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DECAIMIENTO EXPONENCIAL DE UNA ECUACIÓN
DE ONDA CON UNA CONDICIÓN DE FRONTERA

VISCOELÁSTICA y UN TÉRMINO FUENTE

V. Carrera B.l & F. Leon: & J. Bernui B,l & V. Martínez L.l

Resumen.- En este artículo estamos interesados en la estabilidad de las solu-
ciones de una ecuación de onda con una condición de frontera viscoelástica y
Un término fuente, usaremos el método potencial, la técnica de multiplicadores
y el teorema de unicidad para una ecuación de onda con coeficientes variables,

Palabras claves: Galerkin, decaimiento exponencial, ecuación de onda,

EXPONENTIAL DECAY OF WAVE EQUATION
WITH A VISCOELASTIC BOUNDARY
CONDITION AND SOURCE TERM

Abstract.- In this paper we are concertied with the stability of solutions [or
the wave equation with a viscoelastic Bourularu condition and source term by
using the potential well method, the multiplier technique and unique continua-
tion theorem [or the wave equation with variable coefficieni.
Key words: Galerkin, exponential decasj, wave equaiion.

1. Introduction

The main purpose of this work is to study the asymptotic behavior of the solution of

the following initial boundary problem.

Utt - (a (x, t) uX)x = I1lulq-1 u in ]0,1 [x] O,+oo[

u (O, t) = °
u(l,t)+ lt

g(t-s)a(l,s)ux(l,s)ds=O, Vt>O

u (x, O) = uO(x) ú¡ (x, O) = u1 (x)

(1.1)

(1.2)

(1.3)

(1.4)
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The integral equation (1.3) is a Boundary condition with includes the memory effect.

Here u is the transverse displacement, 9 the relaxation function and J.L E IR, q > 1. By

a = a (x, t) we represent a function of

W¡~~OO (0,00; H1 (O,1)) , such that a (x, t) ~ ao > O,

at (x, t) ::; Oand ax (x, t) ::; Ofor all (x, t) E ]0, 1 [x] O,oo[

There exist a large body of Literature Regarding viscoelastic problems with the memory

term acting in the domain or in the Bondary. Among the numerous works in the direc-

tions we can cite Cavalcanti et al [2] , Berrini & Messaoudi [1]' Messaoudi et al [3], Rivera

et al [5], Santos [6], Park and Bae [4]. Considered the problem for the case of Kirchhoff

type wave equation. All the authors mentioned above stablished thein results with J.L ::; O.

The first part of this paper is to study the global existence of regular and weak solutions

to problem (1.1) - (1.4) when J.L > O; here we have some technical dificulties because of

source termo Semigroup arguments are not suitable for finding solutions of (1.1) - (1.4),

the refore, we make use of Galerkin Aproximation and Potential well method.

The Second part is to give energy decay estimates of the solutions of (1.1) - (1.4); here

the main difficulty is the source term, it seems that a straight forward adaption of method

in [6] to our context fails completely. In order to solve this problem we need to introduce

suitable multiplicadors and a unique continuation property for the wave equation with

variable coefficients.

2. Notation & Preliminaries

We denote

(w, z) =11

W (x) z (x) dx ,

By V we denote the Hilbert Space

V = {w E H1 (O,1) : w (O)= O}

Denoting by

(g * i.p)(t) =lt

9 (t - s) 4> (s) ds

the convolution product operador and differentiating (1.3) and the applying the Volterra's
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inverse operador, we get

1
a (1, t) u; (1, t) = - 9 (O) (u (1, t) + k * ud 1, t)) (1.5)

where the resolvent kernel satisfies

k (t) + 9 tO) (9' * k) (t) = 9 tO)9' (t) (1.6)

with T =g(~) and using the above identity, we write

a (1, t) Ux (1, t) = - T {Ut (1, t) + k (O)u (1, t) - k (t) Uo (1) + k' * u (1, t)}

Let us denote by,

(f D'P) (t) = 101 f (t - s) I'P (t) - 'P"(s)1
2 ds (1.7)

We .inteoduce the following functionals:

J (t) = 1. la1/2u 1
2

_ .u: I I q+12 x q+1 U q+1

E (t) = E (u (t), Ut (t)) = ~ IUtl2+ J (t) + ~(k (t) lu (1, t)12 - k' (t) Du (1, t))

I (t) = I (u (t)) = ao luxl2 - M lul ~!i

and define the stable set

w = {u E V : I(u) > O} U {e}

3" Global Existence and Exponential Decay

First, we need the following assumptions:

(A.1) The kernel 9 is positive, and k E c2 (IR+) satisfies

k -k' k" > O, , -

(A.2) Let us consider {UO,ul} E (H2 (O,1) n V) x V verifying the compatibitity condition:

\
a (1, O) u~ (1) = -TUl (1)
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The we state our main resulto

Theorem 3.1 Suppose that (A.1) - (A.2) hold;

and
(q-c L)

/1 q+l [ 2 (q + 1) E ] -2- < 1
-c* ) (O)ao ao (q - 1

Then there exists only u of the system (1.1) - (1.4) satisfying

u E i= (0,00; W nH2 (O, 1))

Ut E Loa (0,00; V)

Utt E DXJ (O, 00; L2 (O, 1))

Proof of theorem 3.1. The main idea is to use the Galerkin Method.

Let {Wj} be a complete orthonormal system of V such that

and let us write
m

um (t) =L hjm (t) wj

j=l

where um satisfies

(u";;,wj) + (a (x, t) u;;, wn =/1 (lumlq-1 u", Wj)

- T { u~ (1, t) + k (O) u (1, t) +

-k (t) U
O (1) + k' * u (1, t)} wj (1) (3.1)

for O:::; j :::;m, satisfying the following conditions

Standard results about ordinary differential equations guarantee that there exists only
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one solution of the system on some interval [O,Tm[. The extension of the solution to the

whole interval [O,oo[ is a consequence of the first estimate which we are going to prove

below.

Estimate 1.- Multipliying (3.1) by hjm (t), integrating by parts and summing up on

j we get

- {7Iu~ (1, t)12 + k (O)um (1, t) u~ (1, t) +

=k (t) Uo (1) u¿ (1, t) + k' * u" (1, t) Ut (1, t)} (3.2)

Moreover, we know that for I, i.p E el ([O,00[, lR) we have

¡t 1 1
f (t - s) i.p (s) ds i.pt = - - f (t) li.p(t)12 + - !,Oi.p

022

-~![1 0'1' - (/ J(s, ds) 1'1'1')J (3.3)

Applying (3.3) to the term k' * u" (1, t) u~ (1, t) in (3.2) and using the properties of

k, k' and kit we conclude by (3.2)

Taking into account the definition of the initial data of um we conclude that

E" (t) ~ e, Vt E [O,T], Vm E N

Lema 3.2 Let um (t) be the solution of (3.1) with Uo E W and u1 E L2 (O,1) .

1f
d

~e;+l [ 2 (q + 1) E (O)] 2 < 1
ao ao(q- 1)

then um (t) E W on [O, T]; that is, for all t E [O, T]
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Proof.- Since 1(Uo) > O, it follows from the continuity of u" (t) that

1 (um (t)) 2: O for some interval near to t = O (3.4)

Let tmax > O be a maximal time (possibly tmax = Tm) such that (3.4) holds on

[O, tmax[

In order to facilitate the notation, we will omite the index m of the approximate

system. Note that

J(u(t)) 1( ) J-l 1 1q+ 1 ao 1 12 J-l 1 1q+ 1'2 aux, u¿ - q + 1 U q+l 2: 2 Ux - q + 1 U q+l

_ _1_1 () ao (q - 1) 1 12 > ao (q - 1) 1 12
q + 1 u + 2 (q + 1) ú¿ - 2 (q + 1)' UX

[O, tmax[Yt E

Consequently, we get

lu 12< 2 (q + 1) J (u) < 2 (q + 1) E (t) < 2 (q + 1) E (O) (3.5)
x - ao (q - 1) - ao (q - 1) - ao (q - 1)

It follows from the Sobolev-Poincaré inequality and (3.5) that

(3.6)

This, from (3.6) obtain

Therefore we get 1(u) > O on [O,tmax[. This implies that we can take tmax = Tm'

This completes the proof of lemma .•

Remark 1 Let u be as in lemma 3.2, then ihere is a certain number no, O < no < 1

such that



77

In fact, [rom lemma 3.2

3.::l

with n = 1 _ 1), e ~+l [2(q+l) E (O)] 2
O ao ao(q-l)

Using lemma 3.2 we can deduce a priori estimate [or um (t). Lemma 3.2 implies that

E (t) = IIUt 1
2 + ~ (k (t) 1u (1, t) 1

2
- k' (t) O u (1, t)) + J (u)

~ 1 12 ao (q - 1) 1 12 _1_1 ( )
> 2 Ut + 2 (q + 1) Ux + q + 1 u

> 1 1 12 ao (q - 1) I 12'2 Ut + 2 (q + 1) Ux

Then

Where L1 is a positive constant independent of m E N and t E [O,T] .

Estimate 11.- Next, we shall find a estimate for the second arder energy. Fisrt, let us

estimate the initial data ur;: (O) in the L2- norrn. Letting t ---* 0+ in the equation (3.1),

multiplying the result by hjm (O) and using the compatibility condition we get

lu~ (O) 1:S MI , '\1m E N (3.7)

Differentiating (3.1) with respect to the time, multiplying by h;m (t) and summing

us the products results in j, noting that

------ --



78

after some computations we obtain

d m 1 T 2
dt El (t)::;"2 (at UXtl UXt) - "2 IUtt (1, t) I

+ 4~ Ik'(t)21IuO(1)1
2 + 4~ Ik'(0)12Iu(1,t)12+

+ 4~ Ik"IL'(o,oo) Ik"l O u (1, t) + e (luxtl2 + IUttn (3.8)

for some n, e> O, where

By integrating (3.7) over [O,t] and employing the first estimate and Gronwall's lemma

we obtain

Er; (t) ::; e , \:1 t E [O,T], \:1m E N

the rest of the proof is a matter of routine .•

Proof. To Prove this theorem we shall use the Galerkin Method and potential well theory

for the wave equation. •

4 Uniform Decay

4.1 Exponential Decay

In this section, we shall show the asymptotic behavior of solutions for system (1.1) -

(1.4) when the resolvent kernel k decay exponentially, that is, there exist positive con-

stants ml, m2 such that

k (O) > O (4.1)

Note that this implies that

k (t) ::; k (O) e-m1t

At first, we begin with the following Lemmas.
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Lemma 4.1 Any strong solution of system (1.1) - (1.4) satísfies

d T 2 T 2 T 2
- E (t) < - - 1 u¿ (1, t) 1 + - k2 (t) 1Uo (1) 1 + - k' (t) 1u (1, t) 1 +
dt - 2 2 2

- ikl/ (t) Du (1, t) + ~ (atux, ux)

Proof. Multiplying (1.1) by Ut and integrating over [0,1], our conclusion follows.

As a consequence of the above Lemma we have that energy is bounded for any t 2: O.•

Lemma 4.2 Any stong solution of system (1.1) - (1.4) satisfies

:t (u" xUx) S;G + ;:) Iu,(1, t) l'+ Ik~t)IIk'I Du (1, t) + Ik~O)121u (1, t)I' +
1 2 2 2 a 2+ -k (t) Iuo (1)1 + 2c Iux (1, t)1 - -4E (t) + e lul
2c

Proof. Multiplying Equation (1.1) by xUx, using the Boundary condition (1.7) taking E

small enough, we arrive at the conclusion. •

Lema 4.3 Let u be a solution in theorem 3.1. Suppose that (4.1) holds and the initial

data verifies

The there exists To > O such that if T 2: To we have

where e is A positive constant.

Proof.- The method we use is based on A compactness- Uniqueness argumento In order

apply this method we need an unique continuation theorem for the wave equation with

variable coefficients. Let us introduce the functional
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with N > O. Using Young's inequality and taking N large enough we find that

Applying Lemmas 4.1-4.3, and integrating from s to t where

o < s ::;T < +00

we obtain
TJ E (t) dt < cE (s)
s

this condition implies that

E (t) < M E (O) e-"(t

wich completes the Proof. •
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