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Existencia Global para una Ecuacion de Onda Casi Linear con
Disipacién en la Frontera y Términos Fuentes

E. Cabanillas L.,
J. Bernui B.2 & F. Leén B.2, B. Godoy T*, & V. E. Carrera B.%

Resumen: En este trabajo estamos interesados con la existencia de soluciones fuertes
y decaimiento exponencial de la energia total para el problema de valores iniciales en la
frontera asociado a la ecuacién de onda con término fuente no lineal y amortiguacién en
la frontera. Los resultados son probados en términos del método potencial, la técnica
de multiplicacién y el conveniente teorema de tnica continuacién para la ecuacién de
onda con coeficientes variables.

Palabras clave: Ecuacién de Onda Casi linear, disipacién distribuida localmente no
linear, comportamiento asintético. :

On Global Existence For the Quasilinear Wave Equation with
Boundary Dissipation and Source Terms

Abstract: In this work we are concerned with the existence of strong solutions and
exponential decay of the total energy for the initial boundary value problem associated
with the quasilinear wave equation with nonlinear source and boundary damping term.
The results are proved by means of the potential well method,the multiplier technique
and suitable unique continuation theorem for the wave equation with the variable
coefficient. '

Key words: Quasilinear wave equation; locally nonlinear distributed dissipation,
asymptotic behavior.

Introduction

The main purpose this article is to study the existence of global solutions and the asymptotic
behavior of the energy related to a nonlinear wave equation of Kirchhoff type with nonlinear

boundary damping and source term.Consider the system

Uy — [a + bj; uidm] Uge = p|u|"Fu , in]0,1[ % ]0,4o0]

w(0,£) = 0 V>0
[a+ b ugda;] un(1,8) = —kw(1,8) , Yt>0
u(z,0) = u° (z), w(z,0) = u! () , Vzelo 1]

where a, b, k are positive constants and ¢ > 1 ,u € R. When b = 0 = u the above equation
has been widely studied. For n > 1, a = a(t) and Milla-Medeiros [6] showed the existence and
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58 Global Existence For the Quasilinear Wave Equation

uniqueness of strong sand weak solutions for the problem (1.1) .Aranuna-Maciel [1] proved the
existence an boundary stabilization of the semilinear problem,with a nonlinear function A instead
]ul®tu such that

sh(s) < 0

more recently Cavalcanti et al[3].studied the existence and uniform decay of solutions of (1.1)
subject to a nonlinear feedback acting on the part I'; of the boundary T' = I'o U T, In the
quasiilinear case (i.e. : a,b > 0) with g = 0 Milla Miranda- Gil Jutuca[7] Lasiecka-Ong [5]
,Cavalcanti et al. [4] ,Ono [8] Tucsnak [9] have studied the problem (1.1).

However ,the boundary condition used by about authors at I'y

ou

oy B —g(uy) forall ¢t>0

where sg(s) > 0, is not natural. This boundary condition is valid only for linear model of
vibrations string related to (1.1),in which the tension is constant . The natural boundary condition
at I'; for the quasilinear problem is

M ([, |Vu(z,t)|* dz) ‘;—z = —g(u)

where M is a positive function; in our problem
M(s) = a+bs and g(s) = ks
The goal of this work is to state a result of existence and boundary stability of strong solutions

to problem (1.1)

2. Notations and Preliminaries
We denote
(1,.2] = fol w(x)z(z)de ,  |2[]= [Hz(2)|* de

For simplicity,we always use |.| to denote |.|,
By V we denote the Hilbert space

V={weH'(0,1): w(0)=0}
Now, we set
J(u) = $lual” + § lual = 7 lulihy
I(u) = alug|* — pfulf)
and define the stable set W by
W={ueV:I{u)y>0}u{6}

The energy related to problem (1.1) is given by
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B(t) = B(u(t) = 5 [u(®) + T(u(t)

We assume that

b 95k [2(g+1) 12
max ¢ — + ~Cg ;
T\ a a® /) Lalg—1)

4uqC? {2(%1)%“?‘”” 8bC! [2(q+1)c G 22)
¥(g - 1)al/? |a(g—1) a32y(qg+1) la(g—1) " '
. % , for K > 3.

where C, is the constant of the imbedding V < L2(0,1) — L9t1(0,1) and ¢, is a positive
constant in

We defined the function on initial data

: 2 2 3 2q 1
F(Jud], [ul), lub]) = 3 Jub|” + 23 jul,|” + £ [ud| 23]

where m; = a + ib((;fll))E(O)

To get the global existence and regularity for the system (1.1) it is natural to deal first with
the local existence and uniqueness.In fact,we have the following local result,whose proof is routine
and is based on fixed point arguments(See [?] adapted our case)

Theorem 2.1. Suppose that the initial data w°® € VN H?(0,1), u' €V satisfy the compatibility
condition

(a+b/{}1 [ug|2d,x) w0 (1) + kul(1) =0 . (2.3)

Then there exists a number 7' ( 0 < 7' < +00 ) such that the problem (1.1) has a unique
solution © on [0, T[ with the regularity

we C([0,T[,VNnH*0,1))nC ([0,T[,V)nC?([0,T[,L*(0,1)) <

3. Global Existence and Exponential Decay

Let T,, be the maximal existence time of the solution to the problem (1.1) .First of all we
need a basic differential inequality for a local solution w(t) on [0, T,,].
Multiplying (1.1); by w,

d
—E(t) +k |lus(1,8))? = 0. (3.4)

and integrating from 0 to ¢ , we get

E(t) + k/; lu(1, 8)> ds = E(0) = E(0)

In particular E(t) is non-increasing on [0, 7},,[ and
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E(t) < E(0) (3.5)
for all t € [0, T [.
Now ,to obtain a priori estimate ,we need the following result

Lemma 3.1. Let u(t) be a solution to the problem (1.1) with u® € W N H*(0,1)and u' € V.
If '

<l

¥y = —C ————l

fogr |20+ 1)
o | e

:l(q-l)ﬂ

then u (t) € Won [0, T,,[ .

Prueba. Suppose that there exists a number ¢* € |0, T),[ such that w(t) € W on [0,¢"[ u(t")
¢ W.Then we have ,
I{u(t*)) =0 and u(t*) #0 (3.6)
Since u(t) € W on [0,¢*[, it holds I(u(t)) =0 on  [0,t].

Then, we deduce that

, b
Jue) = 5l + bl = L5 I

L ¢ B a(g — 1)
BTSSR e

a(q - 1) 2 *
S e OF om0

Consequently,having in mind that E(t) is a non-increasing function,we get

2(¢g+1)
a(g—1)
2(g+1)
a(g — 1)

< 2(¢g+1)
a(g—1)

It follows from the Sobolev-Poincaré inequality,the hypothesis and (3.5) that

[ue) + 3 ()’

v

()" <

J(u(t)) (3.7)

&

E(u(t))

E(0) on [0,t"]

PO < O )™ = £ (0 afuso)

Hog+1 2(g +1)
s o

< alug(t)? on [0,t]

a|ug(t)|? (3.8)

A

] (g—1)/2

From (3.7) and (3.8) we obtain
plu@®t] < aluz(0) on [0,]

Therefore,we obtain
I(u(t)) = alua () = ()| > 0
which contradicts to (3.6).Thus we conclude that u(t) € Won [0,T;,[. ®
We shall state our main result
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Theorem 3.1. Suppose that ¢ > 1 and p > 0. If v®° € WNH?(0,1) ,u! €V wverifying the
compatibility condition (2.3) and

41 . | (3.9)
If

F (lug| s |uze| s |uz]) < %0 | (3.10)

with 0 < €9 < 1,then the problem (1.1) admits a global solution u = u (z,t) satisfying

u € L* ([0, +oo[; W N H?(0,1))
ug € L™ ([0, +o00[; V)
Uy € L% ([O, +OO[,L2(O, 1))

Furthermore, the energy determined by the solution u has the following decay sates

E (t) < C()B_Tt

where Cy, and v are positive constants .
Prueba. Let u(t) be a unique solution of the problem (1.1) in the sense of theorem 0 on [0, T5,,[ . We
shall show that this solution can be continued to 7;, = +o0.For this it suffices to derive appropiate
apriori estimates including second order derivatives of wu (t) and to obtain it ‘we will assume the
following lemma to be proven later.

Lemma 3.2. For a local solution u(t) of (1.1) on [0,T[,it holds
E(t) < Coe ™.
If (1.1); is divided by

B(t) = a+blua(t)|’

and the expression resultantly is differentiated with respect to t,it yields

L _BW 4T e ue) — 2O
mum(f) — Uzt (t) = (1) w(t) + 0 ()" ue(t) lu(®)]* u(t) (3.11)

Multiplying equation (3.11) by uy and integrating, we get

i k 18 kB ()
a—tH(t) + % |utt(1,t)|2 = §ﬁ2—(t) luw (t))* + m—)-ut(l,t)uﬁ(l,t)
(3.12)
Kq g—1 JU'.BI(t) q—1
50 (lu(®)] ut(f),utz(t)) 0 (@)™ u(t), un(®))

where

H() OF + 5 i)

TpAE) Y
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Making use of the generalized Hélder inequality,observing that 9’——— + 7 % + = 1, considering
the Sobolev imbedding we have

()77 ue(t), wae(®))] £ [ty le()lgg [uee(t)]
‘ < CF ug ()" Juan(t)] [uae(t)] (3.13)
and
| ([u®]" u(t), ue(®))| < lu(t)]g, luee(t)] < CF fua ()] |un(t)] (3.14)
Combining(3.12) and (3.13)-(3.14) we deduce
d k1, 232 [2(q + 1) 1/2 /
a0+ g it o < 20 2NN g g,
— )/2
RN Lp g Hey+ {“qf; (2D g g

2ubCd [Q(q + 1)] (e+1)/2
a

e L (t)““’fi’} H(Y)

On the other hand,by using the original equation (1.1) together with the compatibility
conditions on the boundary,we get

(ug(0),v) = (a—}- b |ul] ) (ul,,v) + p (|u0|q—1 uo,v) YveV

Since u® € H?(0, 1), the Sobolev 's imbedding implies
|uee (0)] < 1y |ug,| + pCY |

where my =a+ %%E(O).
Thus ,we obtain

|utt(0)|2 |Utt(0)|2 < mlt | n ucH uoqu
26(0) ~'ea g v @ V%
and from definition of H(t) it follows that
1
H(0) < 5 ub] + 2 ( 2 Jud, |+ w2 [u2[*) . (3.16)

Our next goal is to show that H(t) is bounded for all t greater or equal to zero.Actually,we
will prove that

H(t)<e , foralt>0 (317)

where ¢, is defined in (3.10)is not true.Then it will exists a ¢* > 0 such that



3. GLOBAL EXISTENCE AND EXPONENTIAL DECAY 63

H(t) < € o » for all Ot gt
(3.18)

H(t*) = €

If (3.15) is integrated from 0 to t* we get
' 93/2 5/21. 1/2 -
H(t*) < HO)+b e BT 2(“1)@0 63/2/ e~/ ds
a a3 a(qg—1) | 0
(3.19)
2 (g-1)/2 et~
o 2aC [t D) f o—3(a-1)/2 4,
a'? [a(g—1) 0
(g+1)/2  pt*
n 4bCY 12(q + 1)00 e=vsla+1)/24. 4 o
a8’ [lalg 1) ' 0 ’

Combining (2.2) and (3.10) with (3.19),we obtain
H(t*) < €
which is a contradiction with (3.18)q,therefore we reach on aim (3.17).From definitition of H(t)

,we conclude

1| 1
g @ + U@ <€ forall 20 (3.20)

From (3.20),system (1.1),the classical elliptic theory and trace theory ,we get

[u(t)| 2 < C'lJue(t)] + uz (B)]] < Ceo

Then,we conclude that the local solution u(t) with u(0) = «® ,u,(0) = u! exists in fact on
[0,00[ and it satisfies all of the above estimates on obtained for [0, 00[. The proof of theorem is
now finished. m

Proof of Lemma 4
The method used here is based on the contruction of a suitable Lyapunov functional and a

new continuation theorem for the wave equation for the wave equation with variable coefficients.

Multiplying equation (1.1) by zu, we get

), 2(0) = = 5 () + (a+ b)) lua 0]
% 67 (1) + (a+blua (D)) w3 (1, )] + (i (lu()|" w(t), 2ua(2))) (3.21)

But

[(ju(®)]"" ult), zua () |

IA

u(®)|5, ua ()]
lu(t) ]S~ CO Ju, ()77 ,0 < 6 < 1 (3.22)

IA
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where we have used the interpolation inequality and the fact that |u(t)|. < Ci |u.(t)] ¥ r.
From Young inequality ,we have for all € > 0, that

[(lw(®) " w(t), zus ()| <€ e |ult)]® + ek jug(8)]? (3.23)
where k = (E(0)) H=Gma C?

Now, using (3.21)-(3.23) and the boundary condition ,we get

d%(u*(t)’mzm) T % [|ut(t)|2 + (% + Z |ux(t)|2) lux(t)lz}

+ 3 (14 2) 0+ el + <00 (3:24)

. .2
< - @E(t) + 1 (1 + A—) uZ(1,8) + ¢ [u(t)?
4 2 a
for some ¢y > 0.
Our aim now ,is to estimate the last term of (3.24).In order to obtain it,let us prove the
following
lemma,where Tj is a positive constant which is sufficiently large.

Lemma 3.3. There exists Ty > 0 such that if T > Ty,

7k T
fthagc/|MLth (3.25)
S S

for0<S<T<1T,, whereC is a positive constant independent of u
Prueba. We will argue by contradiction.Let us suppose that (3.25) is not verified ,and so there
exists initial data ©*° and u*! such that the solution u” of

uy, — [a + bfo da:} Upy = p[u”|* " w0 ]0,1[ x ]0, +00]
u”{0,1)'=0 odE 0 (3.26)
[a»{— bfo v d:r:] u.(1,t) = —kuy(1,t) , Vt>0
w(z,0) = v (z), u(x,0)=u"(z) , Vzelo1]
where u” satisfies
T T
f|MmFﬁ>uf|ﬁUﬁfﬁ (3.27)
S s

for any v € N.

Here, we observe that in our work,in view of a < 1 ,the energy of the initial data {u*?, u*'}
.denoted by E¥(0), remains uniformly bounded in » .that is there exists M > 0 such that
E'(0)<M, Y veN.

Consequently E¥(t) < M Vv € N, since it is nonincreasing function.
Then we obtain a subsequence, still denoted by {u”} ,which verifies

u’ — u weakly * in L>(0,T;H'(0,1))
u? — u; weakly * in L™ (0,7;L*(0,1))
u’(1,.) — uy(1,.) weak in L?(0,1)
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Applying compactness results we deduce that

u’ — u strongly L* (0,7 L*(0,1)) (3.28)

and

uf (1,.) — w(1,.) strongly L?(0,T) (3.29)
According to (3.28) we have that

"t — [u e ae  in ]0,1[z ]0, T

From the above convergence and since the sequence {Iu”]q_lu"} is bounded in
L?(0,T; L?(0,1)) we conclude by Lion’s lemma that

v/ Y — |u|"'u weakly in L? (0,73 L?(0,1)) (3.30)

The term fg lu”(t)|? dt is bounded since E*(t) < M , Yv e N,¥t >0 and [u*(t)|* < C'E*(¢)
where C' is a positive constant independent of v and ¢.Then from (3.27)

T
f lu¥(1,¢)]>dt — 0 as v — +00
s

Besides,from the uniqueness of the limit we conclude that

w/(1,t) =0 (3.31)

Passing to the limit in (??),when v — 400 we get for u

U — [a + b N2(t)] gy — p|u)T T u=0
w(0,t) =0 , ‘ (3.32)
UL,y =0 (=10 ,

where lim, . fol (u?)?dz = A2(t) by the Ascoli-Arzela Theorem and the boundedness of
E¥(t) (for a subsequence {u"*} still denoted by {u"}).
Let w = u;. Then

wy — E(t)weg = q lul' " w + %wt - -”E%f)l lul ' u = F(2)

w(0,t) =0 =w(1,t) ' (3-33)
w1t} =0, i '

where £(t) = a + bA%(2).

Now,we shall prove a unique continuation property of the problem (3.33).

It is easy to see that the solution w = w,; of the problem (3.33) can be applicable to the equality
(3.21) in place of u .Hence ,using the boundary conditions,we obtain

%(wt(t), vwy(t) < - 2E(H) + (F(t), 2w.)

where By(t) = } (jua(®)l’ + €0 lun ()P’
Here ,we observe that Q(t) = (w(t), zw,(t) verifies

wEL(t) < Q(t) < qiEi(t) , (3.34)
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where qo and ¢, are positive constants, gg < ¢;.
Thus ,using (3.34) we have

El(T)-l—cé/OT El(t)dtgc(E1(0)+/0T|F(t)||wm (t)ldt)
/ Byt t<c(E1 f () dt)

where Ey(t*) = info<i<r Er (1)
Here,we have

and hence

|F(t)|2sc(lluﬁ‘lwl%{g(t)‘ l*+ 5{% ul ™y I)
CEO) £(1)

el o] < ulf ™ ol < O a7 P < T= 20 P

Further,by the equation we see

E(t) luz (1) < O (fuea(t)] + luae(8)] + [ua(B)]°) uz (1))

with some C; > 0,we obtain
C ()
(1- 2B ) o] < 2 (ualo)] + lum(0)

Thus,under a little more stronger assumption than (3.1)

we get

lug(t)] < CEV3(2)
Then

lu® " u®)]” < Ju ()|2q < C¥ lua(8)|™ < CE(0)"" ua(t)|”

< CE (1)

Furthermore,by the assumptions, we have

‘%‘ < ks lim '% [a—#—b/ol(u;)zdm} :2—b lim ‘/Ulumun dx

a v—-+oo

a v—+oo

1/2
E(O)} s

3/2
< 2 lua(t)| fuald)] < 2 [2(‘1“)

aK1/2 {a(qg—1)

on [0, Tp| -
Then we have from ( 3.35) -(3.40)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)
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fOT Ei(t)dt <c (E'l'(t*) + € /OT E‘l(t)dt)

taking €p small we arrived at the inequality

fT E(t)dt < ézEl (t*)
0

for a certain constant Co > 0 . Taking T > Ty = C, weobtain Ei(t)=0 0<t<T
,which implies
u(z,t) = u(x) ,independent of ¢. So,the original problem (3.32) implies

2 1
alus(t)” < plulgh

But,this contradicts the lemma (3.2) if u # 0 .Here we observe that we may assume T
m > Tp. Otherwise,we get the results by (3.5).
Let us assume that uw = 0 . Defining

i v
Ang u*|? ds . P(at) == (;’t) . 0<t<T (3.41)
S v
we have that A, — 0 and
T X
f |2“|2ds = 1 (3.42)
S
Besides
5 1
B) = BE) =54 0F+ I
< Lo+ Gi2zor+ 2 1zor
~ 2 Zt 2 Zm. 4 ZI:
< = P aror+ Lo (3.43)
= 222 * * 2
Then
~ 1 fg+1
Py ef i N 2 i 44
B <y ()P (3.44)
Also
o 1 v 2 a’(q_]‘) v 2 b v 4
= o O s
B 2 5 {lor+ 2ol + o)
1 /fqg—-1 -
S | i | S -
=N (q+ 1) E”(t) (3.45)

on the other hand,applying inequality (3.24) to the solutions {u"},., we have

d d
K () = = (w, vus) < —6 B (1) + Cs (l (1,8 + e [u”(B)[*)
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then integrating over [S.T] ,we obtain

T T :
K¥(T) + 50/ E*(t)dt < K¥(8) + 03/ (lu¥ (1, 0)* + e [u” (1)) dt
) S
Since K" satisfies

WE"(t) < K*(t) < ¢ E*(t)

for some ¢y, ¢ > 0,and recalling that E* is a decreasing function ,we get

v i Cl v i & v 2 v 2 9
E*(T) + (50 T)/s E (t)dtSC'S/S (Juf (1, 0))* + |u”(t)|*) dt (3.46)

Dividing both sides of (3.46 ) by A2  applying inequalities (3.44).(3.45 ),(3.27) and taking
T large enough,we conclude that FE*(T") is bounded.
From (3.4),integrating over [t,T] C [S, T

T
E*(t) = E*(T) +k/ [u¥(1, 5)|? ds

Dividing both sides of this inequality by A\? ,we have
E*(t) _q+ 1
3 Sq— A2/|utls|ds
From (3.27) we deduce that

lim —/ lu¥(1,5)|*ds =0 | (3.47)

V—00 AQ
and consequently,there exists M > 0 such that

E"(t)

3 <M

forall t€[S,7] andveN.
From ( 3.44) it comes that

E'@)<M, telST],ve N

then in particular,for a subsequence {z"}, we obtain

¥ —s z weakly * in L* (0,7;H'(0,1))
2V — 2z weakly * in L% (0,T;L?(0,1))
z¥ — z strongly  in L?(0,7;L?(0,1))
In addition {z*} satisfies
2 — [a + bfo ) d’r] = plurfil 2
2(0,8) = 0 (3.48)

[a +b ] (u;)zd:c] 2l 8 =R (1)
From (3.47),we obtain (for S = 0)

2¥(1,.) — 0  in L*(0,T) as v — 400 (3.49)
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In addition ,using the same idea as in [2] we prove
plu’*' 2 — 0 in L*(0,T;L%(0,1)) as v — 400 - (3.50)
Passing to the limit in (3.48) as ¥ — +00 and taking (3.50) into account we have
2t — E() 25, =

Z:(1,8) =0=2/(1,2)

Repeating the above procedure in the case u # 0, taking x4 = 0, we get z = 0 which contradicts
(3.42).

So,lemma 3.3 is proved. m

Now,we consider the functional

Q) = E(t) + e(u(t), zuq(t))
with € > 0.We observe that Q(t) satisfies

WER) <QE) <q E(t) . (3.51)
where Qp, 1 are positive constans, with gp < g.

Then ,from ( 3.4),(3.24),integrating from Sto T , 0 < § < T < oo, using (3.25),(3.51) and

choosing € > 0 sufficiently small,we obtain

f " Byt < CE(S)
S

which proves lemma .3.2 ®

—_—

Note that the estimate in lemma 3.2 is valid even if T < T, because E(f)<EW0),0<t< T.
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