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It is well-established that both volume conduction and the choice of recording reference

(montage) affect the correlation measures obtained from scalp EEG, both in the time

and frequency domains. As a result, a number of correlation measures have been

proposed aiming to reduce these effects. In our previous work, we have showed that

scalp-EEG based functional brain networks in patients with epilepsy exhibit clear periodic

patterns at different time scales and that these patterns are strongly correlated to seizure

onset, particularly at shorter time scales (around 3 and 5 h), which has important clinical

implications. In the present work, we use the same long-duration clinical scalp EEG data

(multiple days) to investigate the extent to which the aforementioned results are affected

by the choice of reference choice and correlation measure, by considering several widely

used montages as well as correlation metrics that are differentially sensitive to the

effects of volume conduction. Specifically, we compare two standard and commonly

used linear correlation measures, cross-correlation in the time domain, and coherence in

the frequency domain, with measures that account for zero-lag correlations: corrected

cross-correlation, imaginary coherence, phase lag index, and weighted phase lag index.

We show that the graphs constructed with corrected cross-correlation and WPLI are

more stable across different choices of reference. Also, we demonstrate that all the

examined correlation measures revealed similar periodic patterns in the obtained graph

measures when the bipolar and common reference (Cz) montage were used. This

includes circadian-related periodicities (e.g., a clear increase in connectivity during sleep

periods as compared to awake periods), as well as periodicities at shorter time scales

(around 3 and 5 h). On the other hand, these results were affected to a large degree when

the average referencemontage was used in combination with standard cross-correlation,

coherence, imaginary coherence, and PLI, which is likely due to the low number of

electrodes and inadequate electrode coverage of the scalp. Finally, we demonstrate that

the correlation between seizure onset and the brain network periodicities is preserved
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when corrected cross-correlation and WPLI were used for all the examined montages.

This suggests that, even in the standard clinical setting of EEG recording in epilepsy

where only a limited number of scalp EEG measurements are available, graph-theoretic

quantification of periodic patterns using appropriate montage, and correlation measures

corrected for volume conduction provides useful insights into seizure onset.

Keywords: epilepsy, volume conduction, montage, scalp EEG, graph theory, periodicities

INTRODUCTION

The effect of reference choice and volume conduction on
correlation measures obtained from scalp EEG is well-
established; it has been shown that it may considerably influence
measures of correlation in the time and frequency domains
(Nunez et al., 1997). Specifically, both may introduce artificial
zero-lag correlations: in the former case, referencing may result
in the instantaneous subtraction of common signal components
from different electrode time-series while in the latter case,
instantaneous propagation of currents generated at a discrete
source through the volume of the (head) conductor occurs
(Nunez and Srinivasan, 2006; Christodoulakis et al., 2014). In
turn, this makes the interpretation of EEG-based functional
brain network characteristics more difficult. A number of
correlation measures that attempt to reduce this influence have
been proposed, including corrected cross-correlation, reduced/
imaginary coherence as well as standard, and weighted phase lag
index, which by construction are insensitive to instantaneous
(zero-lag) correlations, and are in principle less susceptible to
volume conduction and reference effects (Nunez et al., 1997,
1999; Guevara et al., 2005; Marzetti et al., 2007; Stam et al., 2007;
Haufe et al., 2010; Vinck et al., 2011; Nevado et al., 2012; Peraza
et al., 2012; Thatcher, 2012; Christodoulakis et al., 2014; Chella
et al., 2016). So far, the effects of reference choice and volume
conduction on functional brain network properties have been
assessed using short-duration EEG recordings (up to several
minutes; Marzetti et al., 2007; Qin et al., 2010; Xu et al., 2014;
Chella et al., 2016).

The properties of brain networks over longer time scales
(multiple hours to days) have been investigated to a lesser
degree; however, they may also convey important information
about the underlying physiological and neural processes.
Pronounced fluctuations have been revealed in the temporal
evolution of global network characteristics (clustering coefficient,
average shortest path length, assortativity) in patients with
epilepsy (Kuhnert et al., 2010; Kramer et al., 2011; Geier
et al., 2015; Anastasiadou et al., 2016). These fluctuations
exhibit some periodic temporal structure which can be
largely attributed to circadian rhythms. Furthermore, global
properties of epileptic networks around seizure onset have been
characterized using the clustering coefficient and shortest path
length/efficiency (Lehnertz et al., 2014). The importance of
local network properties (e.g., individual nodes) in epilepsy has
also been explored (Kramer et al., 2008; Wilke et al., 2011;
Varotto et al., 2012; Burns et al., 2014; Zubler et al., 2014;
Geier et al., 2015).

Using a unique dataset of long-term (days) continuous scalp
EEG recordings in patients with epilepsy, we recently showed
that the summative properties (degree, efficiency, clustering
coefficient) and topology of the resulting functional brain
networks exhibit robust long-term periodicities in addition
to the well-known circadian 24 h period (Anastasiadou et al.,
2016; Mitsis et al., 2018). Our results demonstrated that brain
network periodicities (particularly around 3 and 5 h) are strongly
correlated to seizure onset. Furthermore, we showed that the
modulation of brain network properties by the seizure events
were relatively minor compared to these concurrent long-term
fluctuations of brain network properties. Collectively, these
results have important implications for seizure pathophysiology
and suggest the potential of quantifying the long-term properties
of EEG–based brain functional networks and incorporating
information regarding their correlations with seizure onset
for achieving seizure detection and prediction with improved
sensitivity and specificity. However, these results were obtained
using the bipolar montage on the basis of our previous
work (Christodoulakis et al., 2013) and the functional brain
networks were constructed using a relatively limited set of
correlation measures.

Therefore, in the current study, our main aim was to
investigate the extent to which these key findings would be
reproducible for different, commonly-used montage choices
as well as when different correlation measures with varying
sensitivity to volume conduction and zero-lag correlations are
used to construct functional brain networks. Specifically, we
considered the following three reference choices (montages): the
common reference montage (Cz), the average reference montage
and the bipolar montage. Signal correlation measures are affected
by the choice of reference and also by volume conducted currents
from common sources (Nunez et al., 1997; Stam et al., 2007). We
also showed that the choice reference and correlation measures
influence the properties of the resulting functional brain
networks around seizure onset (Christodoulakis et al., 2014).
Thus, we considered the following correlation measures: cross-
correlation (CC) in the time domain and coherence (COH) in the
frequency domain, as well as measures that account for volume
conduction effects and zero-lag (instantaneous) correlations:
corrected cross-correlation (corCC), imaginary coherence (IC),
standard phase lag index (PLI), and weighted phase lag index
(WPLI) (Nunez et al., 1997, 1999; Guevara et al., 2005; Stam et al.,
2007; Haufe et al., 2010; Vinck et al., 2011; Nevado et al., 2012;
Peraza et al., 2012; Thatcher, 2012; Christodoulakis et al., 2014).
In order to construct brain networks, we used long duration scalp
EEG recordings (ranging between 21 and 94 h; 23 channels) in
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TABLE 1 | EEG recordings.

Patient Length of

recordings (h)

Number of

seizures

Type of

seizures

1 46 1 Focal

2 22 2 Focal

3 68 2 Focal

4 94 1 Generalized

5 36 1 Generalized

6 24 0 Psychogenic

7 21 1 Focal

8 71 2 Focal

9 27 6 Generalized

10 69 4 Focal

patients with epilepsy using all possible combinations between
the above reference and correlation measure choices.

To our knowledge, this is the first study that investigates
the influence of reference choice on the long-term periodic
variations of scalp EEG-based functional brain networks.
Furthermore, identifying the optimal combination between
reference choice and correlation measure in the context of
quantifying correlations between network properties and seizure
onset is important as it may contribute to the design of improved
detection/prediction algorithms which can take into account
periodic variations in the state of the underlying functional
brain networks.

EEG RECORDINGS AND PREPROCESSING

Long-term video-EEG recordings were collected from nine
patients with epilepsy and one patient with psychogenic seizures
in the Neurology Ward of the Cyprus Institute of Neurology
and Genetics. The study was approved by the Cyprus National
Bioethics Committee. All subjects gave written informed consent
in accordance with the Declaration of Helsinki. Six patients were
monitored using the an XLTek (Natus Medical Incorporated,
CA, USA) scalp EEG recording system (Patients 1–6), while
the remaining four were monitored with the Nicolet (Natus
Medical Incorporated, CA, USA) system (Patients 7–10). Table 1
summarizes the duration of the recordings, as well as the number
and type of seizures of each patient. Seizures and sleep intervals
were identified and marked by specialist neurophysiologists
(coauthors ESP and SSP).

Twenty-one electrodes were placed according to the 10–
20 international system with two additional anterotemporal
electrodes. In addition, four electrodes were used to record
electrooculogram (EOG) and electrocardiogram (ECG) signals,
respectively. The data were recorded at a sampling rate of 200 and
500Hz for the XLTek and Nicolet systems, respectively. The EEG
and EOG signals were band-pass filtered between 1 and 45Hz to
remove line noise and muscle artifacts. Next, we applied Lagged
Auto-Mutual Information Clustering (LAMIC) (Nicolaou and
Nasuto, 2007), using simultaneous EOG recordings to remove
ocular artifacts.

It has been demonstrated that the montage (i.e., the choice
of reference) affects correlation measures (Nunez et al., 1997)
and as a consequence it may affect the corresponding graph-
theoretic measures. For this reason, wemathematically converted
the input data, which were originally recorded relative to the
common cephalic reference, to three different montages: the
common reference (Cz), the average reference and the bipolar
montage (see section Recording Montages). We obtained results
employing all three montages.

Recording Montages
Scalp EEG recording devices use differential amplifiers in order to
compute the voltage of each EEG channel. A differential amplifier
takes as input the measurements of two electrodes and produces
the corresponding EEG channel as the difference between the two
inputs, after it has been amplified. The choice of input electrodes
to each amplifier is known as montage.

The recordings obtained with our system is an example of
common reference (Cz) where each amplifier takes as input one
of the 10–20 system electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8,
T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2, A1, A2) and
one reference electrode (REF) which is common to all amplifiers.
This is an example of common reference (Cz) montage and we
mathematically re-referenced the data to Cz, which is often the
reference electrode of choice. The average reference montage
subtracts the average signal over all channels (in our case, 19 scalp
channels) or a carefully chosen subset of them from the signal
at each channel. In this work, we used all 19 scalp channels to
compute the average.

On the other hand, in the case of bipolar montage there is no
input common to all the time-series but pairs of electrodes in
nearby locations of the scalp are used to obtain the time-series
by subtracting the corresponding measurements. Specifically,
electrodes are taken in straight lines from the front to the back of
the head, forming the pairs Fp1-F7, F7-T3, T3-T5, T5-O1, Fp2-
F8, F8-T4, T4-T6, T6-O2, Fp1-F3, F3-C3, C3-P3, P3-O1, Fp2-F4,
F4-C4, C4-P4, P4-O2, Fz-Cz, Cz-Pz.

Functional Brain Network Construction
After obtaining the artifact-free time series, we calculated
pairwise correlation measures between all pairs of time series
(EEG data converted to common reference (Cz), average
reference and bipolar reference montages) using the correlation
measures described in section Correlation Measures. Each time
series in the common (Cz), average and bipolar montages
corresponds to a node in the network, which does not change
over time. The edges or connections between the nodes are
then identified by computing correlation measures between the
corresponding time series. Specifically, if the corresponding
measure between each pair exceeded a pre-specified threshold,
the value of which was dependent on the employed measure
(section Correlation Measures), edges were added between node
pairs. All the connections (edges) identified in this way form
a binary graph, which we term the functional brain network.
Common measures for estimating the correlation between pairs
of time series include CC, COH, synchronization likelihood,
Granger causality, directed coherence, mutual information, PLI,
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and many more; see, e.g. (Pereda et al., 2005) for a review. The
related changes in the brain network over time were tracked
by using 5-s non-overlapping windows and quantifying the
correlation between all time-series pairs, using the following
measures: CC, corCC, COH, IC, PLI, and WPLI.

Correlation Measures

Cross correlation
Cross-correlation (CC) measures the similarity of two series
as a function of the displacement of one relative to the other
(Christodoulakis et al., 2014). For any pair of time series, x(t), and
y(t), the normalized cross-correlation is calculated as follows:

Cxy (τ ) =
1

n− τ

∑n−τ

t=1

(

x(t)

σx

) (

y(t + τ )

σy

)

(1)

where σx and σy are the standard deviations of x and y,
respectively. The normalized CC, Cxy, was computed for a range
of values for the lag τ : a range of [−100 100] ms was examined
here. Cxy takes values between−1 and 1, with 1 indicating perfect
linear positive correlation, −1 perfect linear negative correlation
and 0 no correlation. The maximum of the absolute value of
CC, maxτ

∣

∣Cxy

∣

∣, over the chosen range of τ values, was used to
quantify the degree of correlation between the two signals within
a given time window.

Corrected cross correlation
Corrected cross-correlation (corCC) is a measure that is used
in the case of scalp EEG measurements as CC often attains
its maximum value at zero lag and zero-lag correlations are
largely due to volume conduction effects or reference choice. For
instance, according to the common reference (Cz) montage, the
same signal is subtracted from all other electrode time-series.
In order to measure true interactions not occurring at zero lag,
we calculated the corCC C̄xy (τ ), which is a measure of the
autocorrelation sequence asymmetry, as defined in Nevado et al.
(2012), by subtracting the negative-lag part of Cxy(τ ) from its
positive-lag counterpart (Nevado et al., 2012):

C̄xy (τ ) = Cxy (τ ) − Cxy (−τ) for τ > 0 (2)

Note that C̄xy (τ ) provides a lower bound estimate of the
nonzero-lag cross-correlations and is notably smaller than Cxy.
As in the case of CC, the maximumwithin the same range of time
lags ([−100 100] ms) is taken as the measure of correlation.

Coherence
Coherency is a widely-used measure for characterizing linear
dependence between a pair of stochastic processes, as well as
a quantitative measure of their phase consistency and may be
viewed as the equivalent measure of cross-correlation in the
frequency domain. Coherence (COH - kxy(f )), defined as the
squared magnitude of coherency, is employed as a measure of
correlation in the frequency domain (Pereda et al., 2005), i.e.:

kxy
(

f
)

=

∣

∣〈Sxy
(

f
)

〉
∣

∣

√

∣

∣〈Sxx
(

f
)
∣

∣

∣

∣Syy
(

f
)

〉
∣

∣

(3)

The value of kxy(f ) ranges between 0 and 1, with 1 indicating
perfect linear correlation and 0 no correlation between x and
y at frequency f. COH is a function of frequency; therefore, we
calculated the maximum (with respect to frequency) COH value
within the following frequency bands: broadband (1–45Hz),
delta (1–4Hz), theta (4–8Hz), alpha (8–13Hz), beta (13–30Hz),
and gamma (30–45Hz) in order to quantify the correlation
between pairs of signals.

Imaginary coherence
The imaginary part of coherency (imaginary coherence—IC),
as shown in Nolte et al. (2004), is less sensitive to volume
conduction compared to its real part. Therefore, it can be used
as a correlation measure to construct EEG-based functional
brain networks:

ICxy

(

f
)

=Imag
(

Ŵxy(f )
)

(4)

Here, we used the maximum (with respect to frequency) absolute
value of the IC for the broadband signal as well as within
the aforementioned frequency bands to quantify the correlation
between the two signals.

Phase lag index
The phase lag index (PLI) was introduced in Stam et al. (2007),
aiming to obtain a measure that provides reliable estimates of
phase synchronization between two signals and is insensitive
to volume conduction. Here, the instantaneous phases were
obtained by initially bandpass filtering the signals within the
frequency bands defined above and subsequently using the
Hilbert transform to obtain the phase of the corresponding
analytic signal., Phase difference distribution (1φ) as an index of
asymmetry between a given pair of channels, that were wrapped
in the interval , can be obtained in the following way:

PLIxy = |〈sgn(1φ (τ))〉| (5)

PLI ranges between 0 and 1, with 0 indicating no correlation and
1 maximal correlation.

Weighted phase lag index
The weighted phase lag index (WPLI) was proposed in Vinck
et al. (2011) as an improvedmeasure of phase synchronization for
electrophysiological signals in the presence of noise and volume
conduction. PLI may be sensitive to both of these factors, mostly
due to its discontinuity, as small perturbationsmay convert phase
lags into leads and vice versa. In contrast with PLI, WPLI weights
the contribution of the observed phase leads and lags by the
magnitude of the imaginary component of the cross-spectrum
(Vinck et al., 2011):

WPLI =
|〈Imag(Sxy

(

f
)

)〉|

〈|Imag(Sxy
(

f
)

)|〉

=
|〈|Imag(Sxy

(

f
)

)| · sgn(Imag(Sxy
(

f
)

)〉|

〈|Imag(Sxy
(

f
)

)|〉
(6)

Similar to PLI, WPLI ranges between 0 and 1, with 0 indicating
no correlation and 1 maximal correlation.
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Network Binarization
We constructed binary (rather than weighted) networks, i.e.,
networks with connections only between strongly correlated
nodes. To do so, a threshold was set, the value of which depends
on the employed correlation measure. Edges with weight values
larger than the specified threshold were included in the graph
(weight: 1), while edges with values less than the threshold were
removed (weight: 0). We examined various threshold values for
all the considered correlation measures. In all cases, different
values yielded very similar results in terms of the observed
patterns in network properties, provided that the threshold
value was not too high (e.g., close to one for CC)—which
yields disconnected graphs -, or too low (close to zero)—which
yields densely/fully connected graphs. Therefore, we selected
threshold values between these two extremes. The threshold value
determines the actual value of the graph theoretic measures,
but did not affect our results otherwise, as we are interested
in the variation of these measures over time and the resulting
periodic patterns and not specifically in their absolute value.
We also used the method of phase-randomized surrogate data
to construct binary networks (Theiler et al., 1992); however,
this approach yielded densely connected networks, i.e., degree
values that were similar to those obtained by setting a fixed,
low threshold value. Moreover, the temporal patterns of the
network summative properties were found to be overall clearer
when thresholding was used (Sections Network Binarization and
Periodicities in Functional Brain Network Properties). Taking
also into account that thresholding is much faster to implement,
which is important for real-time seizure detection/prediction
applications, we selected the thresholding method and we
selected the threshold values so that similar average degree values
were obtained for different correlation measures and montages.
Specifically, we selected the following threshold values for the
bipolar and common (Cz) reference; CC: 0.65, COH: 0.65, IC:
0.58, corCC: 0.1, PLI: 0.1, and WPLI: 0.45. For the average
reference, the corresponding values were as follows; CC: 0.65,
COH: 0.65, IC: 0.4, corCC: 0.1, PLI: 0.1, and WPLI: 0.45.

Graph Theoretic Measures
For each subject, the evolution of the functional brain network
over time was monitored by observing how different measures
of the corresponding graph changed over time: average degree,
global efficiency, and clustering coefficient.

Average Degree
The degree ki of a node i is defined as the number of
connections or edges that this node has with other neighboring
nodes in the network. The average degree of a network is
the average value of the summary of degrees of a network
and quantifies how well-connected the corresponding graph is
(Rubinov and Sporns, 2010):

K =
1

n

∑

iǫN
ki (7)

Global Efficiency
The shortest path length, dij, between a pair of nodes i and
j is defined as the minimum number of edges that have

to be traversed to get from node i to j. The characteristic
path length is defined as the average shortest path length
over all pairs of nodes in the network and is a measure of
how efficient the information flow through the network is
(Christodoulakis et al., 2014):

L =
1

n (n− 1)

∑

i,jǫN,i6=j
dij (8)

A limitation of the characteristic path length is that if any
pair of nodes i and j is not connected through any path,
the corresponding shortest path length value is dij = ∞ .
Therefore, the characteristic path length is well-defined only
for pairs of nodes that are connected. To overcome this
limitation, efficiency between a pair of nodes was defined as
the inverse of the shortest distance between the nodes, 1�dij
(Latora and Marchiori, 2001):

E =
1

n (n− 1)

∑

i,jǫN, i6=j

1

dij
(9)

Global efficiency is defined as the
average efficiency over all pairs of nodes
(Latora and Marchiori, 2001).

Clustering Coefficient
A cluster in a graph is a group of nodes that is highly
interconnected. The clustering coefficient Ci of a node i is defined
as the fraction of existing edges between nodes adjacent to node
i, over the maximum possible number of such edges (Watts and
Strogatz, 1998).

Ci =
2ti

ki
(

ki − 1
) (10)

where ki is the degree of node i, and ti denotes the number
of edges, ejj′ , between pairs of nodes, j and j’, that are both
connected to i. Consequently, the clustering coefficient of the
network C is defined as the mean clustering coefficient among
all network nodes.

C =
1

n

∑

i∈N
Ci (11)

Periodicity Estimation
One of our main aims was to characterize the periodicities
that arise in functional brain network characteristics over
a wide range of time scales. Each of the three network
properties—average degree, global efficiency, and clustering
coefficient, which were used for monitoring functional brain
networks, provides a single value per network constructed
from a 5-s window, thus forming a time series across
the entire recording time. We utilized the Lomb-Scargle
periodogram (Scargle, 1982) to obtain the power spectral
density (PSD) of the time series for each network summative
property (e.g., degree). This was done for all correlation
measures and montages. The Lomb-Scargle periodogram is
more appropriate for unevenly sampled data and in our case,
we observed that in some patients we had small gaps in the
signal measurements.
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Circular Statistics
To investigate the relation of seizure onset to brain network
periodicities and the influence of reference choice effect on
these periodicities, we calculated the instantaneous phase at
seizure onsets for each periodic component and obtained
the corresponding phase distribution. Subsequently, we used
circular statistics to examine whether seizure onsets occurred
at specific/preferred phases, as opposed to random phases. To
this end, we first performed zero-phase digital filtering of the
average degree time series to obtain band limited signals around
the main identified peaks on a subject-to-subject basis (±0.5 h
before and after the main peak of each periodic component).
Specifically, we focused this analysis on the periodic components
that were found to be consistent across patients. Significant
peaks identified in individual subjects were deemed consistent if
their location relative to the mean location across subjects was
less or equal to half an hour. More details on the location of
observed peaks are given in Section Periodicities in Functional
Brain Network Properties.

Subsequently, we applied the Hilbert transform on the
band limited signals to calculate the instantaneous phase of
each periodic component (Klingspor, 2015). For all patients,
the instantaneous phases at the onset of the seizure were
collected and the obtained phase distribution were subsequently
investigated using CircStat which is a Matlab (Math works,
Natick MA) toolbox related to circular statistics (Berens, 2009).
For more details, the reader is referred to Mitsis et al. (2018).
To investigate whether phase values at seizure onset times
were distributed uniformly around the circle from 0 to 2π ,
we applied the Rayleigh test with the null hypothesis (H0)
being that the population is distributed uniformly around the
circle. The Rayleigh test computes the resultant vector length
R that suggests a non-uniform distribution (Fisher, 1993) and
is particularly suited for detecting a unimodal deviation from
uniformity. To account for the fact that we had multiple seizures
for some subjects, we created groups of nine samples (one
seizure per patient) for all possible combinations to obtain the
corresponding corrected p-values (Zar, 1999). Note that for the
24 h periodic (circadian) component, these groups included six
samples only, since the recordings of six out of ten patients were
longer than 24 h.

RESULTS

The results related to the time-resolved functional brainmeasures
correspond to Patient 4, since the longest recording (94 h) was
obtained from this patient. Similar results were obtained in all
ten patients (see also Supplementary Material).

Network Binarization
As mentioned above, we selected the thresholds aiming to avoid
extreme values and obtain similar average degree values among
different correlation measures and montages. Figure 1 illustrates
the average network degree as obtained from CC using a bipolar
montage for threshold values between 0.2 and 0.8, where it can
be seen that the behavior for different threshold values is similar.
It was found that the obtained network properties, e.g., average

degree in this case, exhibit very similar patterns with respect to
time, regardless of the threshold used. To provide comparisons
with the surrogate data network binarization, we show the
average degree obtained in the latter case in Figure S1 for CC,
where it can be seen that the resulting degree values are high and
that the circadian periodicity is not as clear as in Figure 1.

Effect of Reference Choice on Network
Measures and Their Periodicities
The choice of reference channel affects the local cortical
estimates and their interactions with other locations. It is known
that using a common reference (Cz) can substantially inflate
coherence estimates, particularly at smaller distances (Nunez and
Srinivasan, 2006) as a common signal is subtracted from all
channels. On the other hand, the average reference is known to
yield coherence estimates that are closer to coherence estimates
obtained from reference-independent potentials (Nunez and
Srinivasan, 2006). Note that the average reference is commonly
used when a large number of electrodes with extensive coverage
of the head is used. In our case, the standard 10–20 system was
used, which may yield a poor approximation of the reference-
free potentials (Nunez and Srinivasan, 2006; Christodoulakis
et al., 2014). Furthermore, in the settings of a limited number of
electrodes as in our case, the bipolar montage has been suggested
for obtaining estimates of local superficial cortical generators
(Nunez and Srinivasan, 2006; Christodoulakis et al., 2014).

Since the choice of montage influences the estimates of local
activity (electrodes) and the interactions between them, it is
also expected to influence the resulting graph theoretic measures
and hence their periodic properties. We constructed functional
networks using the correlation measures described in section
Correlation Measures (CC, corCC, COH, IC, PLI, and WPLI)
using long-term EEG data and all three montages [bipolar,
common reference (Cz) and average reference]. Below, we study
the effects of reference (montage) choice on the long-term
properties of the resulting brain networks separately in the time
and frequency domain, focusing on the emerging periodicities.

Time Domain
Figures 2, 3 show the time course of the average network degree
using CC (Figure 2) and corCC (Figure 3) for all montages.
The green, red and blue lines correspond to average, bipolar,
and common (Cz) reference, respectively. In Figure 2, it is
evident that the functional brain networks yielded by CC are
less connected (lower degree) during the time when the patient
is awake compared to sleep (gray shaded bars) in the case of
bipolar and common reference (Cz) montage. In contrast, the
average montage yields the opposite trend. In Figure 3 it can be
seen that, when corCC was used, the average reference yielded
similar results to the other two montages (increased connectivity
during sleep), suggesting that this measure is less susceptible
to the choice of reference. In Figure S1, we can observe a
similar 24 h periodic trend in the case of bipolar and common
reference (Cz) montage for global network efficiency when CC
was used. As before (Figure 2), the average reference montage
yielded an opposite main periodic trend, which was however
reversed when corCC was used (Figure S2). In Figures S3, S4,
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FIGURE 1 | Smoothed average degree of the functional brain network of Patient 4, constructed using cross-correlation, for various thresholds. For all thresholds, the

24 h period is visible and the resulting patterns are similar, although details for some intermediate periodicities may be lost.

we show the clustering coefficient patterns obtained with CC
and corCC, respectively for all reference montages, whereby
similar observations can be made. Therefore, corCC yielded
overall more consistent patterns for different montages for all
three network measures. Along with the dominant 24 h cycles,
additional periodic components at shorter time scales co-exist;
note, for example, the spikes that occur at both awake- and
sleep-times separated on average by ∼75min (e.g., Figures 2,
3). These weaker periodicities are examined in detail in section
Periodicities in Functional Brain Network Properties.

Frequency Domain
To investigate brain network properties in the frequency domain,
we constructed functional networks using COH, IC, PLI, and
WPLI. Figures 4, 5 show the average degree for the broadband
signal obtained from COH and IC for all montages, respectively.
Figures 6, 7 show the average degree obtained from PLI and
WPLI for all montages, respectively. Figures S5, S6 show the
global efficiency and clustering coefficient, respectively when
using WPLI for all montages. Note that the global efficiency and
clustering coefficient are not shown separately for COH, IC, and
PLI as they yielded similar periodic trends to the average degree
for all montages. In Figure 4 (COH), we observe that the average
reference montage yields opposite periodic trends compared to
the other two montages, similarly to CC (section Time Domain).
Also, we observed that COH within all frequency bands (delta,
theta, alpha, beta, and gamma) yielded similar periodic trends
to the broadband signal (Figure 4) for both the bipolar and

common (Cz) montages (results not shown separately). In the
case of the average reference montage, the trend observed for the
broadband signal was mostly determined by the delta, theta and
alpha band, which yielded opposite periodic trends to the beta
and gamma bands. It was found that functional brain networks
obtained with COH were less connected during the time when
the patient was awake compared to sleep (gray shaded bars), in
the case of bipolar, and common (Cz) reference montage.

In Figure 5 we can observe that IC exhibits a different
behavior overall compared to COH and other correlation
measures, with the bipolar and common (Cz) montages yielding
opposite periodic trends. In contrast, the average reference
montage yielded increased connectivity during sleep, exhibiting
an opposite trend to the other two montages. The periodicities
yielded by the broadband signal in the case of bipolar and
common (Cz) montages were mostly determined by IC values in
the beta and gamma bands and in the case of average reference
montage they were mostly determined by IC values in the delta,
theta and alpha bands, which yielded opposite periodic trends to
the beta and gamma bands. The results suggest that IC and COH
are influenced substantially by reference choice. As before, the
main periodicity was the 24 h circadian cycle, which is evident in
all the results.

In Figure 6, which shows the average degree obtained with
the PLI for all montages, we can observe that the average
reference yields opposite periodic trends compared to the other
two montages. The functional brain networks using PLI are less
connected during the time when the patient is awake compared
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FIGURE 2 | Average degree of the functional brain networks of Patient 4 as a function of time, using cross correlation for assessing pairwise correlations. The vertical

dashed line indicates seizure onset and the gray bars indicate sleep intervals. Cross correlation yields an opposite 24 h periodic pattern when using the average

reference. However, we can clearly observe a periodic pattern with a main period equal to around 24 h for all montages.

to sleep in periodic cycles of ∼24 h, in the case of the bipolar
and common (Cz) reference montages. In Figure 7, we show
that the average degree obtained using WPLI was less affected
by reference choice compared to the rest of the correlation
measures. The same can be observed in Figures S5, S6 for the
efficiency and clustering coefficient, respectively. The WPLI-
based functional brain networks were less connected during
the time when the patient was awake compared to sleep for
all montages. As before, along with the 24 h cycles, additional
periodic components at shorter time scales co-exist in the time
course of the average degree in the frequency domain (section
Periodicities in Functional Brain Network Properties).

Periodicities in Functional Brain Network Properties
Apart from the dominant 24 h periodicity in network properties,
periodicities at smaller time scales can also be observed
(Figures 2–7 and Figures S2–S7). In this section, we investigate
these periodicities in more detail. Figure 8 illustrates the
periodogram of the average degree of the functional brain
networks of Patient 4 constructed using all correlation measures
for the bipolar (red) and common (Cz; blue) reference.
The horizontal lines denote the statistical significance level
(p = 0.05), above which spectral peaks can be considered
as significant. In Figure S8, we also show the Lomb-Scargle
periodogram of the average degree obtained using surrogate

data network binarization for the bipolar montage (Figure S1).
Similar periodic components can be observed; however, the
circadian periodicity is not as clear as in Figure 8. The average
reference montage yielded substantially noisier results for all
subjects and is shown in Figure S9; however, themain peaks (e.g.,
at 24 h) are evident in this case as well. The green, red and blue
lines indicate the average, bipolar, and common (Cz) reference,
respectively. The peaks in the periodogram correspond to periods
of 3.4, 5.9, 11.8, and 23.6 h and have been marked accordingly
in the case of corCC (Figure 8 and Figure S9). Similar peaks
were observed for all other correlation measures. We observed
four main peaks for all montages across patients, the location
of which varied between 3.2 and 3.8 h (mean: 3.6 h), 4.9 and
5.9 h (mean: 5.4 h), 11.8 and 12.2 (mean:12 h), and 23.6 to 24.5 h
(mean: 24 h). For simplicity, we refer to the main periodic peaks
using these mean values from now on. The periodicity peaks at
around 3.6, 5.4 h were observed in all subjects, while the peaks at
around 12 and 24 h were identified in eight out of 10 subjects,
and six out of six subjects, respectively (recall that recordings
longer than 24 h were obtained for six subjects). In Figure S9 we
can observe that, in the case of the average reference montage,
the peaks are located at slightly different frequencies compared
to the other two montages, especially in the case of CC, COH,
and IC, indicating that these correlation measures are influenced
by reference choice to larger extent. On the other hand, corCC
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FIGURE 3 | Average degree of the functional brain networks of Patient 4 as a function of time, using corrected cross correlation for assessing pairwise correlations.

The vertical dashed line indicates seizure onset and the gray bars indicate sleep intervals. In contrast to cross correlation (Figure 2), corrected cross correlation yields

the same 24 h periodic pattern for all montages.

and WPLI are affected less by reference choice and yield the
most consistent frequency peaks overall. Figure S10 illustrates
the Lomb-Scargle periodogram of the average degree of the
functional brain networks obtained from Patient 6, who was the
only psychogenic seizure patient in our cohort, constructed using
all correlation measures for the bipolar (red) and common (Cz;
blue) reference. The peaks in the periodogram correspond to
periods of 3.4, 4.8, and 12.05 h and have beenmarked accordingly
in the case of corCC (Figure S10). Note that the length of the
recordings for this patient was 24 h; therefore, the peak at 24 h is
not as clear as for subjects with longer recordings, except in the
case of the corCC (Figure S10—top right panel).

Circular Statistics
The instantaneous phases of the main identified periodicities
(mean across patients: 3.6, 5.4, 12, and 24 h) at seizure onset are
shown in Figures 9, 10 respectively. These were obtained from
all seizures from nine patients (i.e., except Patient 6) for the
correlation measures that were less affected by reference choice,
i.e., CorCC and WPLI (Figure 8 and Figure S9). Figures 9,
10 show the instantaneous phases for the average network
degree obtained using corCC and WPLI, respectively, for all
montages, and peaks. The left panels show the instantaneous
phases on the unit circle, while the right panels show the
corresponding angular histograms. The green, red, and blue

circles indicate the instantaneous phases obtained from the
average, bipolar, and common (Cz) reference, respectively. The
lines of the same color indicate the direction and magnitude
of the mean resultant vector. The length of this vector is a
crucial quantity for the measurement of circular spread and
hypothesis testing in circular statistics. The closer the vector
magnitude is to one, the more concentrated the data sample
is around the mean direction. The instantaneous phases of the
3.6 h (Figures 9A, 10A) and 5.4 h (Figures 9B, 10B) periodicities
were more concentrated around the mean direction and more
consistent acrossmontages. On the other hand, the instantaneous
phases of the 12 h (Figures 9C, 10C) and 24 h (Figures 9D, 10D)
periodicities were found to be less concentrated around themean.
Overall, corCC yielded the highest phase concentrations for the
examined periodic components.

Table 2 shows the length of the mean resultant vector R and
the corresponding p-values (Rayleigh test, max-values in groups)
for the instantaneous phases of the average degree as obtained
for all correlation measures and reference choices. It is evident
from the Figures 9, 10 and Table 2 that the instantaneous phases
are not distributed uniformly, but seizures occur within specific
phase ranges, especially for the 3.6 and 5.4 h periodicities. With
regards to the slower periodicities (12 and 24 h), the phases
were distributed more uniformly around the circle, yielding
non-significant values in some cases (Table 2). Overall, the
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FIGURE 4 | Average degree of the functional brain networks of Patient 4 as a function of time (broadband signal), using coherence for assessing pairwise correlations.

The vertical dashed line indicates seizure onset and the gray bars indicate sleep intervals. Similarly to correlation (Figure 2), coherence yields an opposite 24 h

periodic pattern when using the average reference.

bipolar montage yielded the most consistent results across all
correlation measures, with the corresponding p-values being
significant in all cases (Table 2). Overall, the results of Table 2
suggest that the coupling between seizure onset and network
periodicities is detected for almost all combinations of reference
and correlation measure. corCC yielded the most significant
results across all periodic components followed by WPLI, while
IC resulted in strong couplings for the shorter periodicities (3.6
and 5.4 h; Table 2).

DISCUSSION

Complex network analysis has recently emerged as a promising
approach for studying brain dynamics and particularly functional
connectivity. However, network analyses based on signal
correlations of scalp EEG recordings are affected by the choice
of reference electrode (montage), as well as volume conduction
and more generally the fact that common signal is picked up by
different electrodes leading to spurious correlations at zero lag.
In this work, we investigated the effects of reference choice and
volume conduction on the long-term properties of functional
brain networks obtained from scalp EEG measurements using
long duration data (between 22 and 94 h) from patients with

epilepsy, extending our previous studies (Christodoulakis et al.,
2013; Anastasiadou et al., 2016; Mitsis et al., 2018). To do
so, we examined six bivariate signal correlation measures—CC,
corCC, COH, IC, PLI, and WPLI, as well as three montages—
common (Cz), average and bipolar. We quantified the long-term
brain network properties using three widely used graph theoretic
measures: average degree, efficiency, and clustering coefficient
(Rubinov and Sporns, 2010).

Overall, the results obtained using the examined correlation
measures and montages revealed consistent periodicities over
different time scales in the obtained brain network properties, in
agreement with (Anastasiadou et al., 2016; Mitsis et al., 2018).
Specifically, in these papers the presence of a main 24 h circadian
periodicity as well as periodicities around 3.6, 5.4, and 12 h
(harmonically related to the 24 h periodicity on a subject-specific
basis) were revealed for both network summative properties and
topology (Mitsis et al., 2018). Here, we have extended the results
by systematically examining the effects of correlation measure
andmontage choice.While the locations of themain periodicities
were found to be overall consistent across these choices (Figure 8
and Figures S9, S10), it was found that the choice of reference
and correlation measure may have pronounced effects on the
results (Figures 2–7). Specifically, the average reference was
found to yield the most pronounced differences compared to the
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FIGURE 5 | Average degree of the functional brain networks of Patient 4 as a function of time (broadband signal), using imaginary coherence for assessing pairwise

correlations. The vertical dashed line indicates seizure onset and the gray bars indicate sleep intervals. Similarly to correlation (Figure 2) and coherence (Figure 4),

imaginary coherence yields an opposite 24 h periodic pattern when using the average reference.

other montages. This includes a reversal of the characteristics
of the main 24 h periodicity (higher average degree, global
efficiency and clustering coefficient during sleep; Figures 2, 4–
6 and Figures S2, S4) as well as more variability with regards
to the identified frequency peaks for a subset of the employed
correlation measures (Figures S9,S10).

Ideally, the EEG referencing should be performed with respect
to a reference electrode with zero voltage values. However, in
practice the voltage values of the reference electrode are never
zero. In addition to these reference effects, in practice the data
and inferences from it are also affected by volume conduction,
i.e., the fact that two or more sensors may instantaneously
pick up a signal from the same source. Therefore, in practice,
both volume conduction and reference electrode effects will
occur inevitably. This is particularly true in the clinical setting
examined in the present paper, where we had a standard 10–
20 setup with a low number of electrodes. However, in such a
setting of limited electrode numbers and limited head electrode
coverage in an empirical dataset, is not possible to directly
address the reference electrode and volume conduction effects.
Therefore, the effects of volume conduction were indirectly
assessed by using measures that are differentially sensitive to the
influence of volume conduction. Both volume conduction and
common (non-zero) reference effects can result in artifactual
zero-time lag correlations. Various measures/correlation metrics

have been proposed that are relatively insensitive to such zero-
lag correlations including corCC, IC, PLI, and WPLI. Such
measures (largely) account for volume conduction effects, which
are necessarily zero-time lag but also for effects of non-zero
and/or common reference.

Of the six correlation measures that we investigated, CC,
and COH were affected by the choice of recording reference
(montage) to the greatest degree, followed by IC and PLI.
This was expected overall, as CC and COH are known to
be influenced by zero-lag correlations (Nunez and Srinivasan,
2006). It should be noted that zero-lag correlations could be
due to both artifactual (volume conduction/reference effects)
and true correlations, whereas non-zero lag correlations are
more likely to reflect true correlations of underlying sources
(Eggermont and Smith, 1996; Stam et al., 2007). Thus, by
quantifying correlations by measures that are less sensitive to
volume conduction and active reference effects, one accepts the
risk of missing functionally meaningful correlations at zero-
lag, but at the same time, the most frequent artifacts for
misinterpretation of correlations are very much reduced (Stam
et al., 2007). CorCC andWPLI were the least affected correlation
measures, as all three montages yielded similar network measure
patterns (Figures 3, 6 and Figures S3, S5–S7). In addition to
the aforementioned differences related to periodic peaks and
reversal of the main circadian pattern, the average reference
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FIGURE 6 | Average degree of the functional brain networks of Patient 4 as a function of time (broadband signal), using PLI for assessing pairwise correlations. The

vertical dashed line indicates seizure onset and the gray bars indicate sleep intervals. PLI yields a different 24 h periodic pattern when using the average reference.

yielded higher connectivity (as reflected on the average degree;
Figures 2–6) compared to the other two montages for the same
threshold value.

In our previous work, we have also assessed the effect
of reference and correlation measure choice using relatively
short data records (30min) before and after seizure onset
(Christodoulakis et al., 2014). Our results demonstrated that
the graphs constructed with CC and COH were affected by
volume conduction and montage more markedly; however, they
exhibited a similar trend—decreasing connectivity at seizure
onset, as well as during the ictal and early postictal periods,
increasing again several minutes after the seizure has ended—
with all the aforementioned measures accounting for volume
conduction (corCC, PLI, WPLI) except IC. In particular,
networks constructed using CC yielded a clearer discrimination
between the pre-ictal and ictal periods than the measures
less sensitive to volume conduction such as the PLI and IC.
Thus, somewhat paradoxically, although removing the effects of
volume conduction allows for a more accurate reconstruction
of the true underlying networks this may come at the cost of
discrimination ability with respect to brain state.

The average reference produces a good approximation of the
reference-free potentials, given sufficient electrode coverage of
the head (Nunez and Srinivasan, 2006; Nunez, 2011). However,

the assumption underlying the average reference montage only
holds for spherical volume conductors (Yao, 2017). As a
standard 10–20 electrode system was used here, the average
reference montage is likely to provide a poor approximation
of the reference-free potentials (Nunez and Srinivasan, 2006,
p. 295) as both the low number of electrodes and limited
head coverage errors (only the upper part of the head was
sampled) come into play. This is supported by our results,
which suggest that using the average reference may result
in considerable common signal being subtracted from each
electrode, introducing artifactual correlation at zero-time lags.
On the other hand, the bipolar montage yields better estimates
of the local gradient of the potential along the scalp surface
than a fixed reference at a remote distance. This increases
sensitivity and spatial resolution for superficial generators but
reduces the sensitivity to distant sources (Nunez and Srinivasan,
2006). Also, as we are assessing connectivity in the present
study, the bipolar montage is a reasonable choice as it provides
an estimate of local brain dynamics. When the effects of
zero-time lag correlations are removed, for instance using
corCC (Figure 3) or WPLI (Figure 7), the average reference
montage results exhibited qualitatively similar trends to the
bipolar [and common (Cz)] montage data. This supports
the idea that there is possibly a remaining large common
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FIGURE 7 | Average degree of the functional brain networks of Patient 4 as a function of time (broadband signal), using WPLI for assessing pairwise correlations. The

vertical dashed line indicates seizure onset and the gray bars indicate sleep intervals. Similarly to corrected cross-correlation (Figure 3), WPLI yields the same 24 h

periodic pattern for all montages.

component in the average that is instantaneously subtracted from
each channel.

The REST (reference electrode standardization technique)
referencing method has recently been proposed to yield
approximately reference-free potentials (Yao, 2001, 2017; Yao
et al., 2005; Marzetti et al., 2007; Qin et al., 2010; Xu et al.,
2014; Chella et al., 2016; Dong et al., 2017) and has been
shown in simulations to outperform the average reference
montage (Qin et al., 2010; Nunez, 2011). Ideally, the REST
method is implemented by recording electrode positions and
using individual head models but it can also be implemented
using an average head template mode. A recent simulation
study has suggested that REST outperforms average referencing
even for a limited number of electrodes (Hu et al., 2018). In
our experimental setting, due to that electrode positions were
not recorded and the subsequent lack of an individual head
model, as well as to the limited electrode density and coverage,
which are typical in clinical settings, we did not implement
REST. Also, we did not consider linked-ears or linked-mastoids
referencing (physical or mathematical), as this approach has
limited theoretical basis and may yield biased estimates of
reference-free potentials (Nunez and Srinivasan, 2006).

Our results agree with previous studies (Nunez et al.,
1997; Stam et al., 2007; Vinck et al., 2011; Peraza et al.,

2012; Christodoulakis et al., 2014) in that corCC and WPLI
were found to be less affected by reference choice. To
our knowledge, our study is the first that demonstrates
this for long-duration properties of the scalp EEG-based
functional brain networks. Also, our results overall agree
with previous studies applying graph-theoretic measures to
intracranial recordings. Specifically, Kuhnert et al. (2010)
recorded intracranial EEG data and constructed functional
brain networks using mean phase coherence. They showed that
functional brain networks change periodically over time, with
prominent cycle around 24 h, and that seizures influence the
brain networks significantly less compared to daily rhythms.
In 2017, Geier and Lehnertz investigated the temporal and
spatial variability of the importance regions in evolving epileptic
brain networks and showed that the importance of brain
regions fluctuates over time, with these fluctuations being mostly
attributed to processes acting on timescales of hours to days.

We also assessed the effect of reference choice and correlation
measure on the correlation strength between the instantaneous
phase of the functional network periodicities in network
properties (3.6, 5.4 and 12 h) with seizure onset revealed in
our previous work (Anastasiadou et al., 2016; Mitsis et al.,
2018). Importantly, in these studies we showed that connectivity-
based markers are a more specific marker of seizure onset,
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FIGURE 8 | Lomb-Scargle periodogram of the average degree of the functional brain network of Patient 4 using cross-correlation, corrected cross-correlation,

coherence, imaginary coherence, PLI, and WPLI for common reference (blue line) and bipolar montage (red line). The dotted horizontal lines denote the statistical

significance level (p = 0.05). The arrows in the inset figures denote the periods around 3.6 and 5.4 h, which were identified across all subjects along with the peaks

around 12 and 24 h. Corrected cross correlation and WPLI were affected less by reference choice.

FIGURE 9 | Instantaneous phases of the network average degree at seizure onset for the (A) 3.6 h, (B) 5.4 h, (C) 12 h, and (D) 24 h periodicities of all patients for

corrected cross correlation. The left panels present the unit circle and the phases as points for all seizures from all patients. The right panels show the angular

histogram of the distribution as well as the corresponding probability values. Blue, common reference (Cz); green, average reference; red, bipolar reference.
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FIGURE 10 | Instantaneous phases of the network average degree at seizure onset for the (A) 3.6 h, (B) 5.4 h, (C) 12 h, and (D) 24 h periodicities of all patients for

WPLI. The left panels present the unit circle and the phases as points for all seizures from all patients. The right panels show the angular histogram of the distribution

as well as the corresponding probability values. Blue, common reference (Cz); green, average reference; red, bipolar reference.

TABLE 2 | The values for the mean resultant vector R and the p-values obtained with Rayleigh’s test for uniform distribution of the main periodic component

instantaneous phases at seizure onset for all correlation measures, montages, and patients.

Correlation measure and reference choice R p-value R p-value R p-value R p-value

3.6 h 5.4 h 12 h 24 h

CC Average 0.82 0.004 0.86 0.001 0.59 0.15 0.29 0.9

Bipolar 0.97 2.5e-5 0.97 2.4e-5 0.85 4.3e-4 0.72 0.02

Common 0.95 2.6e-5 0.94 3.4e-5 0.73 0.02 0.73 0.03

corCC Average 0.97 2.4e-5 0.96 2.2e-5 0.85 0.006 0.85 0.007

Bipolar 0.92 7.9e-5 0.91 8.9e-4 0.87 0.005 0.77 0.01

Common 0.96 2.6e-5 0.96 2.6e-5 0.96 6.8e-4 0.9 0.004

COH Average 0.95 1.8e-5 0.91 1.7e-5 0.75 0.09 0.88 0.003

Bipolar 0.95 6.1e-6 0.89 0.002 0.73 0.03 0.81 0.01

Common 0.95 2.4e-5 0.89 2.2e-4 0.65 0.15 0.51 0.6

IC Average 0.99 2.3e-5 0.98 2.6e-5 0.91 4.1e-4 0.84 0.02

Bipolar 0.98 2.5e-5 0.97 2.6e-5 0.88 1.4e-4 0.87 0.006

Common 0.97 2.6e-5 0.98 2.5e-5 0.82 9.6e-4 0.69 0.09

PLI Average 0.94 4.11e-5 0.88 8.7e-4 0.47 0.5 0.68 0.2

Bipolar 0.95 2.6e-5 0.90 1.6e-4 0.70 0.02 0.77 0.01

Common 0.95 2.6e-5 0.94 2.5e-5 0.66 0.3 0.83 0.01

WPLI Average 0.95 5.2e-5 0.87 0.002 0.72 0.5 0.73 0.8

Bipolar 0.90 2.1e-4 0.83 0.003 0.73 0.03 0.70 0.02

Common 0.92 1.4e-4 0.85 0.002 0.79 0.01 0.86 0.009

The p-values that are larger than 0.05, suggesting that the instantaneous phases are distributed uniformly around the circle, are indicated in red. CC, cross-correlation; corCC, corrected
cross-correlation; COH, coherence; IC, imaginary coherence; PLI, phase lag index; and WPLI, weighted phase lag index.
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as the couplings between long-term periodic components and
seizure onset were not found to be present for the scalp EEG
signals (Mitsis et al., 2018). The instantaneous phase of these
periodicities (as obtained from the average degree time course)
over different time scales was found to be correlated with seizure
onset (Figures 9, 10 and Table 2) for almost all combinations
of correlation measure and montage choices and that, overall,
corCC, WPLI, and IC yielded the strongest coupling strengths
(Table 2). In all cases, the instantaneous phase of the 3.6 and
5.4 h periodic components were more concentrated around the
mean direction as compared to the 12 and 24 h components
(Figures 9C,D, 10C,D), in agreement with (Anastasiadou et al.,
2016; Mitsis et al., 2018).

In the present paper, we assumed that the period of the
identified network-related periodic components is constant over
time. In principle, these periods may change over longer time
periods (multiple days to weeks to even months). However,
to observe such non-stationarities, particularly for the slower
(e.g., circadian periodicities) would require very long duration
data. We are aware of only one study of this kind that
used intracranial data collected over weeks/months using an
implantable deep brain stimulation system, where it was shown
that subject-specific multi-dien rhythms in the intracranial
EEG signal properties were correlated to seizures (Baud et al.,
2018). The authors of that paper did not examine network
properties as brain coverage was more limited. However, as
the main circadian periodicity remains approximately constant
over time (around 24 h) and the shorter periodicities that were
found to be correlated to seizure onset hereby were mostly
harmonics of the circadian periodicity, it is expected that even
if time-frequency analysis is implemented, the results would not
change substantially.

In conclusion, the present study suggests that the choice
of reference may considerably affect the estimated long-term
properties of graph theoretic analysis of scalp EEG functional
brain networks and that, for the relatively low number of
electrodes examined hereby, the bipolar montage yielded the
most consistent results, while corCC and WPLI were the
correlation measures that were found to be least affected by
reference choice. Therefore, using a bipolar montage combined
with one of these correlation measures (corCC and WPLI)
in similar studies may lead to a better understanding of
long-term functional connectivity, as well as improved seizure
prediction/detection algorithms that take into account the
instantaneous phase of the underlying network periodicities.
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Figure S1 | Average degree of the functional brain network of Patient 4 using

cross-correlation and the bipolar montage, constructed using multivariate phase

randomization surrogate data (blue line), and thresholding as in Figure 2 (red line;

threshold value: 0.65). The surrogate method yielded more densely connected

networks. While the temporal patterns are similar, the circadian periodicity is less

clear for the surrogate-obtained results.

Figure S2 | Efficiency of the functional brain networks of Patient 4 as a function of

time, using cross correlation for assessing pairwise correlations. The vertical

dashed line indicates seizure onset and the gray bars indicate sleep intervals.

Cross correlation yields an opposite 24 h periodic pattern when using the average

reference. However, we can clearly observe a periodic pattern with a main period

equal to around 24 h for all montages.

Figure S3 | Efficiency of the functional brain networks of Patient 4 as a function of

time, using corrected cross correlation for assessing pairwise correlations. The

vertical dashed line indicates seizure onset and the gray bars indicate sleep

intervals. In contrast to cross correlation (Figure S2), corrected cross correlation

yields the same 24 h periodic pattern for all montages.

Figure S4 | Clustering coefficient of the functional brain networks of Patient 4 as a

function of time using cross correlation for assessing pairwise correlations. The

vertical dashed line indicates seizure onset and the gray bars indicate sleep

intervals. Cross correlation yields an opposite 24 h periodic pattern when using the

average reference, similarly in efficiency (Figure S1). However, we can clearly

observe a periodic pattern with a main period equal to around 24 h for

all montages.

Figure S5 | Clustering coefficient of the functional brain networks of Patient 4 as a

function of time, using corrected cross correlation for assessing pairwise

correlations. The vertical dashed line indicates seizure onset and the gray bars

indicate sleep intervals. In contrast to cross correlation (Figure S3), corrected

cross correlation yields the same 24 h periodic pattern for all montages similarly in

efficiency (Figure S2).

Figure S6 | Efficiency of the functional brain networks of Patient 4 as a function of

time (broadband signal), using WPLI for assessing pairwise correlations. The

vertical dashed line indicates seizure onset and the gray bars indicate sleep

intervals. Similarly, to corrected cross correlation (Figures S2, S3), WPLI yields

the same 24 h periodic pattern for all montages.

Figure S7 | Clustering coefficient of the functional brain networks of Patient 4 as a

function of time (broadband signal), using WPLI for assessing pairwise

correlations. The vertical dashed line indicates seizure onset and the gray bars

indicate sleep intervals. Similarly to corrected cross correlation (Figures S2, S3),

WPLI yields the same 24 h periodic pattern for all montages as in Figure S5

with efficiency.

Figure S8 | Lomb-Scargle periodogram of the average degree of the functional

brain network of Patient 4 using cross-correlation, corrected cross-correlation,

coherence, imaginary coherence, PLI, and WPLI for all montages. The dotted

horizontal lines denote the statistical significance level (p = 0.05). The arrows in

the inset figures denote the periods around 3.6 and 5.4 h, which were identified

across all subjects along with the peaks around 12 and 24 h. Corrected cross

correlation and WPLI were affected less by reference choice.

Figure S9 | Lomb-Scargle periodogram of the average degree of the functional

brain network of Patient 4 obtained using cross-correlation and bipolar montage,

whereby binarization was performed using surrogate data. As suggested in

Figure S2, the circadian periodicity is less pronounced compared to networks

obtained using thresholding.
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Figure S10 | Lomb-Scargle periodogram of the average degree of the functional

brain network of Patient 6 (psychogenic seizure patient) using cross-correlation,

corrected cross-correlation, coherence, imaginary coherence, PLI, and WPLI for

common reference (blue line) and bipolar montage (red line). The dotted horizontal

lines denote the statistical significance level (p = 0.05). The arrows in the inset

figures denote the periods around 3.6 and 5.4 h, which were identified across all

subjects along with the peaks around 12 and 24 h. Corrected cross correlation

and WPLI were affected less by reference choice.
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