed using so called kernel trick. By doing so, linear nature of
SVM model can be applied for nonlinear function approximation. The nonline-
ar mapping requires nonlinear kernel function selection. Gaussian kernel func-
tions are usually used because of few parameters. In this paper two types of

Gediminas Žylius214

SVR models are applied: 1) 1) ν-support vector regression (ν-SVR) and 2) least
squares support vector regression (LSSVR).
 ■ ν-SVR. Let input data vectors to be

CI models for forecasting are considered to be a more advanced approach. However,

time series models are also used for cash flow process forecasting. When comparing clas-

sical econometric time series models researches show (Gurgul, Suder 2013) that SARIMA

(seasonal autoregressive integrated moving average) models are most accurate. It is shown

(Wagner 2010) that SARIMA model even outperform joint forecasting approach using

vector time series models. A comparison between time series probability density forecast-

ing models (such as linear, autoregressive and structural and Markov-switching time series

models) is made by Brentnall, Crowder and Hand (2010b) and results show that Markov-

switching density forecasting model performs best.

Deeper investigation of cash demand process factors are also useful for forecasting.

Random-effects models (Brentnall, Crowder & Hand 2008, 2010a) are used when model-

ling of individual client cash withdrawal patterns is made for ATM withdrawal forecasting.

Laukaitis (2008) presented research on cash flow forecasting when intraday cash flow time

series is treated as random continuous functions projected onto low dimensional subspace

and apply functional autoregressive model as predictor of cash flow and intensity of trans-

actions.

Forecasting models

This section presents computational intelligence forecasting models that are applied for

daily-aggregated ATM cash flow forecasting.

Support vector regression model. Support vector regression (SVR) is application of

support vector machines (SVM) model for regression problems. SVM was originally pro-

posed by Cortes and Vapnik (1995) as a robust linear model for classification problems.

The idea behind SVM is to map input space data vectors to output space via high dimen-

sional space called feature space. This mapping is performed using so called kernel trick.

By doing so, linear nature of SVM model can be applied for nonlinear function approxima-

tion. The nonlinear mapping requires nonlinear kernel function selection. Gaussian kernel

functions are usually used because of few parameters. In this paper two types of SVR

models are applied: 1) 1) ν-support vector regression (ν-SVR) and 2) least squares support

vector regression (LSSVR).

 – ν-SVR. Let input data vectors to be xiRn (i-th observation n-dimensional vector) and

output (cash flow) data to be yiR1. Model optimization problem for ν-SVR algorithm is

formulated by following equations (Chih-Chung & Chih-Jen 2011):

 (i-th observation n-dimensio-
nal vector) and output (cash flow) data to be yiR1. Model optimization
problem for ν-SVR algorithm is formulated by following equations (Chih-
-Chung & Chih-Jen 2011):

.0
,0,

,

,

 subject to

1
2
1min

*

*

1

*

,,,

ii

ii
T

i

iii
T

l

i
ii

T

bξ,ξ

by
yb

ξ
l

C
*

xw
xw

ww
w

Where ix is kernel function (Gaussian) that performs mapping of input space to high

dimensional feature space (the space where linear regression is performed); w is a

parameter vector of n-dimensional hyperplane; b is hyperplane bias parameter; ξi
*, ξi are

upper and lower training errors (slack variables) subject to ε – insensitive tube; C is a cost

parameter, that controls the trade-off between allowing training errors and forcing rigid

margins; ν is regularization parameter that controls parameter number of support vectors; l

– is number of data points (observations). Data points that lie on the boundaries of ε –

insensitive tube are called support vectors. Graphical illustration of ν-SVR model is

depicted in Figure 1

Figure 1. An illustration of ν-SVR approximation principle

In this research ν-SVR code is used that is implemented in LIBSVM library (see Chih-

Chung & Chih-Jen 2011).

 – LS-SVR. Least squares support vector regression (LS-SVR) model is very similar to ν-

SVR. Optimization problem is formulated by following equations (Suykens et al. 2002):

.0
,

 subject to

22
1min

1

2

,,

iii
T

l

i
i

T

eb

yeb

e

xw

ww
w

Where ei are error variables and γ is regularization constant.

Where

.0
,0,

,

,

 subject to

1
2
1min

*

*

1

*

,,,

ii

ii
T

i

iii
T

l

i
ii

T

bξ,ξ

by
yb

ξ
l

C
*

xw
xw

ww
w

Where ix is kernel function (Gaussian) that performs mapping of input space to high

dimensional feature space (the space where linear regression is performed); w is a

parameter vector of n-dimensional hyperplane; b is hyperplane bias parameter; ξi
*, ξi are

upper and lower training errors (slack variables) subject to ε – insensitive tube; C is a cost

parameter, that controls the trade-off between allowing training errors and forcing rigid

margins; ν is regularization parameter that controls parameter number of support vectors; l

– is number of data points (observations). Data points that lie on the boundaries of ε –

insensitive tube are called support vectors. Graphical illustration of ν-SVR model is

depicted in Figure 1

Figure 1. An illustration of ν-SVR approximation principle

In this research ν-SVR code is used that is implemented in LIBSVM library (see Chih-

Chung & Chih-Jen 2011).

 – LS-SVR. Least squares support vector regression (LS-SVR) model is very similar to ν-

SVR. Optimization problem is formulated by following equations (Suykens et al. 2002):

.0
,

 subject to

22
1min

1

2

,,

iii
T

l

i
i

T

eb

yeb

e

xw

ww
w

Where ei are error variables and γ is regularization constant.

 is kernel function (Gaussian) that performs mapping of input
space to high dimensional feature space (the space where linear regression
is performed); w is a parameter vector of n-dimensional hyperplane; b is hy-
perplane bias parameter; ξi

*, ξi are upper and lower training errors (slack vari-
ables) subject to ε – insensitive tube; C is a cost parameter, that controls the
trade-off between allowing training errors and forcing rigid margins; ν is regu-
larization parameter that controls parameter number of support vectors; l – is
number of data points (observations). Data points that lie on the boundaries of
ε – insensitive tube are called support vectors. Graphical illustration of ν-SVR
model is depicted in Figure 1.

Figure 1. An illustration of ν-SVR approximation principle

.0
,0,

,

,

 subject to

1
2
1min

*

*

1

*

,,,

ii

ii
T

i

iii
T

l

i
ii

T

bξ,ξ

by
yb

ξ
l

C
*

xw
xw

ww
w

Where ix is kernel function (Gaussian) that performs mapping of input space to high

dimensional feature space (the space where linear regression is performed); w is a

parameter vector of n-dimensional hyperplane; b is hyperplane bias parameter; ξi
*, ξi are

upper and lower training errors (slack variables) subject to ε – insensitive tube; C is a cost

parameter, that controls the trade-off between allowing training errors and forcing rigid

margins; ν is regularization parameter that controls parameter number of support vectors; l

– is number of data points (observations). Data points that lie on the boundaries of ε –

insensitive tube are called support vectors. Graphical illustration of ν-SVR model is

depicted in Figure 1

Figure 1. An illustration of ν-SVR approximation principle

In this research ν-SVR code is used that is implemented in LIBSVM library (see Chih-

Chung & Chih-Jen 2011).

 – LS-SVR. Least squares support vector regression (LS-SVR) model is very similar to ν-

SVR. Optimization problem is formulated by following equations (Suykens et al. 2002):

.0
,

 subject to

22
1min

1

2

,,

iii
T

l

i
i

T

eb

yeb

e

xw

ww
w

Where ei are error variables and γ is regularization constant.

S o u r c e : created by authors.

 Evaluation of atm cash dEmand procEss factors… 215

In this research ν-SVR code is used that is implemented in LIBSVM library
(see Chih-Chung & Chih-Jen 2011).
 ■ LS-SVR. Least squares support vector regression (LS-SVR) model is very

similar to ν-SVR. Optimization problem is formulated by following equ-
ations (Suykens et al. 2002):

.0
,0,

,

,

 subject to

1
2
1min

*

*

1

*

,,,

ii

ii
T

i

iii
T

l

i
ii

T

bξ,ξ

by
yb

ξ
l

C
*

xw
xw

ww
w

Where ix is kernel function (Gaussian) that performs mapping of input space to high

dimensional feature space (the space where linear regression is performed); w is a

parameter vector of n-dimensional hyperplane; b is hyperplane bias parameter; ξi
*, ξi are

upper and lower training errors (slack variables) subject to ε – insensitive tube; C is a cost

parameter, that controls the trade-off between allowing training errors and forcing rigid

margins; ν is regularization parameter that controls parameter number of support vectors; l

– is number of data points (observations). Data points that lie on the boundaries of ε –

insensitive tube are called support vectors. Graphical illustration of ν-SVR model is

depicted in Figure 1

Figure 1. An illustration of ν-SVR approximation principle

In this research ν-SVR code is used that is implemented in LIBSVM library (see Chih-

Chung & Chih-Jen 2011).

 – LS-SVR. Least squares support vector regression (LS-SVR) model is very similar to ν-

SVR. Optimization problem is formulated by following equations (Suykens et al. 2002):

.0
,

 subject to

22
1min

1

2

,,

iii
T

l

i
i

T

eb

yeb

e

xw

ww
w

Where ei are error variables and γ is regularization constant.
Where ei are error variables and γ is regularization constant.

Differently from ν-SVR, LS-SVR doesn’t use insensitive tube and is regular-
ized only by parameter γ, so is not as sparse as ν-SVR model (has more support
vectors). But least squares loss function brings other flexibility benefits for re-
gression problems. As for ν-SVR model, for LS-SVR model Gaussian kernel func-
tions are used.

In this research LS-SVR code is used from LS-SVMlab toolbox presented in
website (see Pelckmans et al. 2002).

Relevance vector regression model. Relevance vector regression (Tipping 2001)
is model that has same linear functional form as support vector regression:

 Differently from ν-SVR, LS-SVR doesn’t use insensitive tube and is regularized only

by parameter γ, so is not as sparse as ν-SVR model (has more support vectors). But least

squares loss function brings other flexibility benefits for regression problems. As for ν-

SVR model, for LS-SVR model Gaussian kernel functions are used.

In this research LS-SVR code is used from LS-SVMlab toolbox presented in website

(see Pelckmans et al. 2002).

Relevance vector regression model. Relevance vector regression (Tipping 2001) is

model that has same linear functional form as support vector regression:

������ �������� ��� � ��
�

���
.

Where ���� ��� is defined as kernel function and � is model weight vector.

RVR uses even less support vectors (is more sparse than ν-SVR), that are called

relevance vectors. Bayesian inference methodology is used during RVR model parameter

and relevance vector determination. RVR uses EM-like (expectation-maximization)

learning algorithm and applies a priori distributions (because of Bayesian methodology)

over parameters. Gaussian kernel as in both LSSVR and ν-SVR cases are also used with

RVR.

In this research RVR implemented in SparseBayes package for MATLAB by RVR

author himself (see Tipping 2001) is used.

 Feed-forward neural network model. Feed-forward neural network (FFNN) is the most

popular artificial neural network architecture for nonlinear function approximation (classi-

fication and regression) problems. The architecture of algorithm was inspired by biological

neural networks (brains) and models the interconnection of neurons that can compute val-

ues from inputs by feeding information through the network. FFNN model architecture is

depicted in Figure 2.

Figure 2. An illustration of feed-forward neural network architecture

 In this research, logarithmic sigmoid transfer function was used in the hidden layers and

linear transfer function in the output layer. Logarithmic sigmoid transfer function output of

Where

 Differently from ν-SVR, LS-SVR doesn’t use insensitive tube and is regularized only

by parameter γ, so is not as sparse as ν-SVR model (has more support vectors). But least

squares loss function brings other flexibility benefits for regression problems. As for ν-

SVR model, for LS-SVR model Gaussian kernel functions are used.

In this research LS-SVR code is used from LS-SVMlab toolbox presented in website

(see Pelckmans et al. 2002).

Relevance vector regression model. Relevance vector regression (Tipping 2001) is

model that has same linear functional form as support vector regression:

������ �������� ��� � ��
�

���
.

Where ���� ��� is defined as kernel function and � is model weight vector.

RVR uses even less support vectors (is more sparse than ν-SVR), that are called

relevance vectors. Bayesian inference methodology is used during RVR model parameter

and relevance vector determination. RVR uses EM-like (expectation-maximization)

learning algorithm and applies a priori distributions (because of Bayesian methodology)

over parameters. Gaussian kernel as in both LSSVR and ν-SVR cases are also used with

RVR.

In this research RVR implemented in SparseBayes package for MATLAB by RVR

author himself (see Tipping 2001) is used.

 Feed-forward neural network model. Feed-forward neural network (FFNN) is the most

popular artificial neural network architecture for nonlinear function approximation (classi-

fication and regression) problems. The architecture of algorithm was inspired by biological

neural networks (brains) and models the interconnection of neurons that can compute val-

ues from inputs by feeding information through the network. FFNN model architecture is

depicted in Figure 2.

Figure 2. An illustration of feed-forward neural network architecture

 In this research, logarithmic sigmoid transfer function was used in the hidden layers and

linear transfer function in the output layer. Logarithmic sigmoid transfer function output of

 is defined as kernel function and is model weight vector.

RVR uses even less support vectors (is more sparse than ν-SVR), that are
called relevance vectors. Bayesian inference methodology is used during RVR
model parameter and relevance vector determination. RVR uses EM-like (ex-
pectation-maximization) learning algorithm and applies a priori distributions
(because of Bayesian methodology) over parameters. Gaussian kernel as in
both LSSVR and ν-SVR cases are also used with RVR.

In this research RVR implemented in SparseBayes package for MATLAB by
RVR author himself (see Tipping 2001) is used.

Gediminas Žylius216

Feed-forward neural network model. Feed-forward neural network (FFNN) is
the most popular artificial neural network architecture for nonlinear function
approximation (classification and regression) problems. The architecture of al-
gorithm was inspired by biological neural networks (brains) and models the in-
terconnection of neurons that can compute values from inputs by feeding infor-
mation through the network. FFNN model architecture is depicted in Figure 2.

Figure 2. An illustration of feed-forward neural network architecture

 Differently from ν-SVR, LS-SVR doesn’t use insensitive tube and is regularized only

by parameter γ, so is not as sparse as ν-SVR model (has more support vectors). But least

squares loss function brings other flexibility benefits for regression problems. As for ν-

SVR model, for LS-SVR model Gaussian kernel functions are used.

In this research LS-SVR code is used from LS-SVMlab toolbox presented in website

(see Pelckmans et al. 2002).

Relevance vector regression model. Relevance vector regression (Tipping 2001) is

model that has same linear functional form as support vector regression:

������ �������� ��� � ��
�

���
.

Where ���� ��� is defined as kernel function and � is model weight vector.

RVR uses even less support vectors (is more sparse than ν-SVR), that are called

relevance vectors. Bayesian inference methodology is used during RVR model parameter

and relevance vector determination. RVR uses EM-like (expectation-maximization)

learning algorithm and applies a priori distributions (because of Bayesian methodology)

over parameters. Gaussian kernel as in both LSSVR and ν-SVR cases are also used with

RVR.

In this research RVR implemented in SparseBayes package for MATLAB by RVR

author himself (see Tipping 2001) is used.

 Feed-forward neural network model. Feed-forward neural network (FFNN) is the most

popular artificial neural network architecture for nonlinear function approximation (classi-

fication and regression) problems. The architecture of algorithm was inspired by biological

neural networks (brains) and models the interconnection of neurons that can compute val-

ues from inputs by feeding information through the network. FFNN model architecture is

depicted in Figure 2.

Figure 2. An illustration of feed-forward neural network architecture

 In this research, logarithmic sigmoid transfer function was used in the hidden layers and

linear transfer function in the output layer. Logarithmic sigmoid transfer function output of

S o u r c e : created by authors.

In this research, logarithmic sigmoid transfer function was used in the hid-
den layers and linear transfer function in the output layer. Logarithmic sigmoid
transfer function output of input variable is equal to:

input variable is equal to:

.
1

1log

 ae

y

In this work, Levenberg – Marquardt (Hagan & Menhaj 1994) backpropagation

(Rumelhart, Hinton & Williams 1986) training algorithm was used for feed-forward neural

network model training, which is implemented in MATLAB Neural Networks Toolbox.

Generalized regression neural network model. Generalized Regression Neural Network

(GRNN) first proposed by Specht (1991) is special case of radial basis function (RBF)

neural network. GRNN does not require an iterative training procedure (error back

propagation as with other neural network architectures). GRNN training procedure requires

specification of RBF spread parameter. It uses those functions to cover input space and

approximates function as weighted linear combination of radial basis functions. Number of

RBF function is equal to number of observations (number of days in historical daily cash

flow). Each RBF is formed for each data point vector that is a center of RBF. RBF transfer

function values are calculated according to Euclidean distance from the central point to

input vector. In this research GRNN implemented in MATLAB Neural Network Toolbox is

used.

Adaptive neuro-fuzzy inference system model. Adaptive neuro-fuzzy inference system

(ANFIS) (Jang 1993) combines fuzzy inference system and neural network features: neural

network training capabilities (backpropagation) with fuzzy input and output formation

(Takagi–Sugeno fuzzy inference system). An architecture of ANFIS model that has two

membership functions is depicted in Figure 3. This type of model architecture has 5 layers:

fuzzy layer (1), product layer (2), normalization layer (3), defuzzification layer (4) and

summation layer (5).

Figure 3. Illustration of ANFIS model architecture with two membership functions
 1 layer 2 layer 3 layer 4 layer 5 layer

 1w 1w 11fw
 X

 F

 Y 2w 2w 22fw

 A1

 A2

 B1

 B2

For a 1st order of Sugeno fuzzy model, a typical IF-THEN rule set can be expressed as:

In this work, Levenberg – Marquardt (Hagan & Menhaj 1994) backpropa-
gation (Rumelhart, Hinton & Williams 1986) training algorithm was used for
feed-forward neural network model training, which is implemented in MATLAB
Neural Networks Toolbox.

Generalized regression neural network model. Generalized Regression Neu-
ral Network (GRNN) first proposed by Specht (1991) is special case of radial
basis function (RBF) neural network. GRNN does not require an iterative train-
ing procedure (error back propagation as with other neural network architec-
tures). GRNN training procedure requires specification of RBF spread param-
eter. It uses those functions to cover input space and approximates function
as weighted linear combination of radial basis functions. Number of RBF func-
tion is equal to number of observations (number of days in historical daily cash
flow). Each RBF is formed for each data point vector that is a center of RBF.
RBF transfer function values are calculated according to Euclidean distance
from the central point to input vector. In this research GRNN implemented in
MAT LAB Neural Network Toolbox is used.

 Evaluation of atm cash dEmand procEss factors… 217

Adaptive neuro-fuzzy inference system model. Adaptive neuro-fuzzy infer-
ence system (ANFIS) (Jang 1993) combines fuzzy inference system and neural
network features: neural network training capabilities (backpropagation) with
fuzzy input and output formation (Takagi–Sugeno fuzzy inference system). An ar-
chitecture of ANFIS model that has two membership functions is depicted in Fig-
ure 3. This type of model architecture has 5 layers: fuzzy layer (1), product layer
(2), normalization layer (3), defuzzification layer (4) and summation layer (5).

Figure 3. Illustration of ANFIS model architecture with two membership functions

input variable is equal to:

.
1

1log

 ae

y

In this work, Levenberg – Marquardt (Hagan & Menhaj 1994) backpropagation

(Rumelhart, Hinton & Williams 1986) training algorithm was used for feed-forward neural

network model training, which is implemented in MATLAB Neural Networks Toolbox.

Generalized regression neural network model. Generalized Regression Neural Network

(GRNN) first proposed by Specht (1991) is special case of radial basis function (RBF)

neural network. GRNN does not require an iterative training procedure (error back

propagation as with other neural network architectures). GRNN training procedure requires

specification of RBF spread parameter. It uses those functions to cover input space and

approximates function as weighted linear combination of radial basis functions. Number of

RBF function is equal to number of observations (number of days in historical daily cash

flow). Each RBF is formed for each data point vector that is a center of RBF. RBF transfer

function values are calculated according to Euclidean distance from the central point to

input vector. In this research GRNN implemented in MATLAB Neural Network Toolbox is

used.

Adaptive neuro-fuzzy inference system model. Adaptive neuro-fuzzy inference system

(ANFIS) (Jang 1993) combines fuzzy inference system and neural network features: neural

network training capabilities (backpropagation) with fuzzy input and output formation

(Takagi–Sugeno fuzzy inference system). An architecture of ANFIS model that has two

membership functions is depicted in Figure 3. This type of model architecture has 5 layers:

fuzzy layer (1), product layer (2), normalization layer (3), defuzzification layer (4) and

summation layer (5).

Figure 3. Illustration of ANFIS model architecture with two membership functions
 1 layer 2 layer 3 layer 4 layer 5 layer

 1w 1w 11fw
 X

 F

 Y 2w 2w 22fw

 A1

 A2

 B1

 B2

For a 1st order of Sugeno fuzzy model, a typical IF-THEN rule set can be expressed as:

S o u r c e : created by authors.

For a 1st order of Sugeno fuzzy model, a typical IF-THEN rule set can be ex-
pressed as:

 1) IF x is A1 AND y is B1 THEN f1 = p1x + q1y + r1;
 2) IF x is A2 AND y is B2 THEN f2 = p2x + q2y + r2.

Further each of five layer functionality is shortly explained:
 ■ 1st layer. Forms output, which determines membership degree in each of

membership functions (µA1, µA2, µB1, µB2):

For a 1st order of Sugeno fuzzy model, a typical IF-THEN rule set can be expressed as:

1) IF x is A1 AND y is B1 THEN f1 = p1x + q1y + r1;

2) IF x is A2 AND y is B2 THEN f2 = p2x + q2y + r2.

Further each of five layer functionality is shortly explained:

 1st layer. Forms output, which determines membership degree in each of

membership functions (µA1, µA2, µB1, µB2):

��,� = ������, � = �, �,

��,� = ��������,	 � = �, �.

 2nd layer. In this layer each node is fixed and represents weight of particular rule. In

this node AND operation is performed, which is product of inputs:

��,� = �� = ������ � ������, � = �, �.

 3rd layer. Each node of this layer is also fixed and calculates normalized rule

excitation degree:

��,� = ��� =
��

�� � �� ,			� = �, �.

 4th layer. This layer is not fixed as other and parameters (pi, qi, ri) are estimated

during training process. Output of nodes are calculated as:

��,� = ����� = ������� � ��� � ���.
 5th layer. This is an output layer, where output value is calculated as a sum of all

inputs:

��,� =������
�

= ∑ ������
∑ ���

	.

In this research, two types of ANFIS model training algorithms are used: classical

gradient steepest descend backpropagation and hybrid training algorithm. Hybrid training

combines gradient descend backpropagation and least squares methods. Backpropagation

is used to tune input layer membership function parameters, while least squares method is

used for output function parameter tuning.

For input layer membership function parameter initialization fuzzy c-means (FCM)

clustering algorithms is used, that partitions data of the input space into some number (c)

of clusters and use them as input membership function initialization.

In this research ANFIS model that is implemented in MATLAB Fuzzy Logic Toolbox is

used.

For a 1st order of Sugeno fuzzy model, a typical IF-THEN rule set can be expressed as:

1) IF x is A1 AND y is B1 THEN f1 = p1x + q1y + r1;

2) IF x is A2 AND y is B2 THEN f2 = p2x + q2y + r2.

Further each of five layer functionality is shortly explained:

 1st layer. Forms output, which determines membership degree in each of

membership functions (µA1, µA2, µB1, µB2):

��,� = ������, � = �, �,

��,� = ��������,	 � = �, �.

 2nd layer. In this layer each node is fixed and represents weight of particular rule. In

this node AND operation is performed, which is product of inputs:

��,� = �� = ������ � ������, � = �, �.

 3rd layer. Each node of this layer is also fixed and calculates normalized rule

excitation degree:

��,� = ��� =
��

�� � �� ,			� = �, �.

 4th layer. This layer is not fixed as other and parameters (pi, qi, ri) are estimated

during training process. Output of nodes are calculated as:

��,� = ����� = ������� � ��� � ���.
 5th layer. This is an output layer, where output value is calculated as a sum of all

inputs:

��,� =������
�

= ∑ ������
∑ ���

	.

In this research, two types of ANFIS model training algorithms are used: classical

gradient steepest descend backpropagation and hybrid training algorithm. Hybrid training

combines gradient descend backpropagation and least squares methods. Backpropagation

is used to tune input layer membership function parameters, while least squares method is

used for output function parameter tuning.

For input layer membership function parameter initialization fuzzy c-means (FCM)

clustering algorithms is used, that partitions data of the input space into some number (c)

of clusters and use them as input membership function initialization.

In this research ANFIS model that is implemented in MATLAB Fuzzy Logic Toolbox is

used.

 ■ 2nd layer. In this layer each node is fixed and represents weight of parti-
cular rule. In this node AND operation is performed, which is product of
inputs:

Gediminas Žylius218

For a 1st order of Sugeno fuzzy model, a typical IF-THEN rule set can be expressed as:

1) IF x is A1 AND y is B1 THEN f1 = p1x + q1y + r1;

2) IF x is A2 AND y is B2 THEN f2 = p2x + q2y + r2.

Further each of five layer functionality is shortly explained:

 1st layer. Forms output, which determines membership degree in each of

membership functions (µA1, µA2, µB1, µB2):

��,� = ������, � = �, �,

��,� = ��������,	 � = �, �.

 2nd layer. In this layer each node is fixed and represents weight of particular rule. In

this node AND operation is performed, which is product of inputs:

��,� = �� = ������ � ������, � = �, �.

 3rd layer. Each node of this layer is also fixed and calculates normalized rule

excitation degree:

��,� = ��� =
��

�� � �� ,			� = �, �.

 4th layer. This layer is not fixed as other and parameters (pi, qi, ri) are estimated

during training process. Output of nodes are calculated as:

��,� = ����� = ������� � ��� � ���.
 5th layer. This is an output layer, where output value is calculated as a sum of all

inputs:

��,� =������
�

= ∑ ������
∑ ���

	.

In this research, two types of ANFIS model training algorithms are used: classical

gradient steepest descend backpropagation and hybrid training algorithm. Hybrid training

combines gradient descend backpropagation and least squares methods. Backpropagation

is used to tune input layer membership function parameters, while least squares method is

used for output function parameter tuning.

For input layer membership function parameter initialization fuzzy c-means (FCM)

clustering algorithms is used, that partitions data of the input space into some number (c)

of clusters and use them as input membership function initialization.

In this research ANFIS model that is implemented in MATLAB Fuzzy Logic Toolbox is

used.

 ■ 3rd layer. Each node of this layer is also fixed and calculates normalized
rule excitation degree:

For a 1st order of Sugeno fuzzy model, a typical IF-THEN rule set can be expressed as:

1) IF x is A1 AND y is B1 THEN f1 = p1x + q1y + r1;

2) IF x is A2 AND y is B2 THEN f2 = p2x + q2y + r2.

Further each of five layer functionality is shortly explained:

 1st layer. Forms output, which determines membership degree in each of

membership functions (µA1, µA2, µB1, µB2):

��,� = ������, � = �, �,

��,� = ��������,	 � = �, �.

 2nd layer. In this layer each node is fixed and represents weight of particular rule. In

this node AND operation is performed, which is product of inputs:

��,� = �� = ������ � ������, � = �, �.

 3rd layer. Each node of this layer is also fixed and calculates normalized rule

excitation degree:

��,� = ��� =
��

�� � �� ,			� = �, �.

 4th layer. This layer is not fixed as other and parameters (pi, qi, ri) are estimated

during training process. Output of nodes are calculated as:

��,� = ����� = ������� � ��� � ���.
 5th layer. This is an output layer, where output value is calculated as a sum of all

inputs:

��,� =������
�

= ∑ ������
∑ ���

	.

In this research, two types of ANFIS model training algorithms are used: classical

gradient steepest descend backpropagation and hybrid training algorithm. Hybrid training

combines gradient descend backpropagation and least squares methods. Backpropagation

is used to tune input layer membership function parameters, while least squares method is

used for output function parameter tuning.

For input layer membership function parameter initialization fuzzy c-means (FCM)

clustering algorithms is used, that partitions data of the input space into some number (c)

of clusters and use them as input membership function initialization.

In this research ANFIS model that is implemented in MATLAB Fuzzy Logic Toolbox is

used.

 ■ 4th layer. This layer is not fixed as other and parameters (pi, qi, ri) are es-
timated during training process. Output of nodes are calculated as:

For a 1st order of Sugeno fuzzy model, a typical IF-THEN rule set can be expressed as:

1) IF x is A1 AND y is B1 THEN f1 = p1x + q1y + r1;

2) IF x is A2 AND y is B2 THEN f2 = p2x + q2y + r2.

Further each of five layer functionality is shortly explained:

 1st layer. Forms output, which determines membership degree in each of

membership functions (µA1, µA2, µB1, µB2):

��,� = ������, � = �, �,

��,� = ��������,	 � = �, �.

 2nd layer. In this layer each node is fixed and represents weight of particular rule. In

this node AND operation is performed, which is product of inputs:

��,� = �� = ������ � ������, � = �, �.

 3rd layer. Each node of this layer is also fixed and calculates normalized rule

excitation degree:

��,� = ��� =
��

�� � �� ,			� = �, �.

 4th layer. This layer is not fixed as other and parameters (pi, qi, ri) are estimated

during training process. Output of nodes are calculated as:

��,� = ����� = ������� � ��� � ���.
 5th layer. This is an output layer, where output value is calculated as a sum of all

inputs:

��,� =������
�

= ∑ ������
∑ ���

	.

In this research, two types of ANFIS model training algorithms are used: classical

gradient steepest descend backpropagation and hybrid training algorithm. Hybrid training

combines gradient descend backpropagation and least squares methods. Backpropagation

is used to tune input layer membership function parameters, while least squares method is

used for output function parameter tuning.

For input layer membership function parameter initialization fuzzy c-means (FCM)

clustering algorithms is used, that partitions data of the input space into some number (c)

of clusters and use them as input membership function initialization.

In this research ANFIS model that is implemented in MATLAB Fuzzy Logic Toolbox is

used.

 ■ 5th layer. This is an output layer, where output value is calculated as
a sum of all inputs:

For a 1st order of Sugeno fuzzy model, a typical IF-THEN rule set can be expressed as:

1) IF x is A1 AND y is B1 THEN f1 = p1x + q1y + r1;

2) IF x is A2 AND y is B2 THEN f2 = p2x + q2y + r2.

Further each of five layer functionality is shortly explained:

 1st layer. Forms output, which determines membership degree in each of

membership functions (µA1, µA2, µB1, µB2):

��,� = ������, � = �, �,

��,� = ��������,	 � = �, �.

 2nd layer. In this layer each node is fixed and represents weight of particular rule. In

this node AND operation is performed, which is product of inputs:

��,� = �� = ������ � ������, � = �, �.

 3rd layer. Each node of this layer is also fixed and calculates normalized rule

excitation degree:

��,� = ��� =
��

�� � �� ,			� = �, �.

 4th layer. This layer is not fixed as other and parameters (pi, qi, ri) are estimated

during training process. Output of nodes are calculated as:

��,� = ����� = ������� � ��� � ���.
 5th layer. This is an output layer, where output value is calculated as a sum of all

inputs:

��,� =������
�

= ∑ ������
∑ ���

	.

In this research, two types of ANFIS model training algorithms are used: classical

gradient steepest descend backpropagation and hybrid training algorithm. Hybrid training

combines gradient descend backpropagation and least squares methods. Backpropagation

is used to tune input layer membership function parameters, while least squares method is

used for output function parameter tuning.

For input layer membership function parameter initialization fuzzy c-means (FCM)

clustering algorithms is used, that partitions data of the input space into some number (c)

of clusters and use them as input membership function initialization.

In this research ANFIS model that is implemented in MATLAB Fuzzy Logic Toolbox is

used.

In this research, two types of ANFIS model training algorithms are used:
classical gradient steepest descend backpropagation and hybrid training algo-
rithm. Hybrid training combines gradient descend backpropagation and least
squares methods. Backpropagation is used to tune input layer membership
function parameters, while least squares method is used for output function
parameter tuning.

For input layer membership function parameter initialization fuzzy c- means
(FCM) clustering algorithms is used, that partitions data of the input space into
some number (c) of clusters and use them as input membership function ini-
tialization.

In this research ANFIS model that is implemented in MATLAB Fuzzy Logic
Toolbox is used.
 ■ Extreme learning machine model. Extreme learning machines (ELM) (Hu-

ang, Zhu & Siew 2006) have the same architecture as single hidden layer
feed-forward neural networks. Differently from conventional neural ne-
twork achitectures, ELM doesn’t require backpropagation for parameter
tuning. Instead, hidden node weights are chosen randomly and output
weights are determined analytically. Main advantage of this type of le-
arning is speed, which is many times faster than conventional iterative
tuning (such as backpropagation).

 Evaluation of atm cash dEmand procEss factors… 219

Given N number of observations (xi, yi), single layer neural network output
with M hidden nodes is modeled as:

– Extreme learning machine model. Extreme learning machines (ELM) (Huang, Zhu &

Siew 2006) have the same architecture as single hidden layer feed-forward neural

networks. Differently from conventional neural network achitectures, ELM doesn’t require

backpropagation for parameter tuning. Instead, hidden node weights are chosen randomly

and output weights are determined analytically. Main advantage of this type of learning is

speed, which is many times faster than conventional iterative tuning (such as

backpropagation).

Given N number of observations (xi, yi), single layer neural network output with M

hidden nodes is modeled as:

�� = ∑ ���(���� � ��)���� .

Where �� is ith input vector; �� is weight vector connecting the jth hidden node and the

input nodes; �� is weight scalar connecting jth hidden node and output node; �� is bias

parameter of jth hidden node.

In this research linear output nodes and sigmoid hidden nodes are used. Above equation

can be written in vector form:

� = ��.

Where � is � �� hidden layer output matrix and ���� = �(���� � ��).
The solution of applying ELM theory is simply estimated as:

� = �����
Where �� = (���)���� is Moore – Penrose generalized inverse (pseudoinverse)

matrix.

A MATLAB implementation of classical ELM is used in this research, which is available

at webpage (see Huang, Zhu & Siew 2006).

Experimental data

 In this research 8 different typical ATM daily withdrawal data is used with historical

period up to 990 days. Those 8 ATMs were selected from large database and represent typ-

ical cash flow factors that occur in cash flow process. Further a short explanation of every

ATM is conduced:

 ATM number 1 contains cash flow with strong weekly seasonality factor;

 ATM number 2 contains cash flow with strong yearly and weekly seasonality fac-

tors, when yearly seasonality is smooth;

 ATM number 3 contains cash flow with strong monthly seasonality factor;

.

Where xi is wj th input vector; is weight vector connecting the jth hidden
node and the input nodes; ßj is weight scalar connecting jth hidden node and
output node; bj is bias parameter of jth hidden node.

In this research linear output nodes and sigmoid hidden nodes are used.
Above equation can be written in vector form:

– Extreme learning machine model. Extreme learning machines (ELM) (Huang, Zhu &

Siew 2006) have the same architecture as single hidden layer feed-forward neural

networks. Differently from conventional neural network achitectures, ELM doesn’t require

backpropagation for parameter tuning. Instead, hidden node weights are chosen randomly

and output weights are determined analytically. Main advantage of this type of learning is

speed, which is many times faster than conventional iterative tuning (such as

backpropagation).

Given N number of observations (xi, yi), single layer neural network output with M

hidden nodes is modeled as:

�� = ∑ ���(���� � ��)���� .

Where �� is ith input vector; �� is weight vector connecting the jth hidden node and the

input nodes; �� is weight scalar connecting jth hidden node and output node; �� is bias

parameter of jth hidden node.

In this research linear output nodes and sigmoid hidden nodes are used. Above equation

can be written in vector form:

� = ��.

Where � is � �� hidden layer output matrix and ���� = �(���� � ��).
The solution of applying ELM theory is simply estimated as:

� = �����
Where �� = (���)���� is Moore – Penrose generalized inverse (pseudoinverse)

matrix.

A MATLAB implementation of classical ELM is used in this research, which is available

at webpage (see Huang, Zhu & Siew 2006).

Experimental data

 In this research 8 different typical ATM daily withdrawal data is used with historical

period up to 990 days. Those 8 ATMs were selected from large database and represent typ-

ical cash flow factors that occur in cash flow process. Further a short explanation of every

ATM is conduced:

 ATM number 1 contains cash flow with strong weekly seasonality factor;

 ATM number 2 contains cash flow with strong yearly and weekly seasonality fac-

tors, when yearly seasonality is smooth;

 ATM number 3 contains cash flow with strong monthly seasonality factor;

Where H is N x M hidden layer output matrix and

– Extreme learning machine model. Extreme learning machines (ELM) (Huang, Zhu &

Siew 2006) have the same architecture as single hidden layer feed-forward neural

networks. Differently from conventional neural network achitectures, ELM doesn’t require

backpropagation for parameter tuning. Instead, hidden node weights are chosen randomly

and output weights are determined analytically. Main advantage of this type of learning is

speed, which is many times faster than conventional iterative tuning (such as

backpropagation).

Given N number of observations (xi, yi), single layer neural network output with M

hidden nodes is modeled as:

�� = ∑ ���(���� � ��)���� .

Where �� is ith input vector; �� is weight vector connecting the jth hidden node and the

input nodes; �� is weight scalar connecting jth hidden node and output node; �� is bias

parameter of jth hidden node.

In this research linear output nodes and sigmoid hidden nodes are used. Above equation

can be written in vector form:

� = ��.

Where � is � �� hidden layer output matrix and ���� = �(���� � ��).
The solution of applying ELM theory is simply estimated as:

� = �����
Where �� = (���)���� is Moore – Penrose generalized inverse (pseudoinverse)

matrix.

A MATLAB implementation of classical ELM is used in this research, which is available

at webpage (see Huang, Zhu & Siew 2006).

Experimental data

 In this research 8 different typical ATM daily withdrawal data is used with historical

period up to 990 days. Those 8 ATMs were selected from large database and represent typ-

ical cash flow factors that occur in cash flow process. Further a short explanation of every

ATM is conduced:

 ATM number 1 contains cash flow with strong weekly seasonality factor;

 ATM number 2 contains cash flow with strong yearly and weekly seasonality fac-

tors, when yearly seasonality is smooth;

 ATM number 3 contains cash flow with strong monthly seasonality factor;

The solution of applying ELM theory is simply estimated as:

– Extreme learning machine model. Extreme learning machines (ELM) (Huang, Zhu &

Siew 2006) have the same architecture as single hidden layer feed-forward neural

networks. Differently from conventional neural network achitectures, ELM doesn’t require

backpropagation for parameter tuning. Instead, hidden node weights are chosen randomly

and output weights are determined analytically. Main advantage of this type of learning is

speed, which is many times faster than conventional iterative tuning (such as

backpropagation).

Given N number of observations (xi, yi), single layer neural network output with M

hidden nodes is modeled as:

�� = ∑ ���(���� � ��)���� .

Where �� is ith input vector; �� is weight vector connecting the jth hidden node and the

input nodes; �� is weight scalar connecting jth hidden node and output node; �� is bias

parameter of jth hidden node.

In this research linear output nodes and sigmoid hidden nodes are used. Above equation

can be written in vector form:

� = ��.

Where � is � �� hidden layer output matrix and ���� = �(���� � ��).
The solution of applying ELM theory is simply estimated as:

� = �����
Where �� = (���)���� is Moore – Penrose generalized inverse (pseudoinverse)

matrix.

A MATLAB implementation of classical ELM is used in this research, which is available

at webpage (see Huang, Zhu & Siew 2006).

Experimental data

 In this research 8 different typical ATM daily withdrawal data is used with historical

period up to 990 days. Those 8 ATMs were selected from large database and represent typ-

ical cash flow factors that occur in cash flow process. Further a short explanation of every

ATM is conduced:

 ATM number 1 contains cash flow with strong weekly seasonality factor;

 ATM number 2 contains cash flow with strong yearly and weekly seasonality fac-

tors, when yearly seasonality is smooth;

 ATM number 3 contains cash flow with strong monthly seasonality factor;

Where

– Extreme learning machine model. Extreme learning machines (ELM) (Huang, Zhu &

Siew 2006) have the same architecture as single hidden layer feed-forward neural

networks. Differently from conventional neural network achitectures, ELM doesn’t require

backpropagation for parameter tuning. Instead, hidden node weights are chosen randomly

and output weights are determined analytically. Main advantage of this type of learning is

speed, which is many times faster than conventional iterative tuning (such as

backpropagation).

Given N number of observations (xi, yi), single layer neural network output with M

hidden nodes is modeled as:

�� = ∑ ���(���� � ��)���� .

Where �� is ith input vector; �� is weight vector connecting the jth hidden node and the

input nodes; �� is weight scalar connecting jth hidden node and output node; �� is bias

parameter of jth hidden node.

In this research linear output nodes and sigmoid hidden nodes are used. Above equation

can be written in vector form:

� = ��.

Where � is � �� hidden layer output matrix and ���� = �(���� � ��).
The solution of applying ELM theory is simply estimated as:

� = �����
Where �� = (���)���� is Moore – Penrose generalized inverse (pseudoinverse)

matrix.

A MATLAB implementation of classical ELM is used in this research, which is available

at webpage (see Huang, Zhu & Siew 2006).

Experimental data

 In this research 8 different typical ATM daily withdrawal data is used with historical

period up to 990 days. Those 8 ATMs were selected from large database and represent typ-

ical cash flow factors that occur in cash flow process. Further a short explanation of every

ATM is conduced:

 ATM number 1 contains cash flow with strong weekly seasonality factor;

 ATM number 2 contains cash flow with strong yearly and weekly seasonality fac-

tors, when yearly seasonality is smooth;

 ATM number 3 contains cash flow with strong monthly seasonality factor;

 is Moore – Penrose generalized inverse (pseudoin-
verse) matrix.

A MATLAB implementation of classical ELM is used in this research, which is
available at webpage (see Huang, Zhu & Siew 2006).

Experimental data

In this research 8 different typical ATM daily withdrawal data is used with his-
torical period up to 990 days. Those 8 ATMs were selected from large database
and represent typical cash flow factors that occur in cash flow process. Further
a short explanation of every ATM is conduced:
 ■ ATM number 1 contains cash flow with strong weekly seasonality factor;
 ■ ATM number 2 contains cash flow with strong yearly and weekly seaso-

nality factors, when yearly seasonality is smooth;
 ■ ATM number 3 contains cash flow with strong monthly seasonality factor;
 ■ ATM number 4 contains cash flow with strong yearly and weekly seaso-

nality factors, when yearly seasonality is not smooth (temporal structu-
ral breaks);

 ■ ATM number 5 contains cash flow with weak mixed (weekly and mon-
thly) seasonality, increasing trend and heteroscedasticity factors with

Gediminas Žylius220

permanent structural break factor (sudden cash flow break when ATM
cash flow decreases);

 ■ ATM number 6 contains cash flow with mixed (weekly and monthly)
seasonality and permanent structural break factors (sudden cash flow
break when ATM cash flow increases);

 ■ ATM number 7 contains cash flow with weekly seasonality and temporal
structural break factors (sudden cash flow break when ATM cash flow
decreases and again increases to normal cash flow level after some pe-
riod);

 ■ ATM number 8 contains cash flow with weekly seasonality, increasing
trend and heteroscedasticity factors.

Cash flow pictures together with autocorrelation functions are presented in
Appendix for every ATM.

Methodology

In order to evaluate forecasting accuracy a specific metric is needed. In this re-
search forecasting accuracy metric called symmetric mean absolute percent-
age error (SMAPE) is used which is calculated with following formula:

 ATM number 4 contains cash flow with strong yearly and weekly seasonality fac-

tors, when yearly seasonality is not smooth (temporal structural breaks);

 ATM number 5 contains cash flow with weak mixed (weekly and monthly) season-

ality, increasing trend and heteroscedasticity factors with permanent structural break

factor (sudden cash flow break when ATM cash flow decreases);

 ATM number 6 contains cash flow with mixed (weekly and monthly) seasonality

and permanent structural break factors (sudden cash flow break when ATM cash

flow increases);

 ATM number 7 contains cash flow with weekly seasonality and temporal structural

break factors (sudden cash flow break when ATM cash flow decreases and again in-

creases to normal cash flow level after some period);

 ATM number 8 contains cash flow with weekly seasonality, increasing trend and

heteroscedasticity factors.

 Cash flow pictures together with autocorrelation functions are presented in Appendix

for every ATM.

Methodology

 In order to evaluate forecasting accuracy a specific metric is needed. In this research

forecasting accuracy metric called symmetric mean absolute percentage error (SMAPE) is

used which is calculated with following formula:

����� � 100
� � |��� � ��|

1
2 ���� � ���

�

���
.

Where ��� is forecasted cash flow value and �� is real cash flow value.

 Forecasting is performed by training model with one part of historical cash flow dataset

once and testing (forecasting accuracy evaluation) is done with another part of historical

cash flow dataset. Four cases of training for every ATM are performed (Figure 4): 1) mod-

els are trained with 2 year (or 800 days for some ATMs) historical period; 2) models are

trained with 1.5 year (or 400 days for some ATMs) historical period; 3) models are trained

with 1 year (or 200 days for some ATMs) historical period; 4) models are trained with 0.5

year (or 100 days for some ATMs) historical period. But for testing, same amount of data

is used for every training case.

Where

 ATM number 4 contains cash flow with strong yearly and weekly seasonality fac-

tors, when yearly seasonality is not smooth (temporal structural breaks);

 ATM number 5 contains cash flow with weak mixed (weekly and monthly) season-

ality, increasing trend and heteroscedasticity factors with permanent structural break

factor (sudden cash flow break when ATM cash flow decreases);

 ATM number 6 contains cash flow with mixed (weekly and monthly) seasonality

and permanent structural break factors (sudden cash flow break when ATM cash

flow increases);

 ATM number 7 contains cash flow with weekly seasonality and temporal structural

break factors (sudden cash flow break when ATM cash flow decreases and again in-

creases to normal cash flow level after some period);

 ATM number 8 contains cash flow with weekly seasonality, increasing trend and

heteroscedasticity factors.

 Cash flow pictures together with autocorrelation functions are presented in Appendix

for every ATM.

Methodology

 In order to evaluate forecasting accuracy a specific metric is needed. In this research

forecasting accuracy metric called symmetric mean absolute percentage error (SMAPE) is

used which is calculated with following formula:

����� � 100
� � |��� � ��|

1
2 ���� � ���

�

���
.

Where ��� is forecasted cash flow value and �� is real cash flow value.

 Forecasting is performed by training model with one part of historical cash flow dataset

once and testing (forecasting accuracy evaluation) is done with another part of historical

cash flow dataset. Four cases of training for every ATM are performed (Figure 4): 1) mod-

els are trained with 2 year (or 800 days for some ATMs) historical period; 2) models are

trained with 1.5 year (or 400 days for some ATMs) historical period; 3) models are trained

with 1 year (or 200 days for some ATMs) historical period; 4) models are trained with 0.5

year (or 100 days for some ATMs) historical period. But for testing, same amount of data

is used for every training case.

 is forecasted cash flow value and

 ATM number 4 contains cash flow with strong yearly and weekly seasonality fac-

tors, when yearly seasonality is not smooth (temporal structural breaks);

 ATM number 5 contains cash flow with weak mixed (weekly and monthly) season-

ality, increasing trend and heteroscedasticity factors with permanent structural break

factor (sudden cash flow break when ATM cash flow decreases);

 ATM number 6 contains cash flow with mixed (weekly and monthly) seasonality

and permanent structural break factors (sudden cash flow break when ATM cash

flow increases);

 ATM number 7 contains cash flow with weekly seasonality and temporal structural

break factors (sudden cash flow break when ATM cash flow decreases and again in-

creases to normal cash flow level after some period);

 ATM number 8 contains cash flow with weekly seasonality, increasing trend and

heteroscedasticity factors.

 Cash flow pictures together with autocorrelation functions are presented in Appendix

for every ATM.

Methodology

 In order to evaluate forecasting accuracy a specific metric is needed. In this research

forecasting accuracy metric called symmetric mean absolute percentage error (SMAPE) is

used which is calculated with following formula:

����� � 100
� � |��� � ��|

1
2 ���� � ���

�

���
.

Where ��� is forecasted cash flow value and �� is real cash flow value.

 Forecasting is performed by training model with one part of historical cash flow dataset

once and testing (forecasting accuracy evaluation) is done with another part of historical

cash flow dataset. Four cases of training for every ATM are performed (Figure 4): 1) mod-

els are trained with 2 year (or 800 days for some ATMs) historical period; 2) models are

trained with 1.5 year (or 400 days for some ATMs) historical period; 3) models are trained

with 1 year (or 200 days for some ATMs) historical period; 4) models are trained with 0.5

year (or 100 days for some ATMs) historical period. But for testing, same amount of data

is used for every training case.

 is real cash flow value.

Forecasting is performed by training model with one part of historical cash
flow dataset once and testing (forecasting accuracy evaluation) is done with
another part of historical cash flow dataset. Four cases of training for every
ATM are performed (Figure 4): 1) models are trained with 2 year (or 800 days
for some ATMs) historical period; 2) models are trained with 1.5 year (or
400 days for some ATMs) historical period; 3) models are trained with 1 year
(or 200 days for some ATMs) historical period; 4) models are trained with
0.5 year (or 100 days for some ATMs) historical period. But for testing, same
amount of data is used for every training case.

 Evaluation of atm cash dEmand procEss factors… 221

Figure 4. Illustration of ATM cash flow data division

Figure 4. Illustration of ATM cash flow data division

 In order to train model for forecasting, some inputs features that represent cash flow

factors must be constructed. In this research 9 features are constructed as inputs for every

forecasting model (i represents forecasting day index):

 1st input. Month number (numbers 1-12);

 2nd input. Day of the month (numbers 1-31);

 3rd input. Day of the week (numbers 1-7);

 4th input. Withdrawal amount of i-1 day (previous day);

 5th input. Withdrawal amount of i-7 day (previous week day);

 6th input. Withdrawal amount of i-14 day (previous 2nd week day);

 7th input. Withdrawal amount of i-21 day (previous 3rd week day);

 8th input. Withdrawal amount of i-28 day (previous 4th week day);

 9th input. Sum of withdrawals of last 5 days (i-5 to i-1).

 Those features were selected after experimental studies. In order to evaluate what fea-

tures (factors) are best for each particular type of ATM cash flow forecasting, one must

perform forecasting with all combinations of features which using binomial formula is

∑ ���� = 2� − 1 = 2� − 1 = 511���� number of training cases. However, using knowledge

from previous experimental studies features from 5 to 8 are considered as one set. So the

combination set reduces from 9 to 6 and so number of combinations reduces from 511 to

63.

 CI forecasting models have specific external parameters that need to be adjusted proper-

ly during training phase. In order to statistically minimize CI forecasting model overfitting

and underfitting during training phase, a 10-fold cross-validation procedure is used with

every forecasting model that needs parameter tuning. Tuned parameters during training

phase are used for testing phase.

S o u r c e : created by authors.

In order to train model for forecasting, some inputs features that represent
cash flow factors must be constructed. In this research 9 features are construct-
ed as inputs for every forecasting model (i represents forecasting day index):
 ■ 1st input. Month number (numbers 1–12);
 ■ 2nd input. Day of the month (numbers 1–31);
 ■ 3rd input. Day of the week (numbers 1–7);
 ■ 4th input. Withdrawal amount of i-1 day (previous day);
 ■ 5th input. Withdrawal amount of i-7 day (previous week day);
 ■ 6th input. Withdrawal amount of i-14 day (previous 2nd week day);
 ■ 7th input. Withdrawal amount of i-21 day (previous 3rd week day);
 ■ 8th input. Withdrawal amount of i-28 day (previous 4th week day);
 ■ 9th input. Sum of withdrawals of last 5 days (i-5 to i-1).

Those features were selected after experimental studies. In order to evalu-
ate what features (factors) are best for each particular type of ATM cash flow
forecasting, one must perform forecasting with all combinations of features
which using binomial formula is number of training cases. However, using
knowledge from previous experimental studies features from 5 to 8 are con-
sidered as one set. So the combination set reduces from 9 to 6 and so number of
combinations reduces from 511 to 63.

CI forecasting models have specific external parameters that need to be
adjusted properly during training phase. In order to statistically minimize CI
forecasting model overfitting and underfitting during training phase, a 10-fold
cross-validation procedure is used with every forecasting model that needs pa-
rameter tuning. Tuned parameters during training phase are used for testing
phase.

Gediminas Žylius222

Results

This section presents forecasting accuracy results. Forecasting accuracy re-
sults averaged over all 7 forecasting models are presented in Table 1. The first
row in the table represents ATM numbers according to their type, which is
described in section 3. Second to fifth rows show average SMAPE (averaged
over all model forecasts) for particular training type when inputs that yield
best average SMAPE amongst all forecasting models and training types (aver-
aged over all seven models and all four training types) are selected. Sixth row
show those best average input numbers according to their type as described in
section 4. Seventh row show best averaged over all models SMAPE when best
input set for particular training type (not for all training types) is selected.
Eighth row show those best input numbers for particular training type. Other
rows show same kind of results for other training types. Forecasting results
averaged for all forecasting models and sorted according to average of all fore-
casting models and training types for each particular input type (sorted 63 in-
puts) are depicted in Appendix. Further an explanation of forecasting results
for each ATM is made:
 ■ ATM number 1: worst accuracy is achieved with shortest training histo-

ry (0.5 year) mostly for all training inputs (see figure in Appendix). Tra-
ining with long history (2 years) doesn’t improve average forecasting re-
sults and best results are achieved with 1.5 year training – a trade-off
between overfitting because of too short history and overfitting becau-
se of learning patterns that do not reoccur in the future. Best average in-
put set is weekly values of cash flow (1–4 weeks before, see Table 1). Ho-
wever week number wasn’t selected as best input over all models, this
shows that cash flow is non-stationary and recent history update of cash
flow pattern improves forecasting even for strong weekly seasonality.

 ■ ATM number 2: as for ATM 1, worst results are achieved with shortest
history training. Now long history is more significant than for ATM 1
and best results are achieved with 2 year training (mostly over all in-
put sets, see figure in Appendix). However best average input set do-
esn’t include month number and day of month in best input set. Week
number, 1–4 previous weeks cash flows are related to strong weekly
seasonality and moving average (9th input) lets model more adaptively
react to recent cash flow trend variations because of yearly seasonality
(see Table 1).

 Evaluation of atm cash dEmand procEss factors… 223

 ■ ATM number 3: results are not so affected by history period length as for
ATM 2 case, but worst results are obtained using 0.5year training also.
Month and day of the week numbers weren’t included in best input set,
this shows that no significant weekly or yearly seasonality that may af-
fect forecasting took place. Other included inputs are related to monthly
periodicity and help to forecast changing monthly pattern.

 ■ ATM number 4: surprisingly as for yearly seasonality in ATM 2, month
number inputs weren’t included in best input set, even though this type
of ATM has not so smooth transition of yearly pattern. This might be
explained by more strong recent cash flow value impacts (moving ave-
rage, cash flow day before, or 1–4 previous week cash flows) for sudden
change in cash flow than yearly-related (month number, day of month)
regression input effects even though yearly seasonality is strong, it has
a quasi-periodic structure and values of last year only partially reoccur
in current year on the same day. However as for ATM number 2, long hi-
story is more necessary in order to forecast more accurately.

 ■ ATM number 5: interesting results are obtained for this kind of ATM. As
expected, most accurate results for most of the inputs (see figure in Ap-
pendix) are achieved when shortest history (after sudden cash flow pro-
cess structural break occurs) is used. This is because cash flow training
data after structural break concludes relatively larger part of training
examples than for longer period training data. So model adapts to recent
break. But it is interesting that this affect is only partial: the results are
worse for 1.5 year training, but for 2 year training accuracy increases.
This is explained integral part of ATM cash flow (increasing trend) and
at the beginning model learns small level cash flow relationship, which
is similar to that after the structural break. As expected, for this kind of
ATMs with structural break, inputs that encode recent past are more ef-
fective than regression inputs.

 ■ ATM number 6: even though this ATM has structural break as ATM num-
ber 5, the structural break impact is less obvious. This might be related
to the direction of structural break and break level difference. An expla-
nation of forecasting results is more difficult: shortest history learning
is not the best (but looking at figure in Appendix seems worst) because
of overfitting (even though it contains history without structural break)
because of too short history training. Long history contains structural
break so this disturbs model training and overfittig also takes place. Day

Gediminas Žylius224

of month input is included in best input set because of monthly seaso-
nality, and 1–4 previous week inputs add to both weekly and monthly
(because of 4 weeks) pattern forecasting. But moving average and pre-
vious day cash flow inputs were not included. This might be because of
too small structural break. However 1–4 previous week cash flow inputs
contain recent past information together encoding weekly and monthly
seasonality patterns.

 ■ ATM number 7: because temporal structural break was relatively short,
2 year training still performed best. 1 year training performed worst
because full temporal break was included and concluded biggest part of
training data compared to 2 or 1.5 year training cases and this lead to
model overfitting. 0.5 year training didn’t include temporal structural
break part, but didn’t perform best because of too short training history.
Because of weekly seasonality, best input set included related inputs.

 ■ ATM number 8: looking at figure in Appendix it is seen that using 2 year
history training is worst case for most input sets, so this means that if
ATM has growing tendency, forgetting the past is good, but too few tra-
ining values will not train the model with maximum accuracy, so proper
decision for model training is needed because of short and long history
training trade-off. Moving average input is selected to best input set and
helps when with trend forecasting, weekly-related inputs correspond to
weekly seasonality factors in ATM cash flow process.

Table 1. Forecasting results (in SMAPE, %) over all forecasting models for every ATM

ATM Number 1 2 3 4 5 6 7 8

2 Year/800 Days Training
(Best Avg. Inputs)

40.64 59.84 66.30 55.00 83.27 39.30 50.94 43.04

1.5 Year/400 Days Training
(Best Avg. Inputs)

39.88 61.53 67.02 56.70 85.38 40.21 51.16 43.09

1 Year/200 Days Training
(Best Avg. Inputs)

40.55 64.66 70.05 57.35 80.89 39.76 51.80 42.60

0.5 Year/100 Days Training
(Best Avg. Inputs)

40.95 67,07 69.96 57.27 82.48 42.61 51.24 43.26

Best Avg. Inputs 5 6 7 8 3 5 6 7
8 9

2 4 5 6 7
8 9

3 4 9 5 6 7 8 9 2 3 5 6
7 8

3 5 6 7 8 3 5 6 7
8 9

2 Year/800 Days Training
(Best 2 Year/800 Days Inputs)

40.64 59.84 66.30 55.00 82.40 39.30 50.71 43.04

 Evaluation of atm cash dEmand procEss factors… 225

ATM Number 1 2 3 4 5 6 7 8

Best 2 Year/800 Days Inputs 5 6 7 8 3 5 6 7
8 9

2 4 5 6 7
8 9

3 4 9 9 2 3 5 6
7 8

2 3 5 6
7 8

3 5 6 7
8 9

1.5 Year/400 Days Training
(Best 1.5 Year/400 Days Inputs)

39.42 61.53 66.92 55.71 83.31 40.21 51.16 43.09

Best 1.5 Year/400 Days Inputs 3 5 6 7 8 3 5 6 7
8 9

2 4 5 6
7 8

3 9 9 2 3 5 6
7 8

3 5 6 7 8 3 5 6 7
8 9

1 Year/200 Days Training
(Best 1 Year/200 Days Inputs)

40.55 64.66 67.24 56.72 80.89 39.76 51.74 42.60

Best 1 Year/200 Days Inputs 5 6 7 8 3 5 6 7
8 9

1 2 4 5 6
7 8

1 3 4 5 6
7 8 9

5 6 7 8 9 2 3 5 6
7 8

2 3 4 5 6
7 8

3 5 6 7
8 9

0.5 Year/100 Days Training
(Best 0.5 Year/100 Days Inputs)

40.95 66.88 67.17 57.27 75.45 41.48 51.08 42.52

Best 0.5 Year/100 Days Inputs 5 6 7 8 3 4 5 6 7
8 9

2 3 4 3 4 9 1 2 3 2 4 5 6
7 8

2 3 5 6
7 8

3 4 5 6
7 8

S o u r c e : own studies.

 Conclusions and future works

After obtaining forecasting results for various types of ATM cash flows two im-
portant conclusions can be made:
 ■ Choosing model training history is very important. Using long history is

useful if yearly seasonality factors are relatively important in ATM cash
flow process. If cash flow is relatively stationary (as ATM number 1 and
ATM number 3) and has strong monthly or weekly seasonality, using
too much history will not increase forecasting accuracy. But if ATM cash
flow process has structural breaks or various trend components, tra-
ining history length must be selected carefully in order to avoid overfit-
ting.

 ■ Proper input selection is even more important than training history pe-
riod selection. Time-series inputs such as previous day cash flow value,
moving average and 1–4 previous week cash flow values proved to be
more efficient input features than regression inputs and contain time-va-
rying information with recent history encoding. So calendar effect fore-
casting inputs are not as important as time-series feature inputs. Purely
regression inputs are effective only when stationarity of cash flow could
be assumed. Combination of both may increase forecasting accuracy.

Gediminas Žylius226

In future works an investigation of multiple-day-ahead forecasting will be
performed, which is more practical for cash flow forecasting. However, multi-
ple-day-forecasting is far more challenging research object with CI models, be-
cause of various factors related to error accumulation, conditional probability
estimation. Also, automatic statistical methods that would be useful for ATM
type identification for input and history period selection will be investigated.

 References
Brentnall, A.R., Crowder, M.J., & Hand, D.J. (2008). A statistical model for the tempo-

ral pattern of individual automated teller machine withdrawals. Journal of the
Royal Statistical Society: Series C (Applied Statistics). 57(1). 43–59. http://dx.doi.
org/10.1111/j.1467-9876.2007.00599.x.

Brentnall, A.R., Crowder, M.J., & Hand, D.J. (2010a). Predicting the amount individuals
withdraw at cash machines using a random effects multinomial model. Statistical
Modeling. 10(2). 197–214. http://dx.doi.org/10.1177/1471082X0801000205.

Brentnall, A.R., Crowder, M.J., & Hand, D.J. (2010b). Predictive-sequential forecasting
system developement for cash machine stocking. International Journal of Forecast-
ing. 26. 764–776.

Chih-Chung, C., & Chih-Jen, L. (2011). LIBSVM: a library for support vector machines.
ACM Transactions on Intelligent Systems and Technology. 2(27). 1–27. http://www.
csie.ntu.edu.tw/~cjlin/libsvm (accessed: 29.03.2015).

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning. 20(3). 273–
–297. http://dx.doi.org/10.1007/BF00994018.

Darwish, S.M. (2013). A methodology to improve cash demand forecasting for ATM net-
work. International Journal of Computer and Electrical Engineering. 5(4). 405–409.
http://dx.doi.org/10.7763/IJCEE.2013.V5.741.

Ekinci, Y., Lu, J.C., & Duman, E. (2015). Optimization of ATM cash replenishment with
group-demand forecasts. Expert Systems with Applications. 42(7). 3480–3490.
http://dx.doi.org/10.1016/j.eswa.2014.12.011.

Gurgul, H., & Suder, M. (2013). Modeling of withdrawals from selected ATMs of the Eu-
ronet network. AGH Managerial Economics. 13. 65–82. http://dx.doi.org/10.7494/
manage.2013.13.65.

Hagan, M.T., & Menhaj, M. (1994). Training feed-forward networks with the Marquardt
algorithm. IEEE Transactions on Neural Networks. 5(6). 989–993.

Huang, G.B., Zhu, Q.Y., & Siew, C.K. (2006). Extreme learning machine: theory and appli-
cations. Neurocomputing. 70. 489–501. http://www.ntu.edu.sg/home/egbhuang/
elm_codes.html (accessed: 29.03.2015).

Jang, J.S.R. (1993). ANFIS: adaptive-network-based fuzzy inference systems. IEEE
Transactions on Systems, Man, and Cybernetics. 23(3). 665–685. http://dx.doi.
org/10.1109/21.256541.

 Evaluation of atm cash dEmand procEss factors… 227

Kumar, P., & Walia, E. (2006). Cash forecasting: An application of artificial neural net-
works in finance. International Journal of Computer Science & Applications. 3(1).
61–77.

Laukaitis, A. (2008). Functional data analysis for cash flow and transactions intensity
continuous-time prediction using Hilbert-valued autoregressive processes. Europe-
an Journal of Operational Research. 185(3). 1607–1614. http://dx.doi.org/10.1016/j.
ejor.2006.08.030.

Pelckmans, K., Suykens, J.A.K., Van Gestel, T., De Brabanter, J., Lukas, L., Hamers, B., De
Moor, B., & Vandewalle, J. (2002). LS-SVMlab : a Matlab/C toolbox for Least Squares
Support Vector Machines. Internal Report 02-44, ESAT-SISTA, KU Leuven, Leuven,
Belgium, viewed 14 May 2015. http://www.esat.kuleuven.be/sista/lssvmlab/old/
lssvmlab_paper0.pdf (accessed: 29.03.2015).

Rodrigues, P., & Esteves, P. (2010). Calendar effects in daily ATM withdrawals. Econom-
ics Bulletin. 30(4). 2587–2597.

Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Learning representations by back-
propagation errors. Nature. 323. 533–536.

Simutis, R., Dilijonas, D., & Bastina, L. (2008). Cash demand forecasting for ATM us-
ing neural networks and support vector regression algorithms. Proceedings of the
twentieth EURO mini conference on continuous optimization and knowledge-based
technologies (EurOPT-2008). Neringa. Lithuania. 416–421.

Simutis, R., Dilijonas, D., Bastina, L., & Friman, J. (2007). A flexible neural network for
ATM cash demand forecasting. Proceedings of the sixth WSEAS international con-
ference on computational intelligence, man-machine systems and cybernetics (CIM-
MACS 07). 162–165.

Specht, D.F. (1991). A general regression neural network. IEEE Transactions on Neural
Networks. 2(6). 568–576.

Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., & Vandewalle, J. (2002).
Least Squares Support Vector Machines. World Scientific. Singapore.

Tipping M.E. (2001). Sparse Bayesian learning and the relevance vector machine. Jour-
nal of Machine Learning Research. 1. 211–244. http://www.miketipping.com/
sparsebayes.htm (accessed: 29.03.2015).

Wagner M. (2010). Forecasting daily demand in cash supply chain. American Journal of
Economics and Business Administration. 2(4). 377–383. http://dx.doi.org/10.3844/
ajebasp.2010.377.383.

Simutis, R., Dilijonas, D., & Bastina, L. (2008). Cash demand forecasting for ATM using neural networks

and support vector regression algorithms. Proceedings of the twentieth EURO mini conference on continuous

optimization and knowledge-based technologies (EurOPT-2008). Neringa. Lithuania. 416–421.

Simutis, R., Dilijonas, D., Bastina, L., & Friman, J. (2007). A flexible neural network for ATM cash demand

forecasting. Proceedings of the sixth WSEAS international conference on computational intelligence, man-

machine systems and cybernetics (CIMMACS 07). 162–165.

Specht, D.F. (1991). A general regression neural network. IEEE Transactions on Neural Networks. 2(6).

568–576.

Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., & Vandewalle, J. (2002). Least Squares

Support Vector Machines. World Scientific. Singapore.

Tipping M.E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal of Machine

Learning Research. 1. 211–244. http://www.miketipping.com/sparsebayes.htm (accessed: 29.03.2015).

Wagner M. (2010). Forecasting daily demand in cash supply chain. American Journal of Economics and

Business Administration. 2(4). 377–383. http://dx.doi.org/10.3844/ajebasp.2010.377.383.

Appendix

Day Sequence Number
0 100 200 300 400 500 600 700 800 900

0

0.5

1
ATM Number 1 Cash Flow

Lag
0 50 100 150 200 250 300 350 400 450

-0.5

0

0.5

1
Sample Autocorrelation Function

Sequence Number of Mean-Sorted Feature Set
10 20 30 40 50 60

40

45

50

55

60

65
ATM Number 1 Forecasting Results

2 year training
1.5 year training
1 year training
0.5 year training

Day Sequence Number
0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1
ATM Number 2 Cash Flow

Lag
0 50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

1
Sample Autocorrelation Function

Sequence Number of Mean-Sorted Feature Set
0 10 20 30 40 50 60 70

50

60

70

80

90

100

110

120

130
ATM Number 2 Forecasting Results

2 year training
1.5 year training
1 year training
0.5 year training

appendix

Sequence Number of Mean-Sorted Feature Set
10 20 30 40 50 60

40

45

50

55

60

65
ATM Number 1 Forecasting Results

2 year training
1.5 year training
1 year training
0.5 year training

Day Sequence Number
0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1
ATM Number 2 Cash Flow

Lag
0 50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

1
Sample Autocorrelation Function

Sequence Number of Mean-Sorted Feature Set
0 10 20 30 40 50 60 70

50

60

70

80

90

100

110

120

130
ATM Number 2 Forecasting Results

2 year training
1.5 year training
1 year training
0.5 year training

Sequence Number of Mean-Sorted Feature Set
10 20 30 40 50 60

40

45

50

55

60

65
ATM Number 1 Forecasting Results

2 year training
1.5 year training
1 year training
0.5 year training

Day Sequence Number
0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1
ATM Number 2 Cash Flow

Lag
0 50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

1
Sample Autocorrelation Function

Sequence Number of Mean-Sorted Feature Set
0 10 20 30 40 50 60 70

50

60

70

80

90

100

110

120

130
ATM Number 2 Forecasting Results

2 year training
1.5 year training
1 year training
0.5 year training

Day Sequence Number
0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1
ATM Number 3 Cash Flow

Lag
0 50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

1
Sample Autocorrelation Function

Sequence Number of Mean-Sorted Feature Set
0 10 20 30 40 50 60 70

65

70

75

80

85

90

95

100

105
ATM Number 3 Forecasting Results

2 year training
1.5 year training
1 year training
0.5 year training

Day Sequence Number
0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1
ATM Number 4 Cash Flow

Lag
0 50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

1
Sample Autocorrelation Function

Day Sequence Number
0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1
ATM Number 3 Cash Flow

Lag
0 50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

1
Sample Autocorrelation Function

Sequence Number of Mean-Sorted Feature Set
0 10 20 30 40 50 60 70

65

70

75

80

85

90

95

100

105
ATM Number 3 Forecasting Results

2 year training
1.5 year training
1 year training
0.5 year training

Day Sequence Number
0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1
ATM Number 4 Cash Flow

Lag
0 50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

1
Sample Autocorrelation Function

Day Sequence Number
0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1
ATM Number 3 Cash Flow

Lag
0 50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

1
Sample Autocorrelation Function

Sequence Number of Mean-Sorted Feature Set
0 10 20 30 40 50 60 70

65

70

75

80

85

90

95

100

105
ATM Number 3 Forecasting Results

2 year training
1.5 year training
1 year training
0.5 year training

Day Sequence Number
0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1
ATM Number 4 Cash Flow

Lag
0 50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

1
Sample Autocorrelation Function

Sequence Number of Mean-Sorted Feature Set
0 10 20 30 40 50 60 70

50

60

70

80

90

100

110

120

130
ATM Number 4 Forecasting Results

2 year training
1.5 year training
1 year training
0.5 year training

Day Sequence Number
0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1
ATM Number 5 Cash Flow

Lag
0 50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

1
Sample Autocorrelation Function

Sequence Number of Mean-Sorted Feature Set
0 10 20 30 40 50 60 70

70

80

90

100

110

120

130

140

150

160

170
ATM Number 5 Forecasting Results

800 days training
400 days training
200 days training
100 days training

Sequence Number of Mean-Sorted Feature Set
0 10 20 30 40 50 60 70

50

60

70

80

90

100

110

120

130
ATM Number 4 Forecasting Results

2 year training
1.5 year training
1 year training
0.5 year training

Day Sequence Number
0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1
ATM Number 5 Cash Flow

Lag
0 50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

1
Sample Autocorrelation Function

Sequence Number of Mean-Sorted Feature Set
0 10 20 30 40 50 60 70

70

80

90

100

110

120

130

140

150

160

170
ATM Number 5 Forecasting Results

800 days training
400 days training
200 days training
100 days training

Sequence Number of Mean-Sorted Feature Set
0 10 20 30 40 50 60 70

50

60

70

80

90

100

110

120

130
ATM Number 4 Forecasting Results

2 year training
1.5 year training
1 year training
0.5 year training

Day Sequence Number
0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1
ATM Number 5 Cash Flow

Lag
0 50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

1
Sample Autocorrelation Function

Sequence Number of Mean-Sorted Feature Set
0 10 20 30 40 50 60 70

70

80

90

100

110

120

130

140

150

160

170
ATM Number 5 Forecasting Results

800 days training
400 days training
200 days training
100 days training

Day Sequence Number
0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1
ATM Number 6 Cash Flow

Lag
0 50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

1
Sample Autocorrelation Function

Sequence Number of Mean-Sorted Feature Set
0 10 20 30 40 50 60 70

35

40

45

50

55

60

65

70

75
ATM Number 6 Forecasting Results

800 days training
400 days training
200 days training
100 days training

Day Sequence Number
0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1
ATM Number 7 Cash Flow

Lag
0 50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

1
Sample Autocorrelation Function

Day Sequence Number
0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1
ATM Number 6 Cash Flow

Lag
0 50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

1
Sample Autocorrelation Function

Sequence Number of Mean-Sorted Feature Set
0 10 20 30 40 50 60 70

35

40

45

50

55

60

65

70

75
ATM Number 6 Forecasting Results

800 days training
400 days training
200 days training
100 days training

Day Sequence Number
0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1
ATM Number 7 Cash Flow

Lag
0 50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

1
Sample Autocorrelation Function

Day Sequence Number
0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1
ATM Number 6 Cash Flow

Lag
0 50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

1
Sample Autocorrelation Function

Sequence Number of Mean-Sorted Feature Set
0 10 20 30 40 50 60 70

35

40

45

50

55

60

65

70

75
ATM Number 6 Forecasting Results

800 days training
400 days training
200 days training
100 days training

Day Sequence Number
0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1
ATM Number 7 Cash Flow

Lag
0 50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

1
Sample Autocorrelation Function

Sequence Number of Mean-Sorted Feature Set
0 10 20 30 40 50 60 70

50

52

54

56

58

60

62

64

66

68

70
ATM Number 7 Forecasting Results

2 year training
1.5 year training
1 year training
0.5 year training

Day Sequence Number
0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1
ATM Number 8 Cash Flow

Lag
0 50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

1
Sample Autocorrelation Function

Sequence Number of Mean-Sorted Feature Set
0 10 20 30 40 50 60 70

40

45

50

55

60

65
ATM Number 8 Forecasting Results

2 year training
1.5 year training
1 year training
0.5 year training

Sequence Number of Mean-Sorted Feature Set
0 10 20 30 40 50 60 70

50

52

54

56

58

60

62

64

66

68

70
ATM Number 7 Forecasting Results

2 year training
1.5 year training
1 year training
0.5 year training

Day Sequence Number
0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1
ATM Number 8 Cash Flow

Lag
0 50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

1
Sample Autocorrelation Function

Sequence Number of Mean-Sorted Feature Set
0 10 20 30 40 50 60 70

40

45

50

55

60

65
ATM Number 8 Forecasting Results

2 year training
1.5 year training
1 year training
0.5 year training

Sequence Number of Mean-Sorted Feature Set
0 10 20 30 40 50 60 70

50

52

54

56

58

60

62

64

66

68

70
ATM Number 7 Forecasting Results

2 year training
1.5 year training
1 year training
0.5 year training

Day Sequence Number
0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1
ATM Number 8 Cash Flow

Lag
0 50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

1
Sample Autocorrelation Function

Sequence Number of Mean-Sorted Feature Set
0 10 20 30 40 50 60 70

40

45

50

55

60

65
ATM Number 8 Forecasting Results

2 year training
1.5 year training
1 year training
0.5 year training

