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The brainstem dorsal column nuclei (DCN) are essential to inform the brain of tactile
and proprioceptive events experienced by the body. However, little is known about
how ascending somatosensory information is represented in the DCN. Our objective
was to investigate the usefulness of high-frequency (HF) and low-frequency (LF) DCN
signal features (SFs) in predicting the nerve from which signals were evoked. We also
aimed to explore the robustness of DCN SFs and map their relative information content
across the brainstem surface. DCN surface potentials were recorded from urethane-
anesthetized Wistar rats during sural and peroneal nerve electrical stimulation. Five
salient SFs were extracted from each recording electrode of a seven-electrode array. We
used a machine learning approach to quantify and rank information content contained
within DCN surface-potential signals following peripheral nerve activation. Machine-
learning of SF and electrode position combinations was quantified to determine a
hierarchy of information importance for resolving the peripheral origin of nerve activation.
A supervised back-propagation artificial neural network (ANN) could predict the nerve
from which a response was evoked with up to 96.8 ± 0.8% accuracy. Guided
by feature-learnability, we maintained high prediction accuracy after reducing ANN
algorithm inputs from 35 (5 SFs from 7 electrodes) to 6 (4 SFs from one electrode and
2 SFs from a second electrode). When the number of input features were reduced, the
best performing input combinations included HF and LF features. Feature-learnability
also revealed that signals recorded from the same midline electrode can be accurately
classified when evoked from bilateral nerve pairs, suggesting DCN surface activity
asymmetry. Here we demonstrate a novel method for mapping the information content
of signal patterns across the DCN surface and show that DCN SFs are robust across a
population. Finally, we also show that the DCN is functionally asymmetrically organized,
which challenges our current understanding of somatotopic symmetry across the
midline at sub-cortical levels.

Keywords: machine learning, tactile, proprioception, somatosensory, lateralization, neural prosthesis,
gracile nuclei
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INTRODUCTION

The brainstem DCN are one of the first processing centers
for ascending somatosensory information, preceding conscious
perception in the somatosensory cortex. There has been a
recent resurgence of interest in the DCN, to investigate
how somatosensory signals are transformed as they ascend
the neuraxis to the neocortex (Witham and Baker, 2011;
Bengtsson et al., 2013; Jörntell et al., 2014), and to investigate
the DCN as a potential neuroprosthetic target to restore
somatosensation following spinal cord injury (Richardson et al.,
2015, 2016; Sritharan et al., 2016; Suresh et al., 2017). However,
there is still little known about how afferent signals are
processed in this region.

We previously characterized electrical signals acquired from
the DCN surface in response to peripheral nerve stimulation
demonstrating a range of highly characteristic SFs (Loutit et al.,
2017). These SFs are significantly different when evoked from
peripheral nerves with compositions of afferents that innervate
different peripheral structures – either primarily cutaneous (sural
nerve), or a mixture of cutaneous and deep structures (peroneal
nerve) – and can, therefore, reveal information about the type
of sensory input arising from the periphery. The reproducibility
and conservation of these SFs within and across different animals
suggests that they might be indicative of physiologically relevant
neural processes (Loutit et al., 2017).

Features of particular interest include two that represent
HF events and three comprising LF events. LF components
of electrocorticographic (ECoG) potentials, similar to those
investigated here, have been attributed to arise from slow network
activity related to synaptic events (Buzsáki et al., 2012), while
the HF components are believed to represent multiunit spiking
activity, generated from axonal action potentials (Logothetis,
2003). While most studies have focused on single-cell spiking
dynamics of DCN cells (Canedo et al., 1998; Nuñez et al., 2000;
Rowe, 2002; Bengtsson et al., 2013; Hayward et al., 2014; Jörntell
et al., 2014), there is little information on multi-unit activity or
peripherally evoked LF events in the DCN.

In the present study, we aimed to determine if DCN surface
potential SFs contain information that can accurately identify
the site where a peripheral sensory signal originated. To achieve
this, we quantify how learnable classes of input features are,
as determined by a ML algorithm’s success in making accurate
classifications (Valiant, 1984; Schapire, 1990), which we define
here as feature-learnability. Feature-learnability is distinct from

Abbreviations: ANN, artificial neural network; DCN, dorsal column nuclei; e1,
electrode 1; e2, electrode 2; e3, electrode 3; e4, electrode 4; e5, electrode 5;
e6, electrode 6; e7, electrode 7; e{1–7}, inclusive of electrodes 1 to 7; FDR,
false discovery rate; HF, high-frequency; LF, low-frequency; LM, linear regression
model; LMEM, linear mixed-effects model; LOO, leave one out; LPN, left peroneal
nerve; LSN, left sural nerve; ML, machine learning; N1, peak of the first major
negative deflection of the dorsal column nuclei surface potential; P1, peak of
the first major positive deflection of the dorsal column nuclei surface potential;
P1N1, height from the peak of the first major positive deflection to the peak of
the first major negative deflection of the dorsal column nuclei surface potential;
PP, pooled population; RPN, right peroneal nerve; RSN, right sural nerve; S1,
primary somatosensory cortex; SEM, standard error of the mean; SF, signal feature;
sMEA, surface multi-electrode array; TRM, total response magnitude; WIA, within
individual animals.

Vapnik–Chervonenkis (VC) theory (Vapnik and Chervonenkis,
1971) or probably approximately correct (PAC) theory (Valiant,
1984) that aim to determine whether the problem faced by
an ML algorithm is machine-learnable (statistically learnable)
(Blumer et al., 1989), and does not concern whether its machine-
learnability is decidable (Ben-David et al., 2019). Rather, we use
feature-learnability to quantify and rank the electrode positions
and SFs with the most relevant information for classifying the
source of sensory input. Feature-learnability permits us to focus
on the information content of the signals, as opposed to the
performance of the ML algorithm.

Here, we record electrically induced peripheral signals from
the DCN with a surface multielectrode array (sMEA) and extract
features from established LF and HF signal frequency bands. We
train supervised back-propagation ANNs to classify the nerve
evoking a DCN response based on combinations of SFs derived
from selected electrodes. We confirm the reproducibility and
robustness of DCN nerve-evoked SFs, both within and across
different animals, and show that a combination of LF and HF
features are required for maximizing classification accuracy with
a minimized set of electrodes and SFs. We also confirm that
feature-learnability reliably reflects the statistical differences in
the physiological characteristics of DCN signals, and demonstrate
that high ML accuracy relates to asymmetrically arranged SFs
across the surface of the DCN (Loutit et al., 2017).

MATERIALS AND METHODS

Animals
All procedures were approved by the Australian National
University Animal Experimentation Ethics Committee
(A2014/52) and adhered to the Australian code of practice
for the care and use of animals for scientific purposes. Seven
(n = 7) 8-week-old male Wistar rats (325–420 g; Australian
Phenomics Facility, Canberra, ACT, Australia) were used in this
study. Animals were housed individually, or with up to 3 rats
per cage, on a 12-h light-dark cycle, with access to food and
water ad libitum.

Surgery
Animals were anesthetized with urethane (1.4 g/kg i.p). The
brainstem was exposed between the foramen magnum and the
C1 vertebra and the dura and arachnoid mater excised. In most
cases the C1 vertebra was partially cut away with rongeurs (World
Precision Instruments) to create more space for placement of
the sMEA. The left and right sural and peroneal nerves were
isolated and prepared for electrical stimulation as previously
described; see Loutit et al. (2017) for full details of the surgical
procedures and electrophysiology setup of hindlimb nerves.
Seven simultaneous recordings across the surface of the DCN
were performed by adapting a sMEA (Nucleus 22 Auditory
Brainstem Implant, Cochlear Ltd. (see Chelvanayagam et al., 2008
for details), which was symmetrically aligned over the brainstem
(Figure 1A, central insert). A flexible plastic rod, attached to a
micromanipulator, was used to lightly press the sMEA onto the
brainstem to hold it in place and facilitate stable recordings.
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FIGURE 1 | Example signals, signal processing, and feature extraction of
nerve-evoked potentials recorded from the DCN. (A) An example set of
recordings from a single animal. Stimuli were presented to the left or right
sural or peroneal nerves and evoked potentials recorded on the surface of the
DCN. The central insert illustrates the sMEA electrode configuration (e1–e7)
and size relative to anatomical landmarks (obex indicated by the small black
filled circle; midline, gracile/cuneate nuclei borders indicated by black
boundaries; major vessels indicated by gray overlay). The colors of the
recorded signals match those of their electrode (also indicated in far-left
traces). (B) Spectrograms of example signals evoked by each of the four
nerves recorded at e4. Top traces in each quadrant show spectral power
between 1 and 5000 Hz. Black boxes outline the frequency HF band of
interest from 550 to 3300 Hz, which are expanded in the lower plots of each
quadrant. Spectral power was normalized between 0 and 1 for each trace to
facilitate comparison between the nerves. (C) An example of an individual
sural nerve-evoked DCN surface potential raw signal (10 kHz low-pass filter;
positive potentials shown as downward deflections). Arrow indicates stimulus
artifact. P1 indicates the peak of the positive deflection and N1 indicates the
peak of the negative deflection. The P1N1 amplitude SF was measured as
N1 – P1 (µV). The gradient of the red dashed line demonstrates the P1N1
slope SF. The N1 latency SF was measured as the time from the stimulus
artifact (black arrow) to the peak of the negative deflection (N1).

(Continued)

FIGURE 1 | Continued
(D) Same signal as (C) after band-pass filtering (550–3300 Hz). Red dots
indicate event detection used to quantify the HF peak count SF, defined as
peaks > 3 standard deviations above background noise. (E) Signal in (D),
rectified. The red shaded region underneath the signal indicates the HF
integral SF. Dashed lines indicate time window from 15 to 55 ms for extraction
of the HF peak count (D) and HF integral (E) SFs. DCN, dorsal column nuclei;
e1–e7, electrode 1 to electrode 7; sMEA, surface multi-electrode array; SF,
signal feature.

Stimulation, Recording, Electrode
Nomenclature and Signal Processing
Electrical stimulation and recordings were driven and acquired,
respectively, by the same data acquisition system (PowerLab
16/35, LabChart Pro software Version 8.1.1, ADInstruments,
Bella Vista, NSW, Australia). Supramaximal single electrical
monophasic pulses were used to stimulate sural and peroneal
nerves on the right and left side of the body (RSN, LSN, RPN,
and LPN) whilst responses were simultaneously recorded from
the ipsilateral sciatic nerve and the DCN surface as previously
described (Loutit et al., 2017). Twenty sets of stimuli (11 trials
at 0.53 Hz per set) were delivered as current pulses with 0.05 ms
pulse-widths and 0.7–1.0 mA amplitudes, which were determined
to be 10–20% above maximal stimuli for all nerves. DCN
signals were acquired from the seven electrodes on the sMEA
(Figure 1A) and filtered (50 Hz notch filter; 10 kHz low-pass
filter) through custom built amplifiers before being digitally
recorded at a sample rate of 40 kHz. There was no ringing
observed from filtering in the DCN signals which had onset
latencies >5 ms. The seven electrodes were referred to from
rostral to caudal as follows: left side electrodes: e1, e2; midline
electrodes: e3, e4, e5; right side electrodes: e6, e7 (Figure 1A).
Combinations of electrodes are referred to in sets, e.g., electrodes
e1, e4 and e5 combined are referred to as e{1, 4, 5} and all seven
electrodes are referred to as e{1–7}.

Signal Feature Extraction
Previously, we inspected time-frequency plots and observed
nerve-dependent differences in the HF band between 550 and
3300 Hz of DCN surface signals (Loutit et al., 2017). Here,
time-frequency plots were generated using the spectrogram
function (MATLAB), with 10 ms rolling windows (5 ms overlap).
Spectrograms were generated between 1 Hz and 10 kHz, to show
the power spectral density of the raw signals (plotted from 1 Hz
to 5 kHz), and between 550 and 3300 Hz to show the HF
components of DCN surface responses (Figure 1B). These plots
confirmed that the sural and peroneal nerves contain different
information in the 550–3300 Hz HF band.

The extraction of each feature is described in Figures 1C–E.
We selected three SFs related to the LF DCN waveform extracted
directly from individual raw signals (Figure 1C): the latency
to the peak of N1 (N1 latency), the slope of a line from the
peak of P1 to the peak of N1 (P1N1 slope), and the amplitude
from the peak of P1 to the peak of N1 (P1N1 amplitude).
Two features were extracted from the HF filtered component
of individual signals: the total number of HF events between
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15 and 55 ms post-stimulus (HF peak count; Figure 1D), and
the total integral of the rectified HF signal between 15 and 55 ms
post-stimulus, less background noise (HF integral; Figure 1E).
HF events were defined as peaks >3 standard deviations above
the background noise (Figure 1D). Background noise was
calculated from a 10 ms window (−15 ms to−5 ms pre-stimulus).
Signal processing and analyses were performed offline (MATLAB
version R2016b, MathWorks). Stimulation artifacts were reduced
to background noise-levels to avoid ringing before signals were
filtered to extract HF components (bandpass 550–3300 Hz;
10-order Butterworth filter, using a zero-phase response filter:
filtfilt function, MATLAB; Figure 1D).

To test if any of the five input features represented similar
DCN signal information, we performed Pearson’s product-
moment correlations for each pair of features, extracted from all
signals recorded across animals.

Machine Learning and
Feature-Learnability
The set of five SFs, extracted from each of the seven sMEA
electrodes, was paired to the respective nerve being stimulated,
thus generating input/output pairs for subsequent ML. We
used a supervised learning classification algorithm from the
MATLAB Neural Network Toolbox (version 2016b, Mathworks).
This ANN was constructed with the patternnet function using
a gradient descent with momentum and adaptive learning rate
backpropagation training function (traingdx). The hidden layer
activation function was a hyperbolic tangent sigmoid transfer
function (tansig), and a softmax transfer function (softmax) was
used in the output layer. These functions are commonly used
for classification of this nature as they are adept at quantifying
relevant information content hidden within a complex dataset, by
resolving convoluted variable interactions and robustly mapping
them to target classes (Szegedy et al., 2014; Carlini and Wagner,
2017). However, other ML approaches are equally valid for this
purpose. Analyses were split into three sets: (i) using all five SFs
from all seven electrodes, (ii) using all five SFs extracted from
subsets of the seven electrodes, and (iii) using subsets of SFs
extracted from subsets of electrodes. Inputs and target data were
normalized between −1 and 1 prior to dividing into training,
validation and test subsets, as per the patternnet default settings.
In all analyses, the hidden layer was fixed at 20 neurons and
the output layer had 4 neurons corresponding to the stimulated
nerve targets (RSN, LSN, RPN, and LPN). The task for the
ANN was thus to reliably determine which of the 4 nerves had
been stimulated using different inputs. We started with an ANN
that had 35 neurons in the input layer (5 SFs for each of the
7 electrodes), while the number of input neurons varied for the
other analyses. Cross-validation for a given analysis configuration
(choice of SF and electrode input features) was performed as
follows: ML was repeated 10 times with different seed states each
time to alter the ANN initial conditions and allocation of data
into training, validation and testing subsets. Of the 10-repeated
training/validation/testing cycles, the mean of the test results
was used to establish a confusion matrix that represented stable
learning outcomes. The mean of correct classifications for all

possible outputs (i.e., n = 4 possible nerves) was used to report the
feature-learnability outcomes of the supervised learning for each
approach. Feature-learnability therefore provides: (i) a value for
the mean prediction accuracy of all trained ANN outputs, and
(ii) a range, represented by the SEM, that provides a measure
of the variability of accuracy across the four possible outcomes
(i.e., RSN, LSN, RPN, and LPN).

Feature-Learnability, Benchmark and Ranking
Within and Across Animals
For the first set of analyses, three different approaches were
used to train, validate and test the neural networks. All three
approaches calculated the feature-learnability from the mean
result of 10 repeated training/testing cycles, under different
random starting conditions. Three approaches to determine
feature-learnability were employed. The first was the Within
Individual Animal approach (WIA) in which, input/output pairs,
from 800 to 880 stimuli, from all four nerves were generated for
each individual animal (n = 7) and were randomly sequenced
and assigned into training, validation and testing data sets in the
proportions of 70, 15, and 15%, respectively. In the second PP
approach, input/output pairs from all four nerves were pooled
from all 7 animals (5600–6160 total stimuli) and were randomly
sequenced and assigned into training, validation and testing data
sets in the same proportions as above. In the third Leave-One-
Out (LOO) approach, training and validation were performed
on input/output pairs randomly sequenced and assigned into
training (70%) and validation (30%) sets from 6 animals, and
testing was performed on the remaining animal (100%). Each of
the 7 animals were examined as the test data set once. The feature-
learnability benchmark (gold standard) was derived from the
WIA approach, while the PP and LOO approaches explored the
extent to which the learned features generalized across animals,
and the LOO approach explored feature similarity of individual
animals, in contrast to the remaining animals. Subsequent
experiments made comparisons with the learnability benchmark.

“Near-benchmark” is defined as learnability that is not
significantly different to that of the benchmark. Ranking of
feature-learnability was performed by ordering the feature-
learnability with respect to the greatest mean followed by the
smallest SEM, i.e., in cases where two ANN configurations
resulted in identical mean feature-learnability, the configuration
with the smaller SEM outranked the larger. Ranking was
independent of significant differences between two feature-
learnability comparisons.

Electrode and Signal Feature Contribution to
Feature-Learnability
In the second set of analyses (electrode contribution), all
SFs acquired from single, and combinations of two or more
electrodes, were incorporated into the ANN to compare how
these features, from different electrodes, contribute to feature-
learnability. In these ANNs, depending on the number of
electrodes included, there were 5, 10, 15, 20, 25, 30, or 35 neurons
in the input layer (i.e., 5 input SFs per electrode), and the hidden
(20 neurons) and output (4 neurons) layers were identical to the
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ANN used for the learnability benchmark configuration (i.e., the
first approach of first set of analyses described above).

In the third set of analyses (SF contribution), we tested the
prediction accuracy of each of the SFs individually, and pairs
of SFs, when quantified from single electrodes, three electrodes
and all seven electrodes. If only single SFs were tested, there
were either 1, 3, or 7 neurons in the ANN input layer (1 feature
extracted from 1, 3, or 7 electrodes, respectively); for pairs of
features, there were 2, 6, or 14 neurons in the ANN input layer
(2 features extracted from 1, 3, or 7 electrodes, respectively).

The WIA approach, which determined the feature-learnability
benchmark, was applied to both the electrode contribution and
SF contribution sets of analyses. Thus, ML was performed on
each individual animal and confusion matrices were averaged
to generate a single confusion matrix that represented the set
of seven animals. Feature-learnability was then derived from the
mean and SEM of the diagonal from this matrix.

Input Minimization Feature-Learnability
In the final set of ANN analyses, we sought to determine
the minimum number of ANN inputs required to achieve
feature-learnability that was not significantly different to the
benchmark. We applied two strategies: (i) to minimize the total
number of inputs, regardless of the number of electrodes; and
(ii) to minimize the total number of inputs and the number of
electrodes. First, we ranked all single SF/electrode combinations
from highest to lowest feature-learnability: Each individual
SF/electrode combination was presented as the single input to an
ANN with fixed hidden (20 neuron) and output (4 neuron) layers,
the feature-learnability determined, and ranked from highest
to lowest. The first input minimization strategy defined the
sequence of SF/electrode combinations (next-best inputs) in their
feature-learnability rank order. The second input minimization
strategy ranked the electrodes based on the mean feature-
learnability of all SFs on each respective electrode, and next-best
inputs were derived from the SF rank-order within a given
electrode. Thus, the second input minimizing strategy prioritized
SF inputs within electrodes over the overall SF/electrode rank
order; i.e., all SFs of the highest-ranked electrode were sequenced
before SFs of a lower-ranked electrode, even if their individual
SF/electrode combination feature-learnability was greater.

An exhaustive selection method that tested all SF/electrode
combinations was not feasible, as the possible feature
combinations would exceed 2 million. We therefore applied an
adapted sequential forward searching (SFS) algorithm, first used
by Whitney (1971) and well described by Pudil et al. (1994),
for both input minimization strategies. Our approach differed
from the typical SFS algorithm in that discarded SF/electrode
combinations from each round of testing were re-tested in the
next round, after a new best feature subset was established.
The SFS algorithm was terminated when near-benchmark
feature-learnability was attained.

Feature-Learnability Mapping
Feature learnability mapping was performed using all 5 SFs.
The mean and SEM feature-learnability produced from seven
ANNs, each using SFs from one of the seven electrodes, were

plotted as a surface in 3D space over 2 mm × 2 mm generic
DCN maps for each animal. Feature-learnability surfaces (one
surface for the mean classification performance and another for
the SEM), that passed through each of the 7 data points, were
interpolated between the 7 data points onto a 7 × 7 mesh grid
using an optimized thin plate spline function (Wahba, 1990).
The surfaces for each animal were z-plane stacked following
adjustments to account for left-right and rostro-caudal shift of
the sMEA in each animal, and a mean for each grid coordinate
across the z-stack was calculated to produce feature-learnability
maps representing the average for the mean surface and the SEM
surface of all animals.

Feature-Learnability Error and Machine Learning
Error
Feature-learnability error provides insight into non-significant
loci as potential errors for ANN classification, and was defined as
[100 – feature-learnability]. ML error was used for the analysis
of SF side dominance and was defined as a measure of the
ML algorithm prediction inaccuracy, calculated as [100 – ML
accuracy] for any combination of SF/electrode inputs. The e4
mean ML error refers to the average of ML errors from a single
SF/e4 combination between two nerves of a bilateral nerve pair,
incorrectly classified as their counterpart nerve, e.g., the mean
of RPNs classified as LPNs plus LPNs classified as RPNs. An
above chance level of the e4 mean ML error therefore indicates
that the error of both nerves averaged greater than 25%. The
e4 mean ML error is expressed for individual animals and SFs,
whereas the feature-learnability error is expressed as an average
across all animals.

Electrode Shift Measurements
To determine where the electrode array was placed in each
experiment, we measured the distance of the two left electrodes
(e1 and e2) and right electrodes (e6 and e7) from the midline,
and the rostro-caudal distance of the rostral edge of e3 from obex.
Images were taken of the brainstem surface using a microscope
camera both before and after the electrode was positioned. These
images were stacked over each other using an image analysis
software (ImageJ, version 1.51k). Lines were drawn along the
midline of the brainstem, perpendicular from the midline to
the most medial edge of each of the four side electrodes (e1,
e2, e6, and e7), and rostro-caudally from the rostral edge of
e3 to obex. If the array was perfectly placed in line with the
brainstem midline, then the measurement from e1, e2, e6, and
e7 to the midline would be 470 µm. We subtracted the electrode
shift measurements from 470 µm. If 470 µm minus e1- and e2-
to-midline measurements were negative, this indicated that the
electrode was shifted to the left of the midline, and vice versa for
the right electrodes.

Non-significant Loci
To demonstrate that classification errors generated by the ANN
were consistent with statistical observations of the input SFs,
we used a statistical approach to identify likely occurrences for
potential ML classification errors. We modeled DCN responses
from individual electrodes in response to stimulation from each
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of the four nerves (each stimulated 200–220 times). For each
animal and SF, we then generated a linear model to determine
if there were significant differences in SF magnitudes for each
electrode. Failures to reach a significant difference (p > 0.05)
in SF magnitudes between two nerves were deemed as non-
significant loci and assigned to one of 5 possible categories
to indicate the two nerve-evoked responses that were not
significantly different: (i) LSN vs. RSN; (ii) LPN vs. RPN; (iii)
RPN vs. RSN; (iv) LPN vs. LSN; (v) LPN vs. RSN or RPN vs. LSN.

Statistical Analysis
All statistical analyses were carried out using R (R Core Team,
2016; version 3.4.4) through the RStudio integrated development
environment (version 1.1.442). Paired t-tests, one-way, and two-
way ANOVAs with Tukey post hoc adjustments were used
where stated to compare ANN classification accuracy between
two specific nerves (such as ipsilateral nerves or bilateral
nerve pairs) or multiple comparisons, respectively. To compare
ANN performance for individual electrodes, combinations of
electrodes, and individual SFs, we used LMEMs (lmer function
in R) from the lmerTest package (Kuznetzova et al., 2016).
When significant main effects were found, post hoc least squares
mean differences (difflsmeans function in R) were calculated
with Satterthwaite’s approximation to degrees of freedom, and
p-value adjustments for multiple comparisons were performed by
a method controlling the FDR (post hoc; R: p.adjust function; BY
option). To determine the most efficient electrode combinations,
we compared each combination to the benchmark using paired
t-tests. To obtain correlation coefficients of ANN input features
(see section “Results,” Feature-learnability benchmark: five SFs
across seven electrodes), and to determine non-significant loci of
input features, LM were created using the R lm function (stats
package). When main effects were found for LMs, least square
means comparisons were made with Tukey post hoc adjustments.
Side dominance comparisons at the single e4 electrode were made
using LMs and Pearson’s Chi-squared tests, where appropriate,
while Student’s t-tests were used for comparing the TRM side
dominance. All LMs, and LMEMs were verified by inspection
of residual and QQ plots. Where ceiling effects (left skew) were
found in ANN output data (values represented as percentages
between 0 and 100), logit transformations, from the car package
(Fox et al., 2016), were applied to the data. All data are expressed
as means ± SEM. Sample numbers (n-values) are indicated in
figures. Probabilities of p < 0.05 were deemed significant.

RESULTS

Feature-Learnability Benchmark: 5
Signal Features Across 7 Electrodes
A representative example of raw DCN signals recorded from 7
electrodes evoked by left and right sural and peroneal nerves,
and a schematic (to scale) representation of the electrode
array configuration are shown in Figure 1A. Raw signal
amplitudes were generally larger on midline electrodes and/or
those ipsilateral to the nerve undergoing stimulation.

To establish a feature-learnability benchmark, we maximized
the classification accuracy of an ANN using SFs from individual
animals. Four SFs (N1 latency, P1N1 slope, HF peak count and
HF integral, examples shown in Figures 1C–E) were previously
shown to be significantly different between sural and peroneal
nerve-evoked responses (Loutit et al., 2017), and were therefore
chosen for the present study to facilitate correct predictions of the
nerve type (sural or peroneal). Two SFs (P1N1 amplitude and HF
integral) have previously been shown to demonstrate ipsilateral
dominance with respect to response magnitudes (Loutit et al.,
2017) and were therefore chosen to facilitate predictions of
the correct side of the body. Pearson’s correlations between all
pairwise combinations of SFs for all electrodes and all nerves
were found to be highest between HF integral and HF peak
count (Table 1), suggesting that these SFs are likely to contribute
redundant information to the ANN. However, both these SFs
were included in feature-learnability experiments to establish if
some non-overlapping information between these two SFs could
improve ML. Correlations between other features are shown
in Table 1. Despite showing statistical significance due to the
large sample sizes, correlations were low suggesting that the
features are independent of each other and therefore unlikely
to contribute redundant information to the ANN. Thus, our
benchmark ANN configuration comprised of 35 inputs for which
we expected maximal learning outcomes: 7 electrodes provided
spatial information across the brainstem, and all 5 SFs provide
relevant, independent information about the nerve type and the
side of the body from which the DCN response was evoked.

Three different approaches for the training, validation and
testing data sets from 7 animals were applied to the ANN
configuration (WIA, PP, and LOO, see section “Materials
and Methods”). The machine-learning outcomes from three
approaches are shown in Figure 2 and a summary of the
statistical comparisons performed in the remainder of this section
are presented in Table 2. All classifications were well beyond
chance performance (25%) for all three approaches. Feature-
learnability using the WIA approach (benchmark configuration)
was 96.8± 0.8% (mean± SEM, Figure 2A). The most accurately
classified nerve evoked signals originating from RPN stimulation

TABLE 1 | Pearson’s correlations for input feature pairs.

Pearson’s

Correlation correlation p-value Significance

HF integral vs. HF peak count 0.89 <2.2e-16 ∗∗∗

HF integral vs. P1N1 amplitude 0.49 <2.2e-16 ∗∗∗

P1N1 amplitude vs. HF peak count 0.46 <2.2e-16 ∗∗∗

P1N1 amplitude vs. N1 latency 0.17 <2.2e-16 ∗∗∗

N1 latency vs. P1N1 slope 0.07 <2.2e-16 ∗∗∗

HF integral vs. N1 latency 0.05 <2.2e-16 ∗∗∗

HF peak count vs. N1 latency 0.04 1.60e-13 ∗∗∗

P1N1 amplitude vs. P1N1 slope 0.03 1.62e-10 ∗∗∗

HF peak count vs. P1N1 slope 0.01 0.03959 ∗

HF integral vs. P1N1 slope −0.005 0.294

∗p < 0.05, ∗∗∗p < 0.001.
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FIGURE 2 | Artificial neural network classification of nerve origin from multi-electrode array surface recordings – three data partitioning approaches. ANN prediction
accuracies are shown using three approaches to divide data sets (data partitioning approaches shown above each bar graph). For each correct target output
(indicated on the abscissa, nerves color coded according to the figure key) the mean classifications are shown as bars colored for each nerve (color coded along the
ordinate, stacked in order of classification magnitudes). Mean ± SEM indicated for correct classifications. Ideal learning (100% classification accuracy) would see the
bar colors match their abscissa label. (A) The Within Individual Animal (WIA) approach divided responses from individual animals into training, validation, and testing
data sets (data from mean of 7 animals shown). (B) For the Pooled Population (PP) approach, responses from all 7 animals were pooled together into a single data
set before sub-dividing into training, validation, and testing data sets (data from mean of 10 learning cycles); (C) the Leave-One-Out (LOO) approach trained and
validated using data pooled from 6 animals and tested the prediction on the remaining animal (data from mean of 7 animals). For all three approaches, machine
learning performance was obtained from the average over 10 learning cycles (algorithm initiated 10 times with random starting conditions). Feature-learnability is
derived as the mean and SEM of all correct classifications as is represented by the gray bars in the right-hand column of each graph (feature-learnability benchmark
indicated by the asterisk in A). ANN, artificial neural network; LOO, leave-one-out; LPN, left peroneal nerve; LSN, left sural nerve; FL, feature-learnability; PP, pooled
population; RPN, right peroneal nerve; RSN, right sural nerve; WIA, within individual animal.

(98.1 ± 0.9%). The greatest error was found in LSN evoked
signals, which were sometimes falsely classified as LPN evoked
signals (3.6 ± 1.7% error). There were no differences in the
classification of side (Table 2, row A), nerve type (Table 2, row B),
bilateral nerve pairs (Table 2, rows C, D), or between the different
ipsilateral nerves (Table 2, rows E, F).

Feature learnability using the PP approach was 94.5 ± 0.8%
(Figure 2B) which was not significantly different to the
benchmark configuration (Table 2, row G). The most accurately
predicted nerve evoked signal was from the RSN (95.4 ± 0.5%),
whilst the greatest error occurred from LSN-evoked signals being
falsely classified as LPN-evoked (4.5± 0.4% error).

Feature learnability using the LOO approach was 86.0± 3.3%
(Figure 2C) which was significantly reduced compared to the
WIA approach (Table 2, row H), but failed to reach a significant
difference compared to the PP approach (Table 2, row I). The
most accurately predicted nerve evoked signals were from RPN
(93.4 ± 3.2%) and the greatest errors occurred with RSN-evoked
signals being falsely classified as RPN-evoked (14.3± 2.6% error).

Overall, these results demonstrate that DCN responses
contain a combination of SFs expressed over the seven electrodes
that are unique to the nerve from which they are evoked.
The ability of the ANN to learn from examples taken from

one population of animals and classify data obtained from an
independent set of animals, indicates that the SFs are robustly
conserved and can be generalized across different animals.

How do Individual Electrode Positions
Contribute to Feature-Learnability?
To rank electrode/s positions in order of their capacity to report
the most relevant information for determining the origin of
sensory input, we compared the feature-learnability from all 5 SFs
extracted from individual electrodes to the feature-learnability
benchmark (i.e., data from all SFs across e{1–7}). In all cases,
feature-learnability was significantly greater than chance levels
(25%). A summary of the results of statistical testing in Section
“How do Individual Electrode Positions Contribute to Feature-
Learnability?” and “How do Subsets of Electrode Positions
Contribute to Feature-Learnability?” are presented in Table 3.
Overall, there was a significant difference of feature-learnability
among electrode positions (Table 3, row A), but no significant
effect of which nerve was activated (Table 3, row B). The highest
feature-learnability achieved from a single electrode position with
all 5 SFs was 87.7± 1.0% from e4, and the lowest was 62.1± 3.4%
from e7 (Figure 3A).

Frontiers in Systems Neuroscience | www.frontiersin.org 7 March 2019 | Volume 13 | Article 11

https://www.frontiersin.org/journals/systems-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-13-00011 March 19, 2019 Time: 9:51 # 8

Loutit et al. Feature-Learnability of Somatosensory Brainstem Signals

TABLE 2 | Statistical comparisons for benchmark feature-learnability and ML
approaches (Figure 2).

Statistical
comparison

p-value Significance Test Figure

A WIA Side (left vs.
right)

0.167 Two-way
ANOVA

2A

B WIA Nerve (sural
vs. peroneal)

0.474 Two-way
ANOVA

2A

C WIA Peroneal
bilateral nerve pair
(LPN vs. RPN)

0.921 Two-way
ANOVA, Tukey
HSD post hoc

2A

D WIA Sural bilateral
nerve pair (LSN
vs. RSN)

0.521 Two-way
ANOVA, Tukey
HSD post hoc

2A

E WIA Different
ipsilateral nerve
(LPN vs. LSN)

0.81 Two-way
ANOVA, Tukey
HSD post hoc

2A

F WIA Different
ipsilateral nerve
(RPN vs. RSN)

0.999 Two-way
ANOVA, Tukey
HSD post hoc

2A

G WIA vs. PP 0.7 One-way
ANOVA, Tukey
HSD post hoc

2A,B

H WIA vs. LOO 0.023 ∗ One-way
ANOVA, Tukey
HSD post hoc

2A,C

I PP vs. LOO 0.066 • One-way
ANOVA, Tukey
HSD post hoc

2B,C

LOO, leave-one-out; LPN, left peroneal nerve; LSN, left sural nerve; PP, pooled
population; RPN, right peroneal nerve; RSN, right sural nerve; WIA, within individual
animal. •p < 0.1, ∗p < 0.05.

To view the spatial arrangement of feature-learnability across
individual electrode positions, an interpolated map of mean and
SEM feature-learnability was constructed from the seven animals
(Figure 3B). The maps illustrate that the region occupied by e4
facilitates the greatest mean learnability with the lowest variability
(SEM) across the DCN surface, followed by 2 adjacent regions:
below e4 on the midline between e4 and e5; and to the left of e4,
equidistant between e1, e2 and e4. Inspection of learnability maps
from individual animals revealed that while all animals had a
learnability hotspot located at the e4 position, the shoulder of the
hotspot extended in seemingly random directions toward e1, e2,
and e5 or a combination of two of these positions. Most animals
displayed reduced learnability at the e3, e6, and e7 positions.
Post hoc analysis confirmed that information acquired from e4
positions was significantly better at classifying nerve origin than
all the other individual electrode positions (Table 3, row C; yellow
bar, Figure 3C). Furthermore, despite being a midline electrode,
information acquired from e4 predicted the correct side of the
body from which responses were evoked with surprisingly high
accuracy (92.6 ± 0.6%; chance level = 50%). Of responses from
e4, RPN inputs were most accurately classified (89.8 ± 3.3%)
whilst LSN responses resulted in the lowest mean classification
accuracy (85.3 ± 4.4%; Figure 3A), however, the difference was
not significant (Table 3, row D).

Compared to the feature-learnability benchmark confi-
guration, all single electrodes significantly under-performed

TABLE 3 | Statistical comparisons of electrode positions (Figure 3).

Statistical
comparison

p-value Significance Test Figure

A Difference between
electrode positions
(electrode effect)

2.20E-15 ∗∗∗ LMEM 3A

B Difference between
nerves (nerve effect)

0.83 LMEM 3A

C e4 vs. each individual
electrode

≤ 0.011 ∗ LMEM, FDR
post hoc

3C

D e4 best nerve vs.
worst nerve (RPN
vs. LSN)

0.27 Paired t-test 3A

E Benchmark vs.
individual electrodes

<2e-16 ∗∗∗ LMEM, FDR
post hoc

3C

F Rostral left vs. right
electrodes (e1 vs. e6)

<2e-4 ∗∗∗ LMEM, FDR
post hoc

3C

G Caudal left vs. right
electrodes (e2 vs. e7)

<2e-4 ∗∗∗ LMEM, FDR
post hoc

3C

H Rostral vs. caudal
side electrodes
(e{1,6} vs. e{2,7})

0.046 ∗ LMEM, FDR
post hoc

3C

I Left electrodes
(e1 vs. e2)

0.153 LMEM, FDR
post hoc

3C

J Right electrodes
(e6 vs. e7)

0.153 LMEM, FDR
post hoc

3C

K Middle rostral vs.
caudal electrodes
(e3 vs. e5)

2.00E-04 ∗∗∗ LMEM, FDR
post hoc

3C

L e4 vs. e{1,4} 0.012 ∗ LMEM, FDR
post hoc

3C

M e4 vs. e{2,4} 0.014 ∗ LMEM, FDR
post hoc

3C

N e4 vs. e{4,5} 0.023 ∗ LMEM, FDR
post hoc

3C

O e4 vs. e{4,6} 0.017 ∗ LMEM, FDR
post hoc

3C

P e4 vs. e{3,4} ≥ 0.215 LMEM, FDR
post hoc

3C

Q e4 vs. e{4,7} ≥ 0.215 LMEM, FDR
post hoc

3C

R e{1,4} vs. all other
electrode pairs
except e{2,4}

≤ 0.021 ∗ LMEM, FDR
post hoc

3C

S e{1,4} vs. e{2,4} 0.699 LMEM, FDR
post hoc

3C

T Benchmark vs. each
electrode pair

≤ 0.017 ∗ LMEM, FDR
post hoc

3C

U e{1,4,5} vs. e{1,4},
e{2,4}

≥ 0.161 LMEM, FDR
post hoc

3C

V Benchmark vs.
e{1,4,5}, e{1,2,4},
e{1,4,6}

≥ 0.395 LMEM, FDR
post hoc

3C

W Benchmark vs.
e{1,3,4}, e{1,4,7}

≤ 0.047 ∗ LMEM, FDR
post hoc

3C

X e{1,4,5} vs. all
individual electrodes
and electrode pairs,
except e{1,4}, e{2,4}

<2e-16 ∗∗∗ LMEM, FDR
post hoc

3C

e1, electrode 1; e2, electrode 2; e3, electrode 3; e4, electrode 4; e5, electrode
5; e6, electrode 6; e7, electrode 7; e{1–7}, electrodes 1 to 7 inclusive; FDR,
false-discovery rate; LMEM, linear mixed-effects model; See Table 2 for other
abbreviations. ∗p < 0.05, ∗∗∗p < 0.001.
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FIGURE 3 | Feature-learnability of electrode surface recordings. (A) Top panel shows the mean ANN classification outputs for each nerve, from inputs derived from
all 5 SFs at individual sMEA electrodes using the WIA approach (Figure 2A). Feature-learnability, i.e., the mean correct prediction accuracy of all 4 nerve outputs, is
shown in the bar graph below each ANN output. Each electrode is indicated under its respective bar graph by the black-shaded dot in the sMEA schematic
representation (see insert for electrode labels). Asterisks indicate that e4 demonstrated feature-learnability that was significantly higher than all other electrodes
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are color coded onto normalized maps of the brainstem surface. Black circles indicate electrode positions (see insert for electrode labels). (C) Feature-learnability for
electrode combinations are represented from highest (i.e., the benchmark) to lowest ranking (left to right). Single electrode feature-learnability [as in the bottom panel
of (A)] are also ranked to facilitate comparisons with other electrode combinations. Black horizontal line indicates the mean feature-learnability of e{1–7} (gray
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difference from benchmark (WIA approach); daggers represent significant difference from arrow. e1, electrode 1; e2, electrode 2; e3, electrode 3; e4, electrode 4; e5,
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sural nerve; SF, signal feature; WIA, within individual animal (see section “Materials and Methods”). ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, †††p < 0.001, LMEM.

(Table 3, row E) at classifying the nerve from which a response
was evoked (Figure 3C). Of the lateral electrodes, positions
occupied by individual left electrodes facilitated higher feature-
learnability than right electrode positions for both the rostral

(Table 3, row F), and the caudal (Table 3, row G) pairs.
These rostral electrodes (e1 and e6) collectively demonstrated
greater feature-learnability, on average, compared to the caudal
electrodes (e2 and e7, Table 3, row H), while there being no
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individual significant differences detected on either side (Table 3,
rows I, J). The most caudal electrode on the midline (e5) achieved
a mean learnability that was significantly greater than the most
rostral midline electrode (e3, Table 3, row K).

In summary, these analyses indicate that feature-learnability
of 5 SFs from any individual electrode is: (1) less than learnability
obtained from 5 SFs across all 7 electrodes, and (2) generally
maximum for e4 positions, but with shoulders that appear to
protrude randomly toward e1, e2, and e5, or a combination
of these, in different animals. Moreover, feature-learnability is
asymmetrically represented across the surface of the DCN with
an overall bias toward the left side.

How do Subsets of Electrode Positions
Contribute to Feature-Learnability?
We aimed to determine the minimum number, and unique
electrode positions to achieve near-benchmark feature-
learnability. As e4 had the highest prediction accuracy of
any individual electrode, we incrementally added blocks of 5
SFs derived from other single electrodes. Any improvement in
feature-learnability would indicate the addition of relevant, but
not redundant, information.

A summary of feature-learnability rank order from various
electrode combinations is shown in Figure 3C. Starting with
e4 (yellow bar, Figure 3C), feature-learnability was significantly
improved by adding e1, e2, e5, or e6, but not e3, or e7 (Table 3,
rows L–Q, respectively). The best performing electrode pair
was e{1, 4}, which demonstrated feature-learnability significantly
greater than four of the six electrode pair combinations
(94.2 ± 0.9%, Table 3, row R) with the exception of e{2, 4}
(Table 3, row S). None of the electrode pair combinations
achieved near-benchmark feature-learnability (Table 3, row T).
These findings demonstrate that, of the electrode pairs, positions
occupied by e4 plus one of the left electrodes, e1 or e2, were best
for classifying nerve inputs.

As none of the electrode pair combinations achieved near-
benchmark feature-learnability, we continued to add inputs from
individual electrodes to the highest performing electrode pair
(e{1, 4}). The combination with the highest feature-learnability
was with the addition of e5 to e{1, 4} (95.9 ± 0.9%; black arrow
Figure 3C). While failing to be significantly different to e{1, 4},
or e{2, 4} (Table 3, row U), e{1, 4, 5}, along with e{1, 2, 4}
and e{1, 4, 6} all achieved near-benchmark feature-learnability
(Table 3, row V). The other two combinations e{1, 3, 4} and
e{1, 4, 7} were both significantly lower than the benchmark
(Table 3, row W), indicating that e3 and e7 contributed the
least useful information when added to e{1, 4}. Aside from
e{1, 4} and e{2, 4}, e{1, 4, 5} significantly outperformed the other
electrode pairs and all individual electrodes (Table 3, row X).
These observations were consistent with the feature-learnability
map that showed learnability was maximal at e4 positions, but
reduced closest to e3, e6, and e7 (Figure 3B).

In summary, although all individual electrodes classified
significantly above chance levels, the best performing individual
electrode was e4. The most efficient electrode combination was
e{1, 4, 5}, which could classify the nerve from which a response

was evoked with an accuracy that was not significantly different
to the benchmark.

How do Signal Features Contribute to
Feature-Learnability?
To determine which DCN SFs contributed the most information
to facilitate accurate nerve prediction, we investigated the
feature-learnability of individual SFs across all seven electrodes
(e{1–7}, Figure 4A), the best three-electrode combination
(e{1, 4, 5}, Figure 4B) and the best single (e4, Figure 4C)
electrode. In all cases, feature-learnability was significantly
greater than chance levels (25%). When single SFs were examined
across e{1–7}, P1N1 amplitude had the highest prediction
accuracy (90.8 ± 2.7%) followed by HF integral, HF peak
count, N1 latency and P1N1 slope; Figure 4D). Feature-
learnability derived from all of the single SFs tested across
e{1–7} was significantly lower than the benchmark (Table 4,
row A). Interestingly, the same feature-learnability rank order
was observed when each SF was tested across e{1, 4, 5}.
However, the rank order was no longer conserved when
tested across e4 alone; HF integral achieved the highest-ranked
feature-learnability for e4, with P1N1 amplitude ranked second
(Figure 4D). Overall, P1N1 amplitude/e{1, 4, 5} significantly
outperformed two of the e{1–7} single feature combinations: N1
latency/e{1–7} and P1N1 slope/e{1–7} (Table 4, row B). P1N1
amplitude/e{1, 4, 5} also achieved higher ranking than HF peak
count/e{1–7}, although feature-learnability was not significantly
different (Table 4, row C).

We wanted to determine which of the other SFs would
improve feature-learnability if added to the best SF for each
arrangement. We therefore quantified feature-learnability with
P1N1 amplitude (e{1–7} and e{1, 4, 5}) and HF integral
(e4) in combination with each of the remaining four SFs
(Figure 4E). Of these combinations, P1N1 amplitude/e{1–7}
combined with HF integral/e{1–7} had the highest feature-
learnability (96.7 ± 1.9%), which was not significantly different
to the benchmark (Table 4, row D). P1N1 amplitude/e{1–7}
feature-learnability was significantly improved by the addition of
HF integral/e{1–7} (Table 4, row E) and HF peak count/e{1–7}
(Table 4, row F), but not N1 latency/e{1–7} (Table 4, row G) or
P1N1 slope/e{1–7} (Table 4, row H and Figure 4E). This was
also the case for P1N1 amplitude/e{1, 4, 5} feature-learnability,
which was significantly improved by the addition of HF peak
count/e{1, 4, 5} (Table 4, row I) and HF integral/e{1, 4, 5}
(Table 4, row J), but improvement from adding N1 latency/e{1,
4, 5} or P1N1 slope/e{1, 4, 5} failed to reach significance (Table 4,
rows K, L and Figure 4E). Of the e{1, 4, 5} combinations,
only P1N1 amplitude + HF peak count/e{1, 4, 5} was able
to achieve near-benchmark feature-learnability (Table 4, row
M), while the remaining combinations demonstrated feature-
learnability significantly lower than the benchmark (Table 4,
row N). This demonstrates that feature-learnability from 6
inputs (2 SFs acquired from 3 electrodes) was not significantly
different to that obtained from 35 inputs (5 SFs acquired from
7 electrodes). Finally, HF integral/e4 feature-learnability was
improved by the addition of each of the other SFs (Table 4, row O
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FIGURE 4 | Feature-learnability of individual, and combinations of signal features generated from all electrodes, best three electrodes, and best single electrode. The
mean classification accuracy for each nerve using the WIA approach (Figure 2A) generated from individual SFs are shown when data was quantified from: (A) all
electrodes (e{1–7}), (B) the top three performing electrodes (e{1, 4, 5}) and (C) best electrode (e4). Schematics to the right of graphs show the electrodes from which
SFs were quantified (as per Figure 3B insert). (D) Feature-learnability for each SF over combinations of electrodes (all, e{1–7}; best 3, e{1, 4, 5}; best 1, e4) are
ranked from highest to lowest (left to right). Schematics for each bar indicate the electrodes (filled circles, as per Figure 3B insert) from which SFs were quantified
(colors indicate respective SF as per the figure key). (E) Same as (D), but each bar represents the mean feature-learnability achieved using the best single SF for
each electrode combination, with the addition of one of each of the other SFs. Black horizontal line with gray ghosting indicates the mean ± SEM feature-learnability
of the benchmark (e{1–7}); red lines and ghosting indicates mean ± SEM feature-learnability of P1N1 amplitude/e{1, 4, 5} (dashed) and P1N1 amplitude/e{1–7}
(solid); yellow-dashed lines and ghosting indicates mean ± SEM feature-learnability of HF integral/e4 alone; black asterisks indicate feature-learnability significantly
lower than the benchmark (e{1–7}) and red asterisks indicate feature-learnability significantly better than P1N1 amplitude/e{1–7}. Abbreviations as per Figure 3.

and Figure 4E). However, feature-learnability from each e4
combination remained significantly lower than the benchmark
(Table 4, row P).

In summary, P1N1 amplitude was the best individual
SF for feature-learnability of the nerve from which a DCN
response was evoked when using 3 or 7 electrodes. HF integral
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TABLE 4 | Statistical comparisons of feature-learnability of signal features
(Figure 4).

Statistical comparison p-value Significance Test Figure

A Benchmark vs. individual
SFs extracted from e{1–7}

≤5e-4 ∗∗∗ LMEM, FDR
post hoc

4D

B P1N1 amplitude/e{1,4,5}
vs. N1 latency/e{1–7},
P1N1 slope/e{1–7}

<2e-16 ∗∗∗ LMEM, FDR
post hoc

4D

C P1N1 amplitude/e{1,4,5}
vs. HF peak count/e{1–7}

0.671 LMEM, FDR
post hoc

4D

D Benchmark vs. P1N1
amplitude + HF
integral/e{1–7}

0.773 LMEM, FDR
post hoc

4E

E P1N1 amplitude/e{1–7}
vs. P1N1 amplitude + HF
integral/e{1–7}

<2e-16 ∗∗∗ LMEM, FDR
post hoc

4E

F P1N1 amplitude/e{1–7}
vs. P1N1 amplitude + HF
peak count/e{1–7}

<9e-4 ∗∗∗ LMEM, FDR
post hoc

4E

G P1N1 amplitude/e{1–7}
vs. P1N1 amplitude + N1
latency/e{1–7}

0.394 LMEM, FDR
post hoc

4E

H P1N1 amplitude/e{1–7}
vs. P1N1
amplitude + P1N1
slope/e{1–7}

0.494 LMEM, FDR
post hoc

4E

I P1N1 amplitude/e{1,4,5}
vs. P1N1 amplitude + HF
integral/e{1,4,5}

<2e-16 ∗∗∗ LMEM, FDR
post hoc

4E

J P1N1 amplitude/e{1,4,5}
vs. P1N1 amplitude + HF
peak count/e{1,4,5}

0.006 ∗∗ LMEM, FDR
post hoc

4E

K P1N1 amplitude/e{1,4,5}
vs. P1N1 amplitude + N1
latency/e{1,4,5}

0.078 LMEM, FDR
post hoc

4E

L P1N1 amplitude/e{1,4,5}
vs. P1N1
amplitude + P1N1
slope/e{1,4,5}

0.552 LMEM, FDR
post hoc

4E

M Benchmark vs. P1N1
amplitude + HF
integral/e{1,4,5}

0.058 LMEM, FDR
post hoc

4E

N Benchmark vs. SF pairs
from e{1–7}

≤3e-4 ∗∗∗ LMEM, FDR
post hoc

4E

O HF integral/e4 vs. each
HF integral/e4 with the
addition of each of the
other SFs/e4

0.007 ∗∗ LMEM, FDR
post hoc

4E

P Benchmark vs. SF pairs
from e4

<2e-16 ∗∗∗ LMEM, FDR
post hoc

4E

SF, signal features. For all other abbreviations see Tables 2, 3 for abbreviations.
∗∗p < 0.01, ∗∗∗p < 0.001.

achieved the highest feature-learnability ranking from e4
alone, although each SF performed significantly greater than
chance on this electrode. When limited to only two SFs,
P1N1 amplitude + HF integral/e{1–7} achieved the highest
feature-learnability of all the SF/electrode combinations,
however, only 6 inputs (P1N1 amplitude + HF peak
count/e{1, 4, 5}) were required to reach near-benchmark
feature-learnability.

Maximizing Feature-Learnability With
Minimal Inputs
We established that feature-learnability continued to perform
well above chance after reducing the number of electrodes
(Figure 3) or SFs (Figure 4). Here, we aimed to find SF/electrode
combinations that achieve near-benchmark learnability by
systematically incorporating the next-best ranked electrode/SF
configuration as inputs into an ANN. Mean and SEM feature-
learnability for each individual SF/electrode combination is
shown in Figure 5A. HF integral/e4 achieved the highest feature-
learnability (60.1 ± 4.6%) of all the individual SF/electrode
combinations, while P1N1 slope/e7 achieved the lowest
(33.9 ± 3.5%), although it remained significantly above
chance levels (25%).

We used an adapted SFS algorithm (see section “Materials and
Methods”) for two input minimization strategies to subsequently
incorporate the next-best SF/electrode combinations to HF
integral/e4 for feature-learnability. The first strategy aimed to
minimize the number of inputs required to achieve near-
benchmark feature-learnability, irrespective of the electrodes
from which they were acquired. Thus, the next-best SF/electrode
inputs, according to Figure 5A, were selected without restricting
them to specific electrodes. We found that 6 inputs acquired
from 4 electrodes and three SFs (e{1, 2, 4, 5}), achieved near-
benchmark feature-learnability (95.0 ± 1.9%; p = 0.067, paired
t-test, gray arrow, Figure 5B). The second strategy prioritized
minimizing the number of electrodes used to acquire input
features, thus next-best features, according to Figure 5A were
restricted to the same electrode as the previous SF/electrode
combination until exhausting all possibilities for that electrode.
We found that 2 electrodes: e{1, 4} (4 SFs acquired from e4
and 2 SFs from e1, black arrow, Figure 5B) achieved a feature-
learnability of 94.0 ± 2.2%, which failed to reach a significant
difference from the benchmark (p = 0.06, paired t-test). We
continued to add the remaining inputs from these 2 electrodes
(i.e., N1 latency and P1N1 slope), however, although these two
additional inputs improved the learnability to 94.9 ± 1.9%,
it failed to significantly improve feature-learnability from the
6 inputs across e{1, 4} (p = 0.094, paired t-test). The first
and second strategies yielded the same minimum number of
inputs, and there was no significant difference in their feature-
learnability (p = 0.225, paired t-test), however, the first approach
was ranked higher.

The electrode minimization strategy required 2 electrodes
(10 possible inputs). The sum of possible combinations using 3,
4, 5, and 6 SF/electrode inputs is 792. We therefore tested all
792 possible combinations, to confirm that the second strategy
yielded a result that was not significantly different to the best
possible outcome. This exhaustive approach also yielded 6
inputs: two electrodes (e{1, 4}) and three SFs (P1N1 amplitude,
N1 latency and HF peak count), with a feature-learnability
(94.2 ± 2.2%), not significantly different to the second approach
(p = 0.62, paired t-test). It was not feasible to test all possible
feature/electrode combinations of the first method as the sum
of possible 3, 4, 5, and 6- feature/electrode combinations, from
35 possible inputs, is over 2 million.
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FIGURE 5 | Achieving near-benchmark feature-learnability with minimal SF/electrode combinations. (A) Shows mean (left panel) and SEM (right panel)
feature-learnability for each SF/electrode combination; heat map color coded between maximum (white) and minimum (black) feature-learnability. Rows are ordered
from highest- (top) to lowest- (bottom) ranked electrodes, and columns are ordered from highest- (left) to lowest- (right) ranked SF. Numbers in the top two rows
indicate the order of next-best SF/electrode combination, where back numbers indicate those incorporated to achieve near-benchmark ANN according to the
electrode minimization strategy (see section “Materials and Methods”). (B) Selected feature-learnability ranks determined by systematically adding the next best
performing SFs/electrode combination to HF integral/e4, until feature-learnability was not significantly different to the benchmark (see section “Materials and
Methods”). Black arrow indicates the SF/electrode combination with the highest feature-learnability and fewest inputs when minimizing total number of electrodes
was the priority. Gray arrow indicates the SF/electrode combination with the highest feature-learnability and fewest inputs when minimizing absolute input number
was the priority. Black horizontal line with gray ghosting indicates the benchmark ± SEM feature-learnability. Black asterisks indicate feature-learnability significantly
lower than the benchmark. (C) Feature-learnability ranks determined by combining each SF pair acquired from e4. Feature combinations that included only HF
features or only LF features (light gray bars) generally ranked lower than combinations containing pairs of one HF and one LF feature (black bars). Abbreviations as
per Figure 3.
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Across all possible combinations of two SFs acquired from
e4 (Figure 5C), those with one HF and one LF feature
yielded significantly greater learnability than those combinations
with two HF or two LF features (p = 0.006, LMER). The
best performing pairs were P1N1 amplitude with HF peak
count (highest ranked) and P1N1 amplitude with HF integral
(ranked second).

In summary, 6 inputs were sufficient to achieve near-
benchmark feature-learnability, which arose from either
4 electrodes (e{1, 2, 4, 5}) with 3 SFs (P1N1 amplitude, HF
integral, and HF peak count; gray arrow, Figure 5B), or
2 electrodes (e{1, 4}) with 4 SFs (P1N1 amplitude, HF integral,
HF peak count, N1 latency; black arrow, Figure 5B); there was
no significant difference between these strategies, although the
first input minimization strategies ranked higher. Maximum
feature-learnability of two inputs from e4 was achieved by
combining a LF and HF feature (Figure 5C).

Signal Feature Asymmetry
Feature-learnability was highest among individual electrodes
when data was acquired from e4, a midline electrode (Figure 3C).
This raises the question: how could the ANN learning algorithm
discriminate between DCN signals evoked from bilateral nerve
pairs that are recorded from the same midline electrode? The
most parsimonious explanation is that left sided nerves evoke
different DCN responses to right sided nerves. We therefore
set out to determine if left/right prediction accuracy of midline
electrodes truly represents the asymmetric expression of SFs,
or rather, if this observation resulted from misalignment of the
sMEA over the brainstem midline.

sMEA Position Asymmetry
Signal feature asymmetries could result if the recording sMEA is
not adequately aligned along the midline, resulting in recording
larger signals when stimulating a nerve on one side compared
to the other. If the middle electrodes were arranged directly
over the brainstem midline, the distance of the medial edge of
both left and right electrodes would measure 470 µm from the
midline (Supplementary Figure S1A). We found that the mean
distance from the brainstem midline to the left electrodes was
479 ± 101 µm, and 453 ± 101 µm to the right electrodes,
indicating that on average there was a small shift to the left
of approximately 13 µm. Electrode shift is indicated for each
animal in Supplementary Figure S1A. Of the 7 animals, 5 had
electrodes shifted less than one-quarter of an electrode diameter
from the midline on either side (electrode diameter = 700 µm);
the remaining 2 animals, the sMEA was shifted just less than two-
thirds of an electrode diameter on either the left (A2, −417 µm)
or right (A5,+430 µm) sides.

DCN Surface Activity Asymmetry
If electrode shift significantly impacted SFs, we would expect
to find responses recorded from left-shifted sMEAs to be
consistently biased in magnitude and opposite to responses
recorded from right-shifted sMEAs. For each bilateral nerve
pair, we therefore determined the side of the body for which
each SF was significantly greater at the central electrode

(e4 side dominance). Supplementary Figure S1B displays the
side dominance (L or R) for each animal and SF in order
of electrode position. The animals with the most right-shifted
sMEAs (A5 and A7) displayed right-side dominance for all
SFs except for N1 latency (which signifies shorter right-sided
latencies). However, this was also the case for the animals with the
most left-shifted sMEAs (A2 and A4), indicating that electrode
shift was unlikely to be responsible for the SF asymmetry.

Next, we quantified the ML error ( 100 – ML accuracy)
associated with each bilateral nerve pair (calculated as the mean
ML error of both nerves for each bilateral nerve pair at e4, color
coded, Supplementary Figure S1B). Across all animals and SFs
(i.e., 35 instances from 5 SFs for 7 animals), there were 26/35
instances (74%) where both bilateral nerve pairs displayed a side
dominance for a SF (Supplementary Figure S1B). 3/26 of these
instances (12%) had at least one nerve pair producing errors at or
above chance (indicated by one or two asterisks, top right corner
of boxes, Supplementary Figure S1B; see: HF peak count, A5
and A3; P1N1, slope A2). The remaining 9 instances had either
one (7/35) or both (2/35) nerve pairs that failed to demonstrate a
side dominance. In all 9 instances (100%), at least one nerve pair
performed at or above the chance of producing an error (at least
one asterisk, Supplementary Figure S1B). Thus, failure to display
a SF side dominance in at least one nerve pair was significantly
associated with the e4 mean ML error occurring above chance
levels (p = 1.44e-6, Pearson’s Chi-squared test).

We were curious to see if the side dominance observation
made for e4 could be generalized across all electrodes. For each
animal, we summed the SF values across all 7 electrodes to
determine the TRM (see Supplementary Figure S1C) for a given
SF. We then established if there was a significant difference in
the TRM when stimulating bilateral nerve pairs from each side
of the body (i.e., significant TRM side dominance as indicated by
L and R, Supplementary Figure S1C). We observed a strong and
significant relationship (Pearson’s correlation = 0.995, p = 0.0005)
between the number of side-dominant bilateral nerve pairs (i.e.,
number of black or gray squares, Supplementary Figure S1C) for
each SF, and the feature-learnability of each SF (determined from
e{1–7}, Figure 4D).

In summary, our data demonstrates that (i) SFs are expressed
asymmetrically across the sMEA, (ii) the ML algorithm’s capacity
to resolve left/right sides from a central electrode arises from
a real difference in the SF magnitudes that are evoked from
the different sides and not due to variations of electrode
placement, and (iii) the incidence of bilateral nerve pair side
dominance across all electrodes is strongly correlated to overall
ML prediction accuracy.

Potential Loci of ANN
Classification Errors
To demonstrate that feature-learnability is influenced by how
similar, or different, the underlying biological events were, we
sought to demonstrate that classification errors generated by
the ANN were consistent with statistical observations of the
input SFs. We hypothesized that the ANN would generate
more confusion errors when classifying responses from two
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each SF and electrode. Graphs show non-significant loci quantified and
stacked for each SF (left panel), and each electrode (right panel). The y-axis
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also Supplementary Figure S2 for distribution of non-significant loci across
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non-significant loci and feature-learnability errors. Pearson’s correlations (corr)
between the number of non-significant loci and feature-learnability errors are
shown. These positive relationships demonstrate that feature-learnability
errors are proportional to the non-significant loci. FL error, feature-learnability
error; see Figure 3 for all other abbreviations.

inputs that were not significantly different. Non-significant
loci (Supplementary Figure S2) were classified (as per insert
of Supplementary Figure S2) into bilateral nerve pair errors
(indicated by black and gray for sural and peroneal nerves,
respectively), right and left sided nerve errors (blue and green,
respectively), and opposite nerve + side errors (red). We found
a strong positive correlation between feature-learnability errors
(100 – feature-learnability) and non-significant loci (Figure 6)
when summed across each SF (Pearson’s correlation = 0.94;
slope of linear model = 2.51, R2 = 0.88, p = 0.018, LM), or
across each electrode (Pearson’s correlation = 0.87; slope = 1.67,
R2 = 0.75, p = 0.011).

These findings show that (i) feature-learnability confusion
errors are associated with DCN response SFs with non-significant
loci, and (ii) feature-learnability performance has a strong and
significant correlation to physiologically relevant information,
i.e., the number of non-significant loci.

DISCUSSION

In this study we used ML to show that nerve-evoked SFs extracted
from the surface of the DCN are unique to the stimulated

peripheral nerves and generalize within and across animals. We
were able to maintain a high level of classification accuracy
for determining peripheral nerve types and locations from SFs
acquired from as little as two electrodes, and we provide further
evidence that DCN SFs evoked from bilateral nerve pairs are
asymmetrically represented across the DCN surface (Loutit et al.,
2017). Finally, we correlated statistical observations from nerve-
evoked DCN SFs to feature-learnability, thereby demonstrating
that our ML approach is sensitive to differences in SFs from
nerves innervating different parts of the body that are known
to have different afferent compositions. Together, the findings
provide new insight into signal patterns across the DCN surface
and here we discuss this in context of the DCN’s potential role in
future somatosensory neuroprosthetic research.

Feature-Learnability of Nerve-Evoked
DCN Surface Activity
We used feature-learnability as a measure of information
relevance contained within SF for resolving a classification
problem as to which nerve evoked a DCN response. We fixed the
number of ANN hidden layer neurons when altering the number
of inputs, because comparison of feature-learnability requires
minimal alterations to the ANN configuration. This is equivalent
to attributing zero contribution to ML from the omitted input
neurons. We are confident that comparing feature-learnability
using this approach is valid because the feature-learnability
outcomes were consistent with the expected outcomes based on
the observations of non-significant loci (Figure 6).

Recently, we showed several HF and LF SFs recorded from
the DCN surface are highly reproducible, within and across
rats (Loutit et al., 2017). From that study, we selected five
DCN SFs that were anticipated to enable clear discrimination
between the different nerve types. While we used time-frequency
analysis to inform our choice of SFs in the present study,
we did not use features of the spectrograms for feature-
learnability. The choice of SF used in the present study can
be considered a dimensionality reduction of the information
contained in the spectrograms (Figure 1B). Therefore, it is
likely that extracting features directly from spectrograms would
lead to the identification of nerve origin and location with
similar success, but the approach we took is computationally less
demanding and can be applied over short time windows.

Feature-learnability optimized for data pooled from all
animals (PP approach) did not significantly differ from the
case where it was optimized for individual animals (WIA
approach). This indicates that consistent patterns of activation
across the DCN surface are present across animals in response
to peripheral nerve stimulation, despite possible variations in
electrode placement. Although classification accuracy from the
LOO approach was reduced compared to the benchmark, it was
not significantly different to the PP approach, remaining more
than threefold above chance levels, further demonstrating that
SF similarity was apparent across animals. The LOO approach
is the most conservative of the three approaches, because there
are no samples from the animal used for ANN testing being
presented to the ANN for learning. For each animal tested, the
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data allocated to training and validation in the LOO approach
overlapped with the WIA and PP approaches by 86% (i.e., was
derived from 6/7 animals). This overlapping learning background
enables a meaningful comparison of feature-learnability for
each animal tested. Thus, the reduction of feature-learnability
of approximately 10% for the LOO versus the WIA and PP
approaches can be attributed to the uniqueness of features
presented by individual animals. Despite the high feature-
learnability in all three approaches, it should be noted that
throughout this study peripheral nerves were fully recruited
through supramaximal stimulation. We are currently performing
a series of experiments that apply natural mechanical stimuli to
activate subsets of afferents. Our preliminary data from these
studies confirm feature-learnability remains significantly greater
than chance levels when the nerve is submaximally stimulated.

The LOO approach demonstrated larger errors associated
with confusing ipsilateral nerves rather than confusing side,
indicating that compared to the benchmark, reduced learning
was associated with individual variations in SFs important for
resolving nerve type, but not side. Nevertheless, the prediction
accuracy from the conservative LOO approach demonstrates
considerable consistency among the selected SFs in their
representation across the electrodes for all animals, and is
consistent with our previous study which showed that sural and
peroneal nerves evoke distinct SFs that are highly conserved
across different animals (Loutit et al., 2017).

DCN Feature-Learnability Mapping
Neural activity, responding to peripheral stimulation, varies
as a function of location across the DCN surface (Loutit
et al., 2017). Each electrode of the sMEA therefore captures
peripheral nerve-evoked DCN electrical signatures from a unique
perspective according to its position on the brainstem surface.
The quantification of feature-learnability, as a function of
location across the DCN, enables the visualization of how
information-rich sMEA-acquired SFs are for determining the
peripheral source of sensory input. Our map in Figure 3B reveals
that, on average, the locations with maximum feature-learnability
were most often at e4, followed by e1. The underlying neural
elements responsible for generating the SFs at these locations
must be located in close proximity, i.e., directly underneath, or
next to, the recording electrode, because the recorded activity
becomes less informative as distance between the recording
electrode and current source increases (Buzsáki et al., 2012).
As each electrode of the sMEA has a diameter of 700 µm, the
territory covered by e4 corresponds to the extent of hindlimb
afferent terminal fields (Maslany et al., 1991), where rat hindlimb
receptive fields have been shown to be present at 100 µm below
the brainstem surface (Li et al., 2012).

Comparison of the feature-learnability map in the present
study, with P1N1 amplitude and HF integral DCN activity maps
from our earlier study (Loutit et al., 2017), reveals that the
location of 6 out of 10 activity hotspots from the earlier study
coincide with the area covered by e4 of the present work. In that
study different DCN positions were recorded at different times,
but collectively sampled the surface more densely in space. This
degree of overlap with P1N1 amplitude and HF integral activity

hotspots suggests e4 the best location for capturing sural and
peroneal nerve-evoked SFs from both sides of the brainstem.
The proximity of these two SF hotspots to e4 may explain
why, collectively, these SFs performed with the highest-ranked
feature-learnability at e4 compared to other electrode positions
(compare feature-learnability in first two left columns between
electrodes in Figure 5A). The positions of the remaining four
hotspots in our earlier study correspond to a region rostral to
e4, three of which were located on the left side between e4
and e1. This rostral and left-side bias of these activity hotspots
residing outside e4’s surface territory may explain why feature-
learnability was significantly greater when SFs were derived
from left (compared to right) or rostral (compared to caudal)
electrodes in the present study, and furthermore may explain why
e1 was ranked next-best feature-learnability performer after e4.
In further support for the idea that ML accuracy depends on
electrode proximity to the current source, left (e1 and e2) and
right (e6 and e7) electrodes generated smaller feature-learnability
errors when predicting nerves from their ipsilateral side (see
top row of Figure 3A). Together, these observations support the
idea that regions of greater feature-learnability coincide with the
location of signal generation within the DCN, which is likely to
arise from achieving better signal quality when recording closer
to the current source (Buzsáki et al., 2012).

Determining the Most Efficient Electrode
and Signal Feature Combination
We sought to determine which SFs and electrodes contributed
the most information content to the ANNs, by achieving the
highest decoding power from the minimum number of SFs
and electrodes. If sensory information can be predicted from
just a few SFs and electrodes, it not only reveals the most
important, non-redundant, SFs and DCN recording locations,
but it could also aid efficient targeting of DCN stimulation
regions for evoking sensory percepts in the brain via a
neuroprosthetic device.

Combinations of SFs and electrodes need to be carefully
considered to avoid using inputs that provide redundant
information or noise to the ANN. For example, with all 5 SFs
included as inputs, 3 electrodes were the minimum required
to achieve near-benchmark feature-learnability. Interestingly,
we could reduce this to 2 electrodes (e{1, 4}) by excluding
some SFs. Indeed, when each SF acquired from e4 was added
to HF integral/e4 (Figure 4E), we found that the poorest
ranked pair was HF integral paired with HF peak count,
suggesting that the two HF SFs provide some overlapping
or redundant information to the ANN. Consistent with this
explanation was that correlation analysis revealed that HF
integral and HF peak count were the highest correlated inputs.
An example of the opposite case was also evident when HF
SFs were added to P1N1 amplitude acquired from e{1–7}; the
combination of P1N1 amplitude/e{1–7} (a LF SF) and HF
integral/e{1–7} (a HF SF) achieved feature-learnability within
0.1% of the benchmark and outperformed combinations that
included two LF SFs (i.e., P1N1 amplitude with N1 latency
or P1N1 slope). Finally, by ranking feature-learnability of all
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possible combinations of SF pairs from e4 (Figure 5C), we
demonstrated that combining one LF and one HF SF delivered
significantly greater feature-learnability than SF pairs of the
same frequency bands. These examples further suggest that the
optimal feature-learnability combination requires at least one
HF SF and one LF SF, which is similar to observations by
Wong et al. (2016) when decoding cortical responses to retinal
stimulation. This raises the question: what aspects of DCN
neurophysiology do these HF and LF SFs represent, and why
might they be complementary?

The LF components of local field potentials (LFPs) and their
related electrocorticographic (ECoG) potentials (Buzsáki et al.,
2012), similar to those investigated here, have been attributed
to arise from slow network activity related to synaptic events
(Buzsáki et al., 2012), voltage-dependent membrane oscillations
(Kamondi et al., 1998), spike after potentials (Granit et al., 1963;
Gustafsson, 1984), and Ca2+-mediated spikes (Wong et al., 1979;
Logothetis, 2003). Combining electro-encephalographic (EEG)
and intracortical recordings has revealed that the magnitude
of slow potentials is related to the shape and size of dendritic
arborizations near the recording electrodes, but not cell-size,
as is the case for unit activity (Fromm and Bond, 1964, 1967;
Logothetis, 2003). The HF components of neural ensemble
recordings, obtained from a high-pass filter of ∼300–400 Hz
(Logothetis, 2003), are believed to represent multiunit spiking
activity generated from axonal action potentials. The magnitudes
of HF and LF components are both affected by the proximity
of the recording electrode. It has been suggested that summated
spiking activity and individual spikes could be recorded up to
350 µm (Grover and Buchwald, 1970) and within ∼140 µm
(Henze et al., 2000) from the recording electrode, respectively,
but LFPs can be recorded up to 3 mm from a neural population
(Mitzdorf, 1987; Logothetis, 2003). Consideration of both
recording electrode location and the type of neurophysiological
information represented by HF and LF potential components
suggests that the ideal SF/electrode combination would acquire
HF information from electrodes closest to axonal elements,
and LF information from electrodes closest to dendro-somatic
(nuclei) regions of neural ensembles. Future studies attempting
to design DCN stimulation protocols to elicit meaningful sensory
percepts to the cortex may need to carefully consider the choice
of LF and HF stimulus features and the DCN location of
the different stimuli presented. A future BMI would need to
stimulate rather than record from the DCN, but currently,
it is unclear how populations of neurons in the brainstem
will be activated by different electrical stimulation protocols.
For applications following spinal cord injury, a sensory BMI
could read an artificial peripheral sensor, or decode neural
signals from peripheral afferents or the spinal cord. These
signals would then need to be transformed into a code used
to stimulate the DCN, mimicking its activity as if it were
receiving interpretable information from an intact spinal cord,
and thereby bypassing a spinal lesion. Our study investigates the
potential for DCN activity to be used for such a neural prosthetic
device, i.e., we demonstrate that consistent, reliable signals are
represented on the DCN surface. Our findings are therefore
compatible with the idea that the DCN can be stimulated

systematically to emulate the perception of sensory experiences
arising from the periphery.

DCN Feature-Learnability Asymmetry
A key finding from the present study was that information
acquired from middle electrodes, particularly e4 and e5, could
be used to predict nerve sides (left vs. right) with high accuracy.
Each SF individually performed well above chance level (50%)
for correctly predicting side when acquired from e4 (Figure 4D).
This is striking because information from peripheral nerves is
thought to remain ipsilateral at this level of the brainstem and
activity is expected to be symmetrically expressed when evoked
from the same nerve type on either side of the body. Our data
indicates that information contained within the SFs obtained
from the midline, under identical recording conditions (i.e., the
same electrode), is significantly different when generated from
opposite sides of the body. We provide evidence supporting this
by demonstrating that side dominance (i.e., SF magnitude bias)
acquired from e4 occurs in most (84%) cases across all SFs,
animals and bilateral nerve pairs (Supplementary Figure S1B).
This side dominance provides the necessary discrimination cues
enabling the ML algorithm to correctly classify side from e4 SFs.
This is supported by the SF/animal combinations that display side
dominance in both sural and peroneal bilateral nerve pairs, which
produce significantly fewer ML errors compared to those lacking
a side dominance in at least one nerve pair (compare animals A2
and A5 of Supplementary Figure S1B). However, this concept
is not specific to central electrodes. Discrimination enabling
cues are present in the form of statistical differences between
nerve SF magnitudes at different electrodes. This is demonstrated
by the strong correlations between poorer feature-learnability
outcomes and the total number of non-significant loci found
between nerves for a given SF or electrode (Figure 6). Thus,
the combinations of SF magnitudes across the different nerves
at each electrode (Supplementary Figure S2) provides unique
input/output patterns enabling feature-learnability to perform
well above chance levels for side predictions, which furthermore,
explains why adding inputs from additional electrodes gene-
rally improves feature-learnability accuracy as observed here
and also by others (Mehring et al., 2003;Bansal et al., 2011;
Wong et al., 2016).

What could cause the magnitude differences observed between
bilateral nerve pairs recorded from e4? As all nerves were
stimulated supramaximally, all nerve fibers were recruited and
therefore side dominance is unlikely to result from an artifact
of inadequate nerve stimulation on one side. Most animals
expressed right-side dominance at the central electrode (e4)
across all SFs (note left-side N1 latency dominance indicates
shorter right-side latencies), including those with the most
left- and right-shifted electrodes (Supplementary Figure S1B).
It is therefore unlikely that electrode misalignment over the
midline contributed to signal side dominance. Our favored
explanation for the SF magnitude asymmetry is that these
signals are asymmetrically represented across the brainstem
surface. We previously reported that there were no significant
differences between two SFs (same SFs used in the present
study) when generated from bilateral nerve pairs and recorded
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from their hotspot locations (Loutit et al., 2017). However,
the hotspot locations were asymmetrically aligned across the
DCN. Considering these observations, we propose that the high
accuracy of ML derived from midline electrodes result from a
combination of (i) the electrode being near the current source,
which as discussed above, provides better signal quality, and
(ii) the asymmetric distribution of current sources generated by
bilateral nerve pairs provide magnitude difference cues between
the two sides. Recent evidence suggests that asymmetries in
gene expression in the spinal cord may lead to hemispheric
asymmetries (Ocklenburg et al., 2017). It follows that nuclei along
the motor and sensory pathways between the spinal cord and
cortex might also be organized asymmetrically. The underlying
genetic and epigenetic factors involved, to our knowledge, have
not been characterized in rats. Future studies investigating the
possibility of lateralization of neural structures within the DCN
are therefore warranted.

CONCLUSION

Stimulating the periphery evokes unique electrical signatures
across the DCN surface that can be decoded using ML. The
ability to train an ANN on input features obtained from
one set of animals and achieve high classification accuracy
based on data from other animals, demonstrates that electrical
nerve stimulation produces similar patterns of neural activity
in the DCN across different animals. Furthermore, we show
that feature-learnability is a powerful approach for identifying
information-rich locations and useful SFs, as well as determining
the minimum information required for accurate decoding
of sensory signals. Our capacity to identify information-rich
SFs generated from unique stimulation patterns may provide

new insights and approaches for the future development of
somatosensory neural prostheses. Our evidence that peripherally
evoked DCN activity is asymmetrically represented across the
brainstem surface challenges the current view of brainstem
organization and suggests a lateralization of neural structures.
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