
PESQUIMAT. Revista de la F.C.M. de la
Universidad Nacional Mayor de San Marcos
Vol. 11-N°2 PQS. 11-14 Urna - Perú Dic. 1999

ON THE HAUSDORFF MEASURE OF
CERTAIN PLANE SET PROJECTIONS

c.A. Morales1

ABSTRACT. A characterization of plane sets whose projection have zero Hausdorff measure

is given. This is obtained through the study of. an angular density introduced first by

Marstrand [2].

1. INTRODUCTION

This paper deals with the projection of certain class of plane s-sets over the real line. The ~

goal is to exhibitconditions, on the projection angle, under whi~h the projection set have

Hausdorff measure zero.

Let us explain the main objets of these statements. If s is a positive real number

and E E IR2
, the Hausdorff s-measure- mS (E) of E is the number

mS (E) = sup indL¡1 V¡ IS : {VJp -cover E j,
p>O

where {V ¡}p - cover E means that p is a real positive number, the union U ¡V ¡ contains

E and the diameter 1V¡ 1 of V¡ is less than p. Yet, for any s, p > ° and E E IR2
, we

define m~ (E) as the lower bound of L¡I V¡ IS over all possible p - cover {VJ of E. It is

easy to prove that mS is a outher measure in the sense of Caratheodory (see Royden [1]).

A set E is called a s-set if it is a measurable set, with respect to the outher measure mS
,

and mS (E) is a positive finite number. In addition, if 8 E [O,2n) and d, O > ° and

XE IR2, R(x,8,O,d) denotes the rectangle in IR2 with center at x, base lenght 28, size

lenght 2d, pointing toward the 8 direction. Also, for s, q > 0, 8 E [O,2n), E E IR2 and

x E E we pefine the (8, q, s) - density of E at x as the limit
" .

lim liminf O-qmS (EnR(x,8,o,d)) .
p-"O· 8-,,0·
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Sometimes, we denote this density by D$'" (E, x). This notion was introduced by

Marstrand [2], where it was proved that the (e,l,s) -vdensity of E at almost every point

x E E is infinity when e E [O,21t'), s > o , E is a s-set and the projection of E along the

direction e has Lebesgue measure equal zero (see Lemma 12 of Marstrand [2]). If

e E [o,21t') and E E IR2
, then the projection of E along the direction e over any

orthogonal direction is denoted by p(e, E) . OUf main theorem is a sort of converse of the

Marstrand's Lemma above mentioned.

Theorern 1.- Let s, q be two. real positive numbers and e E [O,21t'). Suppose that

E E IR2 is a s-set for which its (e, q, s) - density at every point x E E is infinity. Then

mq(p(e,E»)=O.

It is clear that Theorem 1 and the Marstrand's result characterize, up to some

restrictions, the directions e for which a given fixed s-set E projects into Hausdorff s-

measure zero set. This observation applies to the problem of determinate the set of íL E R

so that the difference set K - íLK', of two fixed real line cantor sets K, K', has zero

Lebesgue measure. Indeed, [2] preved that such a set of íL's has zero Lebesgue if

E = K x K' is a s-set for some s > 1. See [3] for a relation between the above problem

and the global study of certain ordinary differential equations.

2. THE PROOFS
We start with a classical result due to Vitali which can be found in the book of Falconer

[4]. Let (X ,d) be a metric space and j.l an outher measure in X. We say that a collection

V of subsets of X is a Yitali's collection of a given set E E X if every V E V is a closed

subset of X and for each x E E and e > O there exists a V E V for which x E V and

0<1 Vi < e, where 1Vi means the diameter of V in (X ,d). Now, the metric space

(X,d) is a (j.l,s)- Vitali space if for each EE X and any Vitali's collection V of E

there exists a countable disjoint subcollection {Vi }¡eIN e V such that at least one of the

following assertions hold

(1) L¡elNl V¡ l' = 00

(2) j.l(E \ U¡eINVJ = O

For a proof of the following Theorem we refer to Falconer [4].
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Theorem 2.1.- For all n E N IRn
, endowed with the usual metric, is a (m s , s) - Vitali

space for all s > °.
We keep the case n = 1 as the following immediatIy Corollary which is usually

called the Vitali' s covering Theorem.

Corollary 2.2.- lf E E R and V is a Vitali's collection of E formed by closed in te rvals,

then it is possible to find a countable disjoint subcover {U¡LIN e V for which either

Here, m· denotes the c1assical outher measure in R generated by the intervals (see

the book of Royden [1]).

Proof of Theorem 1.- Take p > ° and M E (0,00) . Let V be the following collection:

V = {p(e,R(x,e,8,d)): XE E, 285, P and m' (E U R(x,e,8,d»)> M8q}

We shall prove that Vis a Vitali's collection of p(e,E) for which (2) above holds
*

with J1 =mí. In faet, take p = p(e,X)E p(e,E), then using D3'" (E,x) = 00 we have that

for any d > ° there exists nd E (O,d) such that if 0<8 < nd then

m' (EnR(x,e,S,d»)> M8q• Let i be a positive number and ehoose any d > o. Let us

take In the interval (0,min(nd,p/2,c/2)). Then the interval

1 = (p - S, p + S]= p(e,R(x,e,S,d») belongs to Vand °< 11 1< 2S < c. This implies

that V is a Vitali' s collection of p(e, E) formed by closed intervals. Now if {UJ is any

eountable disjoint subeollection of V we have.

L¡el p(e,R(x,e,o,d)W = 2q L¡ o¡q< 2q M-1mS(E) < 00

beeause of {p(e,R(x¡,e,S¡,d¡))} disjoint implies {R(x¡,e,S¡,d¡)} disjoint. Therefore we
have that

m" (P((},E) \ U¡p(e,R(x¡ .e.s, .d¡ »))= °
for some disjoint countable subcollection {U¡}of V because of Theorem 2.1. So if P > °
we have

m! (p(e,F) \u¡p(e,R(x¡,e,o¡,d»))+ m! (p(e,E) n [U¡ p(e,R(x¡,e,o¡,d»)])~ 2qm' (E)M-1
'.>

then we have

and thus we are done because p and M are arbitraries. The proof is completed.

Now we state some corollaries of Theorem 1.
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Corollary 2.3.- Let s, q be positive numbers, E e IR2 and OE [O,2n). Assume that

q ~ s. If the (O,q,s) +density of E at almost every point XE E, witlt respect to the outher

measure m", is infinity then m" (PC8,E»)= O.

Proof.- Let F be defined as F = {x E E: D%'S (E, x) == oo}. Then usmg

mS(FnR(x,8,8,d»)=ms(EnR(x,8,8,d») (which is true because of mS(E\F)=O)

we have D%'S (E,x) = 00 for all XE F. Therefore

m" (P(8,E»)$ m" (P(8, E \ F»):::;m" (E \ F)= O

because of q e s (see Falconer [4]). The proof is completed.

Corollary 2.4.- Let E be a 1-set in IR2 and 8 E [O,27t'). D~,I(E,x) = 00 for almost every

x E E, with respect to the Lebesgue real measure m if and only if m(PC8, E») = O .

Proposition 2.5.- lf E is a s - set, s;:::: O, 8 E [O,2n) and the CO), s) - density of each

point x E E is infinity then m(P(O, E») = O.

This proposition follows from.the proof of the Theorem 1 and Corollary 2.2.

A simple example is the following. Let E be the segment {O}x [1,2] in IR2
. Using

that E is a rectificable curve we have that m' (E) = lengh of E (see Fa1coner [4]).

Therefore, E is a 1- set of IR2
• An easy computation gives D~,l (E,x) = 1I2cosO for all

x E E and O #- 7t' /2. Using our results, we obtain m(P(O, E») > O if different from n / 2.

This last affirmation can be easily checked using the picture.
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