
Surveys in Mathematics and its Applications

ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 14 (2019), 49 – 60

ON NEW SUBCLASS OF MEROMORPHICALLY
CONVEX FUNCTIONS WITH POSITIVE

COEFFICIENTS

B. Venkateswarlu, P. Thirupathi Reddy and N. Rani

Abstract. In this paper we introduce and study a new subclass of meromorphically uniformly

convex functions with positive coefficients defined by a differential operator and obtain coefficient

estimates, growth and distortion theorem, radius of convexity, integral transforms, convex linear

combinations, convolution properties and δ-neighborhoods for the class σp(α).

1 Introduction

Let A denote the class of analytic functions f defined on the unit disk E = {z ∈ C :
|z| < 1} with normalization f(0) = f ′(0) − 1 = 0. Such a function has the Taylor
series expansion about the origin in the form

f(z) = z +
∞∑
n=2

anz
n. (1.1)

Denote by S, the subclass of A consisting of functions f(z) that are univalent in E.
A function f(z) belonging to A is said to be starlike of order α if it satisfies

Re

{
zf ′(z)

f(z)

}
> α, (z ∈ E), (1.2)

for some α, (0 ≤ α < 1). We denote by S∗(α) the subclass of A consisting of
functions which are starlike of order α in E.

A function f(z) belonging to A is said to be a convex of order α if it satisfies

Re

{
1 +

zf ′′ (z)

f ′ (z)

}
> α, (z ∈ E), (1.3)

for some α, (0 ≤ α < 1). We denote this class with K(α) the subclass of A consisting
of functions which are convex of order α in E. Note that S∗(0) = S∗ and K(0) = K
are the usual classes of starlike and convex functions in E respectively.
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Also, denote by T the subclass of A consisting of functions of the form

f(z) = z −
∞
Σ

n=2
anz

n, an ≥ 0 (z ∈ E) (1.4)

and let T ∗(α) = T ∩ S∗(α), C(α) = T ∩K(α). The classes T ∗(α) and C(α) possess
some interesting properties and have been extensively studied by Silverman [18] and
others.

Following Goodman [7, 8], Ronning [14, 15] introduced and studied the following
subclasses

(i) A function f ∈ A is said to be in the class Sp(α, β) of uniformly β−starlike
functions if it satisfies the condition

Re

{
zf ′(z)

f(z)
− α

}
> β

⏐⏐⏐⏐zf ′(z)

f(z)
− 1

⏐⏐⏐⏐ , z ∈ E (1.5)

−1 < α ≤ 1 and β ≥ 0.

(ii) A function f ∈ A is said to be in the class UCV (α, β) of uniformly β−convex
functions if it satisfies the condition

Re

{
1 +

zf ′′(z)

f ′(z)
− γ

}
> β

⏐⏐⏐⏐zf ′′(z)

f ′(z)

⏐⏐⏐⏐ , z ∈ E (1.6)

−1 < α ≤ 1 and β ≥ 0.

Indeed it follows from (1.6) and (1.5) that

f ∈ UCV (α, β) ⇔ zf ′ ∈ SP (α, β). (1.7)

Further Ahuja et al. [1], Bharathi et al. [4], Murugusundaramoorthy and Magesh
[12] and others have studied and investigated interesting properties for the classes
UCV (α, β) and SP (α, β).

Let
∑

denote the class of functions of the form

f(z) =
1

z
+

∞∑
m=1

amzm (1.8)

which are regular in domain E = {z : 0 < z < 1} with a simple pole at the origin
with residue 1 there.

Let
∑

s,
∑∗ (α) and

∑
k (α) (0 ≤ α < 1) denote the subclasses of

∑
that are

univalent, meromorphically starlike of order α and meromorphically convex of order
α respectively. Analytically f(z) of the form (1.8) is in

∑∗ (α) if and only if

Re

{
−zf ′ (z)

f (z)

}
> α, z ∈ E. (1.9)
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Similarly, f ∈
∑

k (α) if and only if, f(z) is of the form (1.8) and satisfies

Re

{
−
(
1 +

zf ′′ (z)

f ′ (z)

)}
> α, z ∈ E (1.10)

and similar classes of meromorphically univalent functions have been extensively
studied by Pommerenke [13], Clunie [5], Royster [16] and others [2, 3, 10, 11, 19].

Since, to a certain extent the work in the meromorphic univalent case has
paralleled that of regular univalent case, it is natural to search for a subclass of

∑
s

that has properties analogous to those of T∗ (α). Juneja and Reddy [9] introduced
the class

∑
pof functions of the form

f(z) =
1

z
+

∞∑
m=1

amzm, am ≥ 0, (1.11)

Σ∗
p(α) = Σp ∩ Σ∗(α).

For functions f(z) in the class
∑

p, we define a linear operator Dn by the following
form

D0f(z) = f(z)

D1f(z) =
1

z
+ 3a1z + 4a2z

2 + · · · =
(z2f(z))′

z
D2f(z) = D(D1f(z))

...

Dnf(z) = D(Dn−1f(z)) =
1

z
+

∞∑
m=1

(m+2)namzm =
(z2Dn−1f(z))′

z
, for n = 1, 2, · · ·

(1.12)
Now, we define a new subclass σp(α) of

∑
p .

Definition 1. For −1 ≤ α < 1, we let σp(α) be the subclass of
∑

p consisting of the
form (1.11) and satisfying the analytic criterion

−Re

{
z(Dnf(z))′

Dnf(z)
+ α

}
>

⏐⏐⏐⏐z(Dnf(z))′

Dnf(z)
+ 1

⏐⏐⏐⏐ , (1.13)

Dnf(z) is given by (1.12) .

The main object of this paper is to study some usual properties of the geometric
function theory such as coefficient bounds, growth and distortion properties, radius
of convexity, convex linear combination and convolution properties, integral operators
and δ− neighborhoods for the class σp(α).
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2 Coefficient inequality

In this section we obtain the coefficient bounds of function f(z) for the class σp(α).

Theorem 2. A function f(z) of the form (1.11) is in σp(α) if

∞∑
m=1

(m+ 2)n[(2m+ 3)− α] |am| ≤ (1− α), − 1 ≤ α < 1. (2.1)

Proof. It suffices to show that⏐⏐⏐⏐z(Dnf(z))′

Dnf(z)
+ 1

⏐⏐⏐⏐+Re

{
z(Dnf(z))′

Dnf(z)
+ 1

}
≤ (1− α).

We have⏐⏐⏐⏐z(Dnf(z))′

Dnf(z)
+ 1

⏐⏐⏐⏐+Re

{
z(Dnf(z))′

Dnf(z)
+ 1

}
≤ 2

⏐⏐⏐⏐z(Dnf(z))′

Dnf(z)
+ 1

⏐⏐⏐⏐
≤

2
∞∑

m=1
[(m+ 2)]n(m+ 1)|am||zm|

1
|z| −

∞∑
m=1

[(m+ 2)]n|am||zm|

Letting z → 1 along the real axis, we obtain

2
∞∑

m=1
[(m+ 2)]n(m+ 1)|am|

1−
∞∑

m=1
[(m+ 2)]n|am|

.

The above expression is bounded by (1− α) if

∞∑
m=1

[(m+ 2)]n[2m+ 3] |am| ≤ (1− α).

Hence the theorem is completed.

Corollary 3. Let the function f(z) defined by (1.11) be in the class σp(α). Then

am ≤ (1− α)
∞∑

m=1
(2m+ 3)n[2m+ 3− α]

, (m ≥ 1).

Equality holds for the function of the form

fm(z) =
1

z
+

(1− α)

(m+ 2)n[2m+ 3− α]
zm.
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3 Distortion Theorems

In this section we obtain the sharp for the Distortion theorems of the form (1.11).

Theorem 4. Let the function f(z) defined by (1.11) be in the class σp(α). Then for
0 < |z| = r < 1,

1

r
− (1− α)

3n[5− α]
r ≤ |f(z)| ≤ 1

r
+

(1− α)

3n[5− α]
r (3.1)

with equality for the function

f(z) =
1

z
+

(1− α)

3n[5− α]
z, at z = r, ir. (3.2)

Proof. Suppose f(z) is in σp(α). In view of Theorem 2, we have

3n[5− α]
∞∑

m=1
am ≤

∞∑
m=1

(m+ 2)n[2m+ 3− α] ≤ (1− α)

which evidently yields
∞∑

m=1
am ≤ 1−α

3n[5−α] .

Consequently, we obtain

|f(z)| =

⏐⏐⏐⏐⏐1z +
∞∑

m=1

amzm

⏐⏐⏐⏐⏐ ≤
⏐⏐⏐⏐1z
⏐⏐⏐⏐+ ∞∑

m=1

am|z|m ≤ 1

r
+ r

∞∑
m=1

am ≤ 1

r
+

1− α

3n[5− α]
r.

Also

|f(z)| =

⏐⏐⏐⏐⏐1z +
∞∑

m=1

amzm

⏐⏐⏐⏐⏐ ≥
⏐⏐⏐⏐1z
⏐⏐⏐⏐− ∞∑

m=1

am|z|m ≥ 1

r
− r

∞∑
m=1

am ≥ 1

r
− 1− α

3n[5− α]
r.

Hence the results (3.1) follow.

Theorem 5. Let the function f(z) defined by (1.11) be in the class σp(α). Then for
0 < |z| = r < 1,

1

r2
− 1− α

3n[5− α]
≤ |f ′(z)| ≤ 1

r2
+

1− α

3n[5− α]
.

The result is sharp, the extremal function being of the form (3.2).

Proof. From Theorem 2, we have

3n[5− α]
∞∑

m=1
mam ≤

∞∑
m=1

(m+ 2)n[2m+ 3− α] ≤ (1− α)

which evidently yields
∞∑

m=1
mam ≤ 1−α

3n[5−α] .

Consequently, we obtain

|f ′(z)| ≤

⏐⏐⏐⏐⏐ 1r2 +
∞∑

m=1

mamrm−1

⏐⏐⏐⏐⏐ ≤ 1

r2
+

∞∑
m=1

mam ≤ 1

r2
+

(1− α)

3n[5− α]
.
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Also,

|f ′(z)| ≥

⏐⏐⏐⏐⏐ 1r2 −
∞∑

m=1

mamrm−1

⏐⏐⏐⏐⏐ ≥ 1

r2
−

∞∑
m=1

mam ≥ 1

r2
+

(1− α)

3n[5− α]
.

This completes the proof.

4 Class preserving integral operators

In this section we consider the class preserving integral operator of the form (1.11) .

Theorem 6. Let the function f(z) defined by (1.11) be in the class σp(α). Then

f(z) = cz−c−1

z∫
0

tcf(t)dt =
1

z
+

∞∑
m=1

c

c+m+ 1
amzm, c > 0 (4.1)

belongs to the class σp[δ(α, n, c)], where

δ(α, n, c) =
3n[5− α](c+ 2)− (1− α)c

3n[5− α](c+ 2) + (1− α)c
. (4.2)

The result is sharp for f(z) = 1
z + (1−α)

3n[5−α]z.

Proof. Suppose f(z) = 1
z +

∞∑
m=1

amzm is in σp(α). We have

f(z) = cz−c−1
z∫
0

tcf(t)dt = 1
z +

∞∑
m=1

c
c+m+1 amzm, c > 0.

It is sufficient to show that

∞∑
m=1

m+ δ

1− δ

c

c+m+ 1
am ≤ 1. (4.3)

Since f(z) is in σp(α), we have

∞∑
m=1

(m+ 2)n[2m+ 3− α]

1− α
|am| ≤ 1. (4.4)

Thus (4.3) will be satisfied if

(m+ δ)

(1− δ)

c

(c+m+ 1)
≤ (m+ 2)n[2m+ 3− α]

1− α
, for each m.

Solving for δ, we obtain

δ ≤ (m+ 2)n[2m+ 3− α](c+m+ 1)−mc(1− α)

(m+ 2)n[2m+ 3− α](c+m+ 1) + c(1− α)
= G(m). (4.5)
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Then G(m+ 1)−G(m) > 0, for each m.

Hence G(m) is increasing function of m, since G(1) = 3n(5−α)(c+2)−c(1−α)
3n(5−α)(c+2)+c(1−α) .

The result follows.

Theorem 7. If the function f(z) = 1
z +

∞∑
m=1

amzm is in σp(α) then f(z) is

meromorphically convex of order δ (0 ≤ δ < 1) in |z| < r = r(α, δ), where

r(α, δ) = inf
n≥1

{
(1− δ)(m+ 2)n[2m+ 3− α]

(1− α)m(m+ 2− δ)

} 1
m+1

.

The result is sharp.

Proof. Let f(z) be in σp(α). Then, by Theorem 2, we have

∞∑
m=1

(m+ 2)n[2m+ 3− α]|am| ≤ (1− α). (4.6)

It is sufficient to show that
⏐⏐⏐2 + zf ′′(z)

f ′(z)

⏐⏐⏐ ≤ (1− δ) for |z| < r = r(α, δ), where r(α, δ)

is specified in the statement of the theorem. Then

⏐⏐⏐⏐2 + zf ′′(z)

f ′(z)

⏐⏐⏐⏐ =
⏐⏐⏐⏐⏐⏐⏐⏐

∞∑
m=1

m(m+ 1)amzm−1

−1
z2

+
∞∑

m=1
mamzm−1

⏐⏐⏐⏐⏐⏐⏐⏐ ≤
∞∑

m=1
m(m+ 1)am|z|m+1

1−
∞∑

m=1
mam|z|m+1

.

This will be bounded by (1− δ) if

∞∑
m=1

m(m+ 2− δ)

1− δ
am|z|m+1 ≤ 1. (4.7)

By (4.6), it follows that (4.7) is true if

m(m+ 2− δ)

1− δ
|z|m+1 ≤ (m+ 2)n[2m+ 3− α]

1− α
|am|, m ≥ 1

or |z| ≤
{
(1− δ)(m+ 2)n[2m+ 3− α]

(1− α)m(m+ 2− δ)

} 1
m+1

. (4.8)

Setting |z| = r(α, δ) in (4.8), the result follows. The result is sharp for the function

fm(z) =
1

z
+

(1− α)

(m+ 2)n[2m+ 3− α]
zm, m ≥ 1.
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5 Convex linear combinations and convolution properties

In this section we obtain sharp for f(z) is meromorphically convex of order δ and
necessary and sufficient condition for f(z) is in the class σp(α). And also proved that
convolution is in the class σp(α).

Theorem 8. Let f0(z) = 1
z and fm(z) = 1

z + (1−α)
(m+2)n[2m+3−α]z

m, m ≥ 1. Then

f(z) = 1
z+

∞∑
m=1

amzm is in the class σp(α) if and only if it can be expressed in the form

f(z) = ω0f0(z) +
∞∑

m=1
ωmfm(z), where ω0 ≥ 0, ωm ≥ 0,m ≥ 1 and ω0 +

∞∑
m=1

ωm = 1.

Proof. Let f(z) = ω0f0(z) +
∞∑

m=1
ωmfm(z) with ω0 ≥ 0, ωm ≥ 0,m ≥ 1 and ω0 +

∞∑
m=1

ωm = 1. Then

f(z) = ω0f0(z) +
∞∑

m=1

ωmfm(z) =
1

z
+

∞∑
m=1

ωm
(1− α)

(m+ 2)n[2m+ 3− α]
zm.

Since

∞∑
m=1

(m+ 2)n[2m+ 3− α]

(1− α)
ωm

(1− α)

(m+ 2)n[2m+ 3− α]
=

∞∑
m=1

ωm = 1− ω0 ≤ 1.

By Theorem 2, f(z) is in the class σp(α).

Conversely suppose that the function f(z) is in the class σp(α). Then

am ≤ (1− α)

(m+ 2)n[2m+ 3− α]
zm, m ≥ 1.

ωm =

∞∑
m=1

(m+ 2)n[2m+ 3− α]

(1− α)
am and ω0 = 1−

∞∑
m=1

ωm.

It follows that f(z) = ω0f0(z) +
∞∑

m=1
ωmfm(z).

This completes the proof of the theorem.

For the functions f(z) = 1
z +

∞∑
m=1

amzm and g(z) = 1
z +

∞∑
m=1

bmzm belongs to
∑
p
,

we denoted by (f ∗ g)(z) the convolution of f(z) and g(z) and defined as

(f ∗ g)(z) = 1

z
+

∞∑
m=1

ambmzm.
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Theorem 9. If the function f(z) = 1
z +

∞∑
m=1

amzm and g(z) = 1
z +

∞∑
m=1

bmzm are in

the class σp(α) then (f ∗ g)(z) is in the class σp(α).

Proof. Suppose f(z) and g(z) are in σp(α). By Theorem 2, we have

∞∑
m=1

(m+ 2)n[2m+ 3− α]

(1− α)
am ≤ 1

and
∞∑

m=1

(m+ 2)n[2m+ 3− α]

(1− α)
bm ≤ 1 .

Since f(z) and g(z) are regular are in E, so is (f ∗ g)(z). Further more

∞∑
m=1

(m+ 2)n[2m+ 3− α]

(1− α)
ambm

≤
∞∑

m=1

{
(m+ 2)n[2m+ 3− α]

(1− α)

}2

ambm

≤

( ∞∑
m=1

(m+ 2)n[2m+ 3− α]

(1− α)
am

)( ∞∑
m=1

(m+ 2)n[2m+ 3− α]

(1− α)
bm

)
≤ 1.

Hence, by Theorem 2, (f ∗ g)(z) is in the class σp(α).

6 Neighborhoods for the class σp(α, γ)

In this section we define the δ−neighborhood of a function f(z) and establish a
relation between δ−neighborhood and σp((α, β, γ, λ) class of a function.

Definition 10. A function f ∈
∑
p

is said to in the class σp(α, γ) if there exists a

function g ∈ σp(α) such that⏐⏐⏐⏐f(z)g(z)
− 1

⏐⏐⏐⏐ < (1− γ), z ∈ E, 0 ≤ γ < 1. (6.1)

Following the earlier works on neighborhoods of analytic functions by Goodman
[6] and Ruschweyh [17], we defined the δ−neighborhood of a function f ∈

∑
p by

Nδ(f) =

{
g ∈

∑
p

| g(z) =
1

z
+

∞∑
m=1

bmzm :
∞∑

m=1

m|am − bm| ≤ δ

}
. (6.2)
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Theorem 11. If g ∈ σp(α) and

γ = 1− δ[5− α]

4
(6.3)

then Nδ(g) ⊂ σp(α, γ).

Proof. Let f ∈ Nδ(g). Then we find from (6.2) that

∞∑
m=1

m|am − bm| ≤ δ (6.4)

which implies the coefficient of inequality
∞∑

m=1
|am − bm| ≤ δ, m ∈ N.

Since g ∈ σp(α), we have
∞∑

m=1
bm = 1−α

5−α .

So that
⏐⏐⏐f(z)g(z) − 1

⏐⏐⏐ < ∞∑
m=1

|am−bm|

1−
∞∑

m=1
bm

≤ δ[5−α]
4 = 1− γ, provided γ is given by (6.3).

Hence, by Definition, f ∈ σp(α, γ) for γ given by (6.3), which completes the proof
of theorem.
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