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The importance of expression quantitative trait locus (eQTL) has been emphasized in

understanding the genetic basis of cellular activities and complex phenotypes. Mixed

models can be employed to effectively identify eQTLs by explaining polygenic effects.

In these mixed models, the polygenic effects are considered as random variables, and

their variability is explained by the polygenic variance component. The polygenic and

residual variance components are first estimated, and then eQTL effects are estimated

depending on the variance component estimates within the frequentist mixed model

framework. The Bayesian approach to the mixed model-based genome-wide eQTL

analysis can also be applied to estimate the parameters that exhibit various benefits.

Bayesian inferences on unknown parameters are based on their marginal posterior

distributions, and the marginalization of the joint posterior distribution is a challenging

task. This problem can be solved by employing a numerical algorithm of integrals called

Gibbs sampling as a Markov chain Monte Carlo. This article reviews the mixed model-

based Bayesian eQTL analysis by Gibbs sampling. Theoretical and practical issues of

Bayesian inference are discussed using a concise description of Bayesian modeling

and the corresponding Gibbs sampling. The strengths of Bayesian inference are also

discussed. Posterior probability distribution in the Bayesian inference reflects uncertainty

in unknown parameters. This factor is useful in the context of eQTL analysis where a

sample size is too small to apply the frequentist approach. Bayesian inference based

on the posterior that reflects prior knowledge, will be increasingly preferred with the

accumulation of eQTL data. Extensive use of the mixed model-based Bayesian eQTL

analysis will accelerate understanding of eQTLs exhibiting various regulatory functions.

Keywords: Markov chain Monte Carlo, expression quantitative trait locus, genetic association, Gibbs sampling,

mixed model, polygenic variance component, posterior, random effect

INTRODUCTION

Identification of expression quantitative trait loci (eQTLs) is of great interest to geneticists
studying the underlying genetic mechanisms of cellular activities and complex phenotypes. A
genome-wide eQTL analysis makes it possible to determine a profile of regulatory signals for a
single gene at a time. Recent technological developments have accelerated data production for

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00199
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00199&domain=pdf&date_stamp=2019-03-22
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:clee@ssu.ac.kr
https://doi.org/10.3389/fgene.2019.00199
https://www.frontiersin.org/articles/10.3389/fgene.2019.00199/full
http://loop.frontiersin.org/people/494105/overview


Lee Mixed Model-Based Bayesian eQTL Analysis

genome-wide eQTL analysis. Research efforts have been made
to obtain RNA-seq data to examine the profiles of eQTLs for
all expressed genes in a single cell. For example, the Geuvadis
consortium produced RNA-seq data using lymphoblastoid cell
lines derived from 462 individuals participating in the 1,000
Genome Project (Lappalainen et al., 2013). More extensive
RNA-seq data are available to examine spatial profiles of
cells with different functions. The Genotype-Tissue Expression
consortium produced spatial RNA-seq data using 1,641 samples
taken across 43 tissues obtained from 175 individuals (GTEx
Consortium, 2015). Additionally, data available on various
expression molecules currently enables us to analyze regulatory
stage-specific eQTLs as shown in Figure 1, to further understand
specific regulatory functions of gene expression.

Gradual increases in such a delicate profile of spatial,
temporal, and/or functional eQTLs requires a reasonable
statistical inference. Mixed models have been employed to
allow more accurate inferences from genome-wide association
analyses, than conventional fixed models, which explain the
genetic effect of only one candidate nucleotide variant and
considers all other genetic effects as sampling errors (Kang
et al., 2010; Zhang et al., 2010; Yang et al., 2011). As mixed
models include polygenic effects as random effects, rather than
as sampling errors, they can avoid spurious eQTLs produced
by population stratification (Widmer et al., 2014; Shin and
Lee, 2015). Population stratification is one of the most critical
problems arising from such genome-wide association studies
(Price et al., 2010). Although certain strategies such as genomic
control (Devlin and Roeder, 1999) and principal component
analysis (Price et al., 2006), for conventional analytical methods
have been suggested to remove population stratification, these
strategies are hardly satisfactory in overcoming this problem
without considering the mixed model (Zhang et al., 2010; Ryoo
and Lee, 2014). It is unrealistic to simultaneously include a
number of individual nucleotide variant effects as fixed effects in
conventional models in order to explain polygenic effects. This
is because a large number of parameters for nucleotide variants
cause critical problems, such as considerable reduction or lack
of a degree of freedom and corresponding power. This may be
reason enough to employ mixed models, even if these models
possess no other strengths. Details concerning the strengths of
using mixed models were discussed by Lee (2018).

Variability of the random polygenic effects is assessed as
a polygenic variance component in mixed models. The eQTL
effects are estimated depending on the polygenic and residual
variance components estimated in a preliminary step. Thus,
estimation of variance components is always stressed in mixed
model methodology. A variety of methods to estimate variance
components exist (Searle et al., 2009). Restricted maximum
likelihood (REML) estimation is considered a standard method
regardless of its computing algorithms in the frequentist mixed
model framework (Lee, 2018).

Recently, the Bayesian approach has gained popularity and
is increasingly used across many disciplines. The Bayesian
approach is, however, rarely applied in the context of mixed
model-based eQTL analysis. One likely reason for this is
that the mixed model-based Bayesian inference is theoretically

and computationally challenging. Currently, the burden of
computation and memory has been greatly reduced by the
development of advanced information technology. Algorithms
for the practical application of the Bayesian approach are also
available. Although a Bayesian approach for eQTL analysis was
recently reviewed (Imprialou et al., 2017), the authors did not
include themixedmodel-based analysis. Thus, the present review
should help geneticists to easily understand the background
knowledge required for the Bayesian mixed model-based eQTL
analysis and ultimately allow for the extensive use of this
method. Additionally, the purpose of this review is to encourage
those interested in developing relevant methods and algorithms
for Bayesian inference. General concepts and considerations
for genome-wide eQTL analysis using mixed models were
discussed in the previous review (Lee, 2018). The current review
highlights the Bayesian approach as a sequel to the frequentist
approach for mixed model-based genome-wide eQTL analysis.
The Bayesian analytical model, presented in a generalized form,
is comparable to the frequentist model which has previously
been reviewed. Minimal mathematical notations, to understand
the Bayesian approach, are concisely presented without any
intricacies of specific conditions. The definitions of statistical
terms for the Bayesian mixed model-based eQTL analysis are
summarized in Table 1.

BAYESIAN, MARKOV CHAIN MONTE
CARLO, AND GIBBS SAMPLING

Bayesian statistics reflect prior knowledge as well as observed
data, while frequentist statistics depend only on observed
data (Figure 2, Table 2). Bayesians also possess a different
view than frequentists do, regarding the treatment of
parameters (Figure 2). Bayesian inferences on unknown
parameters are based on the marginal posterior distributions
of these parameters. Thus, the Bayesian approach requires the
integration-based elimination of nuisance parameters. When
implementing the Bayesian approach, it is labor intensive to
compute the integration of multi-dimensional functions to
estimate the marginal posterior distributions. Marginalization
of the joint posterior distribution can be attained through a
variety of computational algorithms. A numerical algorithm of
multi-dimensional integrals is the Markov chain Monte Carlo
(MCMC; Tanner, 1993). A Monte Carlo integration generates
independent samples, but the MCMC generates correlated
samples through a Markov chain which provides an equilibrium
distribution. In this review, Gibbs sampling is presented as an
MCMC-based numerical integration method. Gibbs sampling
requires a conditional distribution for every parameter to be
sampled exactly (Gilks et al., 1995).

MIXED MODELS FOR GENOME-WIDE
eQTL ANALYSIS

A general form of the mixed model for genome-wide eQTL
analyses can be briefly expressed with vectors and matrices as
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FIGURE 1 | Various expression quantitative trait locus (eQTL) by regulatory stages. This allows fine resolution of eQTL as well as QTL (quantitative trait locus). CM,

chromatin modification; CI, chromatin interaction; meQTL, methylation QTL; haQTL, histone acetylation QTL; hQTL, histone QTL; dsQTL, DNase I sensitivity QTL;

cQTL, chromatin interaction QTL; peQTL, promoter enhancer interaction QTL; rsQTL, RNA synthesis rate QTL; eQTL*, narrow-sense eQTL; aseQTL, allele specific

expression QTL; apQTL, alternative polyadenylation QTL; sQTL, splicing QTL; trQTL, transcript ratio QTL; rdQTL, RNA decay QTL; mirQTL, miRNA QTL; rQTL,

ribosome occupancy QTL; pQRL, protein abundance QTL (Gilad et al., 2008; Degner et al., 2012; Pai et al., 2012; Shi et al., 2014; Battle et al., 2015; Grubert et al.,

2015; Tang et al., 2015; Chen et al., 2016; Li et al., 2016; Sun et al., 2016; Zhernakova et al., 2017).

follows (Lee, 2018):

y = Xβ + g+ ε

where y is the observation vector (n × 1) of gene expression
levels; n is the number of the gene expression levels; β is the
vector (nl × 1) of fixed effects such as sex, age, and candidate
nucleotide variant effects; nl is the number of the fixed effects;
X is the design matrix (n × nl) for the fixed effects; g is the
vector (n× 1) of random polygenic effects; ε is the vector (n× 1)
of random residuals. To identify eQTL, β includes the minor
allele effect of the candidate single nucleotide variant, and the
corresponding column of X includes elements of 0, 1, and 2
as the number of minor alleles under the assumption of an
additive genetic model with a biallelic single nucleotide variant.
The random variables g and ε in the analytical model have the
following normal distributions:

g ∼ N(0,Aσ
2
g )

ε ∼ N(0, Iσ 2
ε
)

where σ
2
g is the polygenic variance component; σ

2
ε

is the
residual variance component; I is the identity matrix (n × n);
A is the genomic similarity matrix (n × n) with elements of
pairwise genomic similarity coefficients based on genotypes of
single nucleotide variants. The genomic similarity coefficient

(ajk) between individuals j and k can be calculated as follows
(Yang et al., 2011):

ajk =
1

nv

nv
∑

i=1

(τij − 2fi)(τik − 2fi)

2fi(1− fi)

where nv is the number of single nucleotide variants that
contribute to the genomic similarity; τij and τik are the numbers
(0, 1, or 2) of minor alleles for the single nucleotide variant i of
the individuals j and k; fi is the frequency of the minor allele.

BAYESIAN eQTL ANALYSIS BASED ON
MIXED MODELS

Unlike fixed model analyses, the mixed model analyses for
genome-wide eQTL mapping additionally includes random
polygenic effects and the corresponding variance component, as
shown above. Marginal posterior distribution is required for each
unknown parameter in the Bayesian inference. Marginalization
can be attained by using an MCMC-based numerical integration
as mentioned above. This review presents a Gibbs sampler as an
MCMC for mixed model-based Bayesian eQTL analysis.

The conditional density function of all parameters given gene
expression levels is defined based on Bayes’ theorem as follows:

f (β, g, σ 2
g , σ

2
ε

∣

∣y ) =
f (y

∣

∣

∣
β, g, σ 2

g , σ
2
ε
)f (β, g, σ 2

g , σ
2
ε
)

f (y)
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TABLE 1 | Summary of statistical terms for Bayesian mixed model-based eQTL

analysis.

Statistical

term

Definition

Statistical

inference

Process of drawing conclusions about characteristics of a

population in the presence of uncertainty using sample data

Bayesian

inference

Statistical inference based on the posterior distribution of

parameter reflecting both observed data and prior knowledge

Frequentist

inference

Statistical inference based on only observed data

Parameter Unknown numerical characteristic of a population

Statistic Numerical characteristic of a sample

Prior Probability distribution reflecting one’s belief concerning a

parameter

Posterior Probability distribution of a parameter after taking into

account the evidence obtained from observed data

Likelihood Function of parameters given specific observed data

The function has the same entity with another interpretation

as a conditional density of the observed data given

parameters

Mixed model Analytical model including both fixed and random effects

It is also called the mixed linear model, linear mixed model, or

mixed-effect model

Fixed effect Group -specific fixed quantity

Random effect Subject-specific quantity considered as a random sample

from a population

G-side

modeling

Modeling repeated measures using random effects

R-side

modeling

Modeling repeated measures using multiple residuals for each

subject

Variance

component

Parameter describing variability of random effects in the

mixed model

Markov chain

Monte Carlo

A numerical integration method for Monte Carlo generation of

samples from a probability distribution updated by the

Markov chain that leads parameters to converge to

equilibrium distribution

Gibbs sampling A Markov chain Monte Carlo method using all the full

conditional probability distributions

Metropolis-

Hastings

algorithm

A Markov chain Monte Carlo method using approximate

probability distributions due to difficulty in direct sampling

from the distributions

Hamiltonian

Monte Carlo

A Markov chain Monte Carlo method using approximate

probability distributions, a Hamiltonian evolution between

states, and targeting states with a larger acceptance criterion

than observed probability

where f indicates function. Since the denominator f (y) is not a
function of the parameters, the conditional density function is
proportional to the numerator, i.e.,

f (β, g, σ 2
g , σ

2
ε

∣

∣y ) ∝ f (y
∣

∣

∣
β, g, σ 2

g , σ
2
ε
)f (β, g, σ 2

g , σ
2
ε
).

The left-hand side is called posterior, and this is proportional to

the product of the likelihood corresponding to f (y
∣

∣

∣
β, g, σ 2

g , σ
2
ε
)

and the prior corresponding to f (β, g, σ 2
g , σ

2
ε
). Since all the

parameters are independent, except for g, which depends on

the hyperparameter of σ
2
g under the assumption of g

∣

∣

∣
σ
2
g ∼

FIGURE 2 | Different point of view between Bayesians and frequentists. (A)

The nature of unknown parameters is compared. Parameters are considered

as random variables in the Bayesian approach while they are considered as

fixed values in the frequentist approach. (B) Bayesian inference is based on

posterior distribution proportional to the product of likelihood and prior while

frequentist inference is based only on likelihood.

TABLE 2 | Property of Bayesian and frequentist approach.

Bayesian Frequentist

Parameter Random Fixed

Inference Based on posterior Based on likelihood

Background

knowledge

Yes No

Representative

algorithm

Gibbs sampling Restricted maximum

likelihood

Point

estimation

Many point estimates from

posterior

(e.g., posterior mean, maximum

a posteriori, posterior median)

One point estimate by

a specific estimator

(e.g., restricted

maximum likelihood

estimate)

Interval

estimation

Credible interval Confidence interval

N(0,Aσ
2
g ) in the mixed model framework (i.e., f (g, σ 2

g ) =

f (g
∣

∣

∣
σ
2
g )f (σ

2
g )), the joint posterior can be expressed as follows:

f (β, g, σ 2
g , σ

2
ε

∣

∣y ) ∝ f (y
∣

∣β, g, σ 2
ε
)f (g

∣

∣

∣
σ
2
g )f (β)f (σ

2
g )f (σ

2
ε
)

Note that conditioning on the known genomic similarity
matrix (A) is dropped in the formula to avoid confusion

with parameters, i.e., f (g
∣

∣

∣
σ
2
g ) is equivalently replaced with

f (g
∣

∣

∣
A, σ 2

g ). Each component of the joint posterior can be
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assumed as follows. First, f (y
∣

∣β, g, σ 2
ε
) is assumed to possess

multivariate normal distribution as follows:

y
∣

∣β, g, σ 2
ε
∼ N(Xβ + g, Iσ 2

ε
)

Second, f
(

g
∣

∣

∣
σ
2
g

)

is assumed to have multivariate normal

distribution as explained above. The f (β) is assumed to have
uniform distribution. The f (σ 2

g ) and f (σ
2
ε
) are assumed to possess

scaled inverse chi-square distributions as conjugate priors.
Thus, the joint posterior density is presented as follows:

f (β, g, σ 2
g , σ

2
ε

∣

∣y ) ∝ σ
−n
ε

exp
[

−0.5σ−2
ε

(y− Xβ − g)′(y− Xβ − g)
]

×σ
−n
g exp(−0.5σ−2

g g′A−1g)× σ
−(κg+2)
g exp

(

−0.5σ−2
g κgωg

)

×σ
−(κε+2)
ε

exp
(

−0.5σ−2
ε

κεωε

)

where κg and κε are scale parameters of the scaled inverse chi-
square distributions for π(σ 2

g ) and π(σ 2
ε
), and ωg and ωε are

shape parameters (degrees of freedom) of the distributions.
Full-conditional posterior density for each parameter is

derived from the joint posterior density. Removing independent
components of the parameter from the density function helps to
determine the kernel of the full-conditional posterior density. As
a result, full conditional density of a scalar solution of fixed and
random effects exhibits the following Normal distribution:

sq

∣

∣

∣
s−q, σ

2
g , σ

2
ε
, y ∼ N(c−1

q,q(rq − cq,−qs−q), c
−1
q,q) (1)

where coefficient matrix C =

[

cq,q cq,−q

c−q,q C−q,−q

]

, solution vector

s =

[

sq
s−q

]

, and right-hand side vector r =

[

rq
r−q

]

from the

Henderson’s mixed model equation (Henderson et al., 1959),

i.e., Cs = r is equivalent to

[

X′X X′

X I+
σ
2
ε

σ 2
g
A−1

]

[

β

g

]

=

[

X′y

y

]

(Lee, 2018).
The full conditional density of the polygenic

variance component shows the following scaled inverse
chi-square distribution:

σ
2
g

∣

∣s, σ 2
ε
, y ∼ χ

−2
s

(

n+ ωg , ωgκg + g′Ag
)

(2)

where χ
−2
s is the scaled inverse chi-square distribution. Similarly,

the full conditional density of the residual variance component
possesses the following scaled inverse chi-square distribution:

σ
2
ε

∣

∣

∣
s, σ 2

g , y ∼ χ
−2
s

[

n+ ωε , ωεκε +
(

y− Xβ − g
)′ (

y− Xβ − g
)

]

(3)
The Gibbs sampler requires intensive iterative sampling from the
consecutively updated full conditional posterior distributions.
Prior to the intensive iteration, arbitrary initial values are set for
parameters. Each round of iteration in the Gibbs sampling, for
example, consists of the following consecutive steps:

1) Sample individual fixed and random effects consecutively
from the full conditional density of described by Equation (1).

2) Calculate residuals (ε = y− Xβ − g).
3) Calculate quadratics for polygenic effects.
4) Sample the polygenic variance component from the full

conditional density as described in Equation (2).
5) Calculate quadratics for residuals.
6) Sample the residual variance component from the full

conditional density as described in Equation (3).

Burn-in periods and thinning intervals are determined to
collect samples for posterior distributions of parameters. Samples
generated until the Gibbs chain approaches a stationary
distribution are all discarded as a burn-in period. Saving only
everymth sample after the burn-in period functions to reduce lag
correlation among samples produced by the Markov chain and
thus avoids sample size inflation. The m is termed the “thinning
interval” for the Gibbs chain.

CONSIDERATIONS AND CAUTIONS FOR
BAYESIAN eQTL ANALYSES USING
MIXED MODELS

A key advantage of the Bayesian approach is that it applies prior
knowledge to statistical inference. When prior knowledge on the
parameters is unavailable in a Bayesian approach, uninformative
or flat prior is intuitively considered. Such an application
should be used with caution, as it may lead to a theoretically
improper prior (Hobert and Casella, 1996). For example, a flat
prior assumed for polygenic or residual variance component
can produce an undesirable situation where the integral of
posterior probability converges to one without any convergence
of prior integral. In this case, a weakly informative prior may
be applied by employing a small value of the degree of belief
hyperparameter (ωg) of the prior distribution for the variance
component. This avoids the improper prior, and the resulting
posterior distribution largely reflects the likelihood in practice.

Prior knowledge is increasing as eQTL data accumulates.
However, a careful application of this knowledge, considering
genetic covariance between populations and/or tissues, is
required to maintain assumptions in practice. In addition,
examining robust variable selections are needed to predict gene
expression as eQTL data accumulates (Wu and Ma, 2015).

The burn-in period of the Gibbs chain may increase
considerably if a poor choice of initial values occurs. It is
particularly important to use initial values of fixed and random
effects solved using the Henderson’s mixed model equation with
arbitrary initial values of variance components. The equation can
be solved without the heavy computational burden of inversion
of its huge coefficient matrix (C) by using either the Gauss-
Seidel iteration (Van Tassell and Van Vleck, 1996; Lee and Pollak,
2002) or the Cholesky decomposition (Lee, 2016). Computing
costs can be reduced by Hamiltonian dynamics, employing a
Hamiltonian evolution between successive states and targeting
states with a larger acceptance criterion than observed probability
(Table 1; Girolami and Calderhead, 2011). This method reduces
autocorrelation between samples and thus reduces computing
cost for the post burn-in period as well as the burn-in period.
Gibbs sampling may begin with optimal initial values to
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reduce the computing cost for the burn-in period. Restricted
maximum likelihood (REML) estimates or their proximity are
often considered as the initial values of variance components.
This often helps avoid an undesirable situation where a Gibbs
chain remains for a long time within a misplaced local region
of the parameter space. This situation is generally accompanied
by multimodal distributions. A preemptive way to avoid the
multimodal situation is to run multiple Gibbs chains using
different initial values (Gelman and Rubin, 1992).

Determination of the convergence where the Gibbs chain
has reached the stationary distribution can be achieved using
the Raftery-Lewis diagnostic (Raftery and Lewis, 1992). The
diagnostic is based on the criterion of accuracy of a posterior
quantile estimate. For each parameter, one can calculate the
minimum number of iterations needed to estimate the quantile
within a certain level of accuracy. The maximum for these values
is determined as the number of iterations. This method can be
used as any run length control diagnostic of the Gibbs chain.
Specifically, the Raftery-Lewis diagnostic determines the burn-in
period and also the thinning rate and the minimum post burn-in
length of the Gibbs chain.

Various Bayesian point estimators are feasible from the
posterior distribution (Table 2). The posterior mean is most
commonly used as a Bayesian point estimator to minimize the
risk function for a quadratic error loss. The posterior mean
of each parameter is estimated not by averaging the sampled
values, but instead by averaging the conditional expected values
of the parameter to minimize variance. The expected values are
not always available, however, and if they are absent then the
posterior mean is obtained using observed values (Van Tassell
and Van Vleck, 1996). For example, the posterior mean for the
polygenic variance component can be calculated using expected
values, while the posterior mean for heritability is calculated
using observed values.

Parameter identifiability is a great concern to Bayesians.
Identifiability of the polygenic effects depends on degree of
similarity between individuals using nucleotide variants selected
over the entire genome. It is possible for the parameters to
have weak- or non-identifiability, which might be produced
by analyzing gene expression regulated by a limited number
of nucleotide variants or by using the similarity coefficients
calculated with a large portion of undesirable nucleotide variants
with spurious association (Ryoo and Lee, 2014). Although
a posterior mean larger than zero for polygenic variance
component is estimated, some diagnostics are suggested for the
identifiability. An example for determining the identifiability is
to examine whether the maximum region of posterior probability
is localized or extends over a significant portion of the posterior
range (Hines et al., 2014). Another example is to compare
posterior distributions of the parameters to their corresponding
prior distributions. Since the distributions are likely to be similar
with a weak identifiability, percent overlap between the prior and
posterior distributions might be used to assess the identifiability
(Garrett and Zeger, 2000).

Simultaneous analysis of eQTL for two or more genes can be
extended to the analysis described here. The major difference
between simultaneous and separate analyses is the presence

or absence of polygenic covariance component that explains
polygenic effects shared by the expression of two genes. The prior
for polygenic variance and covariance components is assumed
to possess inverse Wishart distribution, which corresponds to
the scaled inverse chi-square distribution under the assumption
that the polygenic covariance component is equal to zero (Van
Tassell and Van Vleck, 1996; Lee and Pollak, 2002). Although
the polygenic covariance component estimates are obtained by
simultaneous analysis, computing cost dramatically increases
as the number of genes increases. Separate analysis requires
arithmetically increased cost as the number of genes increases,
however, simultaneous analysis requires exponentially increased
cost. Simultaneous analysis with a large number of parameters
is also likely to increase problems with convergence to target
distribution. Thus, simultaneous analysis of eQTL for a small
number of genes is recommended in practice. In fact, polygenic
covariance component estimates of interest are all obtained by
pairwise simultaneous analysis (i.e., eQTL analysis for two genes
at once). Such a simultaneous analysis of eQTL can also be
applied to identify a variety of temporal (e.g., day and night by
circadian rhythm) and spatial (e.g., multiple tissues) eQTLs for a
specific gene.

The current review focuses on Gibbs sampling as the most
widely used MCMC algorithm to obtain random samples from
a probability distribution, for which direct sampling is difficult
in the mixed model-based Bayesian eQTL analysis. However,
otherMCMC algorithms can also be considered. TheMetropolis-
Hastings method might be employed to draw samples when the
posterior for a certain variable does not have any kernel fit a
standard density form (Hastings, 1970). A candidate sample is
generated from a proposal distribution, and then acceptance or
rejection of the candidate sample is determined according to
a rule based on proposal distribution and desired distribution.
The accepted candidate value is used in the next iteration.
The rejected candidate value is discarded, and current value is
reused in the next iteration. Hamiltonian Monte Carlo is another
MCMC algorithm to approximate probability distributions. This
algorithm employs a Hamiltonian evolution and targets states
using a larger acceptance criterion than observed probability
(Duane et al., 1987; Neal, 2011). This leads to a reduction of
autocorrelation between consecutive samples and of course a
quick convergence of the stationary distribution.

STRENGTHS OF BAYESIAN eQTL
ANALYSES USING MIXED MODELS

The strengths of employing the mixed model analysis of
eQTLs were intensively discussed in the previous review (Lee,
2018). They are, of course, all valid in the Bayesian approach
incorporated with the mixed model. Thus, this section will focus
on advantages that the Bayesian approach affords, compared to
the frequentist approach.

The Bayesian approach, implemented with Gibbs sampling,
provides empirical Bayes estimates of fixed effects and random
effects, which correspond to the best linear unbiased estimator
(BLUE) and the best linear unbiased predictor (BLUP),
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respectively. Sample-based estimates of polygenic and residual
variance components, instead of unknown variance components,
are used at every round of the Gibbs chain. Conversely, the
frequentist approach first to estimates the variance components
and then estimates the fixed and random effects, based on the
variance component estimates. This produces a problem of non-
BLUE and non-BLUP conditions by violating the assumption of
known variance components required for BLUE and BLUP (Lee,
2018). Furthermore, no penalty is imposed for the use of variance
component estimates instead of true values when the fixed and
random effects are estimated. As a result, the frequentist cannot
explain error variability inflated by replacement with variance
component estimates.

Uncertainty in the unknown polygenic and residual variance
components is reflected in the Bayesian analysis, by treating
the unknown parameters as random variables. The Bayesian
analysis results in a probability distribution (i.e., posterior)
for each parameter. This enables us to make straightforward
inferences concerning the parameters. For example, specific
credible intervals for every parameter can be directly obtained
using the samples generated from the posterior distribution by
the Gibbs sampler. This credible interval is interpreted as a range
within which a parameter value falls, with a specific probability.
This is intuitively more acceptable than the confidence interval,
with which frequentists interpret the confidence level as the
proportion of the confidence intervals that contain the true
value of parameter when confidence intervals are repeatedly
estimated from independent sample statistics. Of course,
confidence intervals are not repeatedly estimated in reality. As
uncertainty is also reflected by the probability distribution, the
Bayesian analysis does not require large samples. Given this,
the resulting posterior allows for the calculation of probability
of the true parameter (e.g., polygenic variance component)
although the posterior might show the dispersed distribution
with a large variance. Conversely, a large amount of data is
necessary as the core assumption for the frequentist approach
(Casella and Berger, 1990).

SOFTWARE

Bayesian analysis is mathematically and computationally
demanding, making it difficult to put into practice. Useful
software is, however, available to efficiently apply the Bayesian

approach to a mixed model-based genome-wide eQTL analysis
(Table 3). The Gibbs sampling described in this article has
been implemented with the software of OpenBUGS (Lunn
et al., 2009), GENSEL (Kizilkaya et al., 2010), MTGSAM (Van
Tassell and Van Vleck, 1996), and rjags (Plummer, 2018). In
particular, the OpenBUGS runs with Windows and Linux as the
open source version originated from WinBUGS, one of the most
popular programs used to fit Bayesian analysis by Gibbs sampling
(Lunn et al., 2000). The rjags provides a user interface from
R to the Just Another Gibbs Sampler (JAGS). This R package
allows the use of a program provided by the OpenBUGS and
can also easily program a user’s own algorithms with different
functions, distributions, and/or samplers (Plummer, 2018).
Since the GENSEL was originally developed for whole genome
prediction and genomic selection in animal and plant breeding,
the program was devised to deal more efficiently with individual
polygenic effects with regard to genomic selection compared
to OpenBUGS or rjags. The MTGSAM can produce a genetic
relationship matrix using pedigree information and efficiently
deal with the matrix and its inverse, which are sparse (Van Tassell
and Van Vleck, 1996). This is useful for explaining polygenic
effects of closely related animals, which are often produced by
artificial insemination and embryo transfer.

GEMMA and Stan employ other MCMC algorithms to
implement Bayesian analysis. The GEMMA implements the
Metropolis-Hastings algorithm to estimate the proportion of
total variance explained by the candidate eQTL and polygenic
effects (Zhou et al., 2013). The Stan implements the Hamiltonian
Monte Carlo sampling algorithm and provides the user with
interfaces of CmdStan for the command line shell, RStan
for R, and PyStan for Python (Carpenter et al., 2017).
The Raftery-Lewis diagnostic method to control the Gibbs
chain length has been implemented with the Gibbsit program
(Raftery and Lewis, 1992).

COMPUTATIONAL CHALLENGE

Although algorithms and software are available for application
to the mixed model-based Bayesian eQTL analysis, researchers
are confronted with a problem of computational costs in practice
of the Bayesian analysis, which requires intensive computing.
It is quite expensive and greatly dependent on the numbers of
subjects, loci, and genes. For example, approximately a month

TABLE 3 | Useful software for Bayesian genome-wide eQTL analysis using mixed models.

Program Methoda Website (http) MAb Source code References

OpenBUGS Gibbs sampling www.mrc-bsu.cam.ac.uk/software/bugs O Component Pascal Lunn et al., 2009

MTGSAM Gibbs sampling aipl.arsusda.gov/software/mtgsam O Fortran Van Tassell and Van Vleck, 1996

GENSEL Gibbs sampling archive.is/bigs.ansci.iastate.edu X C++ Kizilkaya et al., 2010

rjags Gibbs sampling mcmc-jags.sourceforge.net O R Plummer, 2018

GEMMA Metropolis-Hastings www.xzlab.org/software.html O C++ Zhou et al., 2013

Stan Hamiltonian Monte Carlo mc-stan.org O C++ Carpenter et al., 2017

Gibbsit Raftery-Lewis diagnostic lib.stat.cmu.edu/general/gibbsit NA Fortran Raftery and Lewis, 1992

aMarkov chain Monte Carlo methods for generating random samples from a probability distribution. The Raftery-Lewis diagnostic is a method for controlling length of the Gibbs chain.
bMultivariate analysis.
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of computation time is required for the Bayesian estimates with
100 subjects, 200,000 loci, and 5,000 genes in transcriptome-
and genome-wide association analyses using a desktop processor

(Intel R© Core
TM

i7-8700K Processor; 4.7 GHz, 64 GB DDR4).
Some strategies might be useful to reduce computation time.

First, computational burden is reduced by limiting the amount
of analyses. After a preliminary study, only a limited number of
genes and/or loci can be subsequently examined by the Bayesian
analysis. For example, Bayesian inference might be applied to a
genome-wide eQTL analysis, with the candidate genes identified
by transcriptome-wide association analysis, or to regional (e.g.,
cis-eQTL) and/or candidate eQTL analysis. Furthermore, only a
representative variant within each linkage disequilibrium block
can be considered for identifying eQTLs. Second, reduction in
computational burden can be achieved by employing efficient
algorithms. For example, use of Hamiltonian Monte Carlo can
reduce the number of iterations, by decreasing autocorrelation
between successive samples, as explained above. Third, parallel
computation is important to reduce computation time. Analyses
by individual candidate genes or by their groups can be carried
out simultaneously. This also helps reduce computing time in
solving a gene- or eQTL-specific problem. Lastly, computation
time is reduced by high performance computing facilities. In
particular, cloud computing provides efficient techniques for
intensive parallel computing (Hamdaqa and Tahvildari, 2012). If
an efficient parallel computation facility (i.e., multiple processors)
is used for the Bayesian analysis with the reduced number of
genes from 5,000 to 50, it is possible to complete the analyses in a
few hours.

CLOSING REMARKS

This review is provided for geneticists to understand the various
backgrounds of mixed model-based Bayesian eQTL mapping.

This may aid geneticists to overcome their skepticism of the
Bayesian approach. As small or even negligible differences
are often observed in practice between estimates resulting
from the Bayesian approach and the frequentist approach,
geneticists tend to possess a neutral point of view concerning

these approaches, and they are reluctant to employ the
Bayesian method simply because of its difficulty in theory and
computation. As explained in this review, the advantages of the
Bayesian approach are considerable and can be applied to the
mixed model-based eQTL analysis. In particular, the inference
on probability distribution of parameters in the Bayesian
approach, provides a major advantage by reflecting uncertainty
in unknown parameters. In comparison, the frequentist approach
requires a large number of samples to estimate the true
parameter as a critical assumption. Sample size for genome-wide
eQTL analysis is not usually large, particularly in comparison
to those of genome-wide association analyses of complex
phenotypes. The prior is becoming important, as systems
genetics improves in conjunction with a dramatic increase of
eQTL data in the near future. The Bayesian approach will
considerably aid researchers to examine eQTLs and understand
their regulatory functions by characterizing eQTLs using
various techniques.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

FUNDING

This work was supported by a National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIT)
(No. NRF-2018R1A2B6004867).

REFERENCES

Battle, A., Khan, Z., Wang, S. H., Mitrano, A., Ford, M. J., Pritchard, J. K.,

et al. (2015). Impact of regulatory variation from RNA to protein. Science 347,

664–667. doi: 10.1126/science.1260793

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M.,

et al. (2017). Stan: a probabilistic programming language. J. Stat. Softw. 76, 1.

doi: 10.18637/jss.v076.i01

Casella, G., and Berger, R. L. (1990). Statistical Inference. Pacific Grove, CA:

Wadsworth & Brooks.

Chen, L., Ge, B., Casale, F. P., Vasquez, L., Kwan, T., Garrido-Martín, D., et al.

(2016). Genetic drivers of epigenetic and transcriptional variation in human

immune cells. Cell 167, 1398–1414. doi: 10.1016/j.cell.2016.10.026

Degner, J. F., Pai, A. A., Pique-Regi, R., Veyrieras, J. B., Gaffney, D. J., Pickrell,

J. K., et al. (2012). DNase I sensitivity QTLs are a major determinant

of human expression variation. Nature 482, 390–394. doi: 10.1038/nature

10808

Devlin, B., and Roeder, K. (1999). Genomic control for association studies.

Biometrics 55, 997–1004. doi: 10.1111/j.0006-341X.1999.00997.x

Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987). Hybrid

Monte Carlo. Phys. Lett. B 195, 216–222. doi: 10.1016/0370-2693(87)

91197-X

Garrett, E. S., and Zeger, S. L. (2000). Latent class model diagnosis. Biometrics 56,

1055–1067. doi: 10.1111/j.0006-341X.2000.01055.x

Gelman, A., and Rubin, D. B. (1992). Inferences from iterative simulation

using multiple sequences (with discussion). Stat. Sci. 7, 457–511.

doi: 10.1214/ss/1177011136

Gilad, Y., Rifkin, S. A., and Pritchard, J. K. (2008). Revealing the architecture

of gene regulation: the promise of eQTL studies. Trends Genet. 24, 408–415.

doi: 10.1016/j.tig.2008.06.001

Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (1995). Markov Chain Monte

Carlo in Practice. London: Chapman & Hall. doi: 10.1201/b14835

Girolami, M., and Calderhead, B. (2011). Riemann manifold langevin and

Hamiltonian Monte Carlo methods. J. R. Stat. Soc. Ser. B Stat. Methodol. 73,

123–214. doi: 10.1111/j.1467-9868.2010.00765.x

Grubert, F., Zaugg, J. B., Kasowski, M., Ursu, O., Spacek, D. V., Martin, A. R., et al.

(2015). Genetic control of chromatin states in humans involves local and distal

chromosomal interactions. Cell 162, 1051–1065. doi: 10.1016/j.cell.2015.07.048

GTEx Consortium (2015). The Genotype-Tissue Expression (GTEx) pilot

analysis: multitissue gene regulation in humans. Science 348, 648–660.

doi: 10.1126/science.1262110

Hamdaqa, M., and Tahvildari, L. (2012). Cloud computing uncovered: a research

landscape. Adv. Comput. 86, 41–85. doi: 10.1016/B978-0-12-396535-6.00002-8

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and

their applications. Biometrika 57, 97–109. doi: 10.1093/biomet/57.1.97

Henderson, C. R., Kempthorne, O., Searle, S. R., and von Krosigk, C. M. (1959).

The estimation of environmental and genetic trends from records subject to

culling. Biometrics 15, 192–218. doi: 10.2307/2527669

Frontiers in Genetics | www.frontiersin.org 8 March 2019 | Volume 10 | Article 199

https://doi.org/10.1126/science.1260793
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1016/j.cell.2016.10.026
https://doi.org/10.1038/nature10808
https://doi.org/10.1111/j.0006-341X.1999.00997.x
https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.1111/j.0006-341X.2000.01055.x
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1016/j.tig.2008.06.001
https://doi.org/10.1201/b14835
https://doi.org/10.1111/j.1467-9868.2010.00765.x
https://doi.org/10.1016/j.cell.2015.07.048
https://doi.org/10.1126/science.1262110
https://doi.org/10.1016/B978-0-12-396535-6.00002-8
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.2307/2527669
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Lee Mixed Model-Based Bayesian eQTL Analysis

Hines, K. E., Middendorf, T. R., and Aldrich, R. W. (2014). Determination of

parameter identifiability in nonlinear biophysical models: a Bayesian approach.

J. Gen. Physiol. 143, 401–416. doi: 10.1085/jgp.201311116

Hobert, J. P., and Casella, G. (1996). The effect of improper priors on Gibbs

sampling in hierarchical linear mixedmodels. J. Am. Stat. Assoc. 91, 1461–1473.

doi: 10.1080/01621459.1996.10476714

Imprialou, M., Petretto, E., and Bottolo, L. (2017). “Expression QTLs mapping and

analysis: a Bayesian perspective,” in Systems Genetics, eds K. Schughart and R.

W. Williams (New York, NY: Humana Press), 189–215.

Kang, H. M., Sul, J. H., Service, S. K., Zaitlen, N. A., Kong, S., Freimer, N. B.,

et al. (2010). Variance component model to account for sample structure in

genome-wide association studies. Nat. Genet. 42, 348–354. doi: 10.1038/ng.548

Kizilkaya, K., Fernando, R. L., and Garrick, D. J. (2010). Genomic prediction

of simulated multibreed and purebred performance using observed fifty

thousand single nucleotide polymorphism genotypes. J. Anim. Sci. 88, 544–551.

doi: 10.2527/jas.2009-2064

Lappalainen, T., Sammeth, M., Friedländer, M. R., AC‘t Hoen, P., Monlong, J.,

Rivas, M. A., et al. (2013). Transcriptome and genome sequencing uncovers

functional variation in humans.Nature 501, 506–511. doi: 10.1038/nature12531

Lee, C. (2016). Best linear unbiased prediction of individual polygenic

susceptibility to sporadic vascular dementia. J. Alzheimers Dis. 53, 1115–1119.

doi: 10.3233/JAD-160391

Lee, C. (2018). Genome-wide expression quantitative trait loci analysis usingmixed

models. Front. Genet. 9:341. doi: 10.3389/fgene.2018.00341

Lee, C., and Pollak, E. J. (2002). Genetic antagonism between body weight andmilk

production in beef cattle. J. Anim. Sci. 80, 316–321. doi: 10.2527/2002.802316x

Li, Y. I., van de Geijn, B., Raj, A., Knowles, D. A., Petti, A. A., Golan, D., et al.

(2016). RNA splicing is a primary link between genetic variation and disease.

Science 352, 600–604. doi: 10.1126/science.aad9417

Lunn, D., Spiegelhalter, D., Thomas, A., and Best, N. (2009). The BUGS

project: evolution, critique and future directions. Stat. Med. 28, 3049–3067.

doi: 10.1002/sim.3680

Lunn, D. J., Thomas, A., Best, N., and Spiegelhalter, D. (2000). WinBUGS-a

Bayesian modelling framework: concepts, structure, and extensibility. Stat.

Comput. 10, 325–337. doi: 10.1023/A:1008929526011

Neal, R.M. (2011). “MCMCusingHamiltonian dynamics,” inHandbook ofMarkov

ChainMonte Carlo, eds S. Brooks, A. Gelman, G. L. Jones, and X.-L.Meng (New

York, NY: CRC Press), 1–51. doi: 10.1201/b10905-6

Pai, A. A., Cain, C. E., Mizrahi-Man, O., De Leon, S., Lewellen, N., Veyrieras,

J. B., et al. (2012). The contribution of RNA decay quantitative trait loci to

inter-individual variation in steady-state gene expression levels. PLoS Genet.

8:e1003000. doi: 10.1371/journal.pgen.1003000

Plummer, M. (2018). rjags: Bayesian Graphical Models Using MCMC. R Package v.

(Coventry, UK), 4–8.

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A.,

and Reich, D. (2006). Principal components analysis corrects for stratification

in genome-wide association studies. Nat. Genet. 38, 904–909. doi: 10.1038/

ng1847

Price, A. L., Zaitlen, N. A., Reich, D., and Patterson, N. (2010). New approaches to

population stratification in genome-wide association studies. Nat. Rev. Genet.

11, 459–463. doi: 10.1038/nrg2813

Raftery, A. E., and Lewis, S. M. (1992). [Practical Markov Chain Monte Carlo]:

comment: one long run with diagnostics: implementation strategies forMarkov

Chain Monte Carlo. Stat. Sci. 7, 493–497. doi: 10.1214/ss/1177011143

Ryoo, H., and Lee, C. (2014). Underestimation of heritability using a mixed

model with a polygenic covariance structure in a genome-wide association

study for complex traits. Eur. J. Hum. Genet. 22, 851–854. doi: 10.1038/ejhg.

2013.236

Searle, S. R., Casella, G., and McCulloch, C. E. (2009). Variance Components. New

York, NY: John Wiley and Sons.

Shi, J., Marconett, C. N., Duan, J., Hyland, P. L., Li, P., Wang, Z., et al.

(2014). Characterizing the genetic basis of methylome diversity in histologically

normal human lung tissue. Nat. Commun. 5:3365. doi: 10.1038/ncomms

4365

Shin, J., and Lee, C. (2015). A mixed model reduces spurious genetic

associations produced by population stratification in genome-wide

association studies. Genomics 105, 191–196. doi: 10.1016/j.ygeno.201

5.01.006

Sun, W., Poschmann, J., Cruz-Herrera Del Rosario, R., Parikshak, N. N., Hajan, H.

S., Kumar, V., et al. (2016). Histone acetylome-wide association study of autism

spectrum disorder. Cell 167, 1385–1397. doi: 10.1016/j.cell.2016.10.031

Tang, Z., Luo, O. J., Li, X., Zheng, M., Zhu, J. J., Szalaj, P., et al.

(2015). CTCF-mediated human 3D genome architecture reveals chromatin

topology for transcription. Cell 163, 1611–1627. doi: 10.1016/j.cell.201

5.11.024

Tanner, M. A. (1993). Tools for Statistical Inference: Methods for the Exploration of

Posterior Distributions and Likelihood Functions. NewYork, NY: Springer Series

in Statistics. doi: 10.1007/978-1-4684-0192-9

Van Tassell, C. P., and Van Vleck, L. D. (1996). Multiple-trait Gibbs

sampler for animal models: flexible programs for Bayesian and likelihood-

based (co)variance component inference. J. Anim. Sci. 74, 2586–2597.

doi: 10.2527/1996.74112586x

Widmer, C., Lippert, C., Weissbrod, O., Fusi, N., Kadie, C., Davidson, R.,

et al. (2014). Further improvements to linear mixed models for genome-wide

association studies. Sci. Rep. 4:6874. doi: 10.1038/srep06874

Wu, C., and Ma, S. (2015). A selective review of robust variable selection

with applications in bioinformatics. Brief. Bioinform. 16, 873–883.

doi: 10.1093/bib/bbu046

Yang, J., Lee, S. H., Goddard, M. E., and Visscher, P. M. (2011). GCTA: a

tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82.

doi: 10.1016/j.ajhg.2010.11.011

Zhang, Z., Ersoz, E., Lai, C. Q., Todhunter, R. J., Tiwari, H. K., Gore, M. A.,

et al. (2010). Mixed linear model approach adapted for genomewide association

studies. Nat. Genet. 42, 355–360. doi: 10.1038/ng.546

Zhernakova, D. V., Deelen, P., Vermaat, M., van Iterson, M., van Galen,

M., Arindrarto, W., et al. (2017). Identification of context-dependent

expression quantitative trait loci in whole blood. Nat. Genet. 49, 139-145.

doi: 10.1038/ng.3737

Zhou, X., Carbonetto, P., and Stephens, M. (2013). Polygenic modeling

with Bayesian sparse linear mixed models. PLoS Genet. 9:e1003264.

doi: 10.1371/journal.pgen.1003264

Conflict of Interest Statement: The author declares that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Lee. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 9 March 2019 | Volume 10 | Article 199

https://doi.org/10.1085/jgp.201311116
https://doi.org/10.1080/01621459.1996.10476714
https://doi.org/10.1038/ng.548
https://doi.org/10.2527/jas.2009-2064
https://doi.org/10.1038/nature12531
https://doi.org/10.3233/JAD-160391
https://doi.org/10.3389/fgene.2018.00341
https://doi.org/10.2527/2002.802316x
https://doi.org/10.1126/science.aad9417
https://doi.org/10.1002/sim.3680
https://doi.org/10.1023/A:1008929526011
https://doi.org/10.1201/b10905-6
https://doi.org/10.1371/journal.pgen.1003000
https://doi.org/10.1038/ng1847
https://doi.org/10.1038/nrg2813
https://doi.org/10.1214/ss/1177011143
https://doi.org/10.1038/ejhg.2013.236
https://doi.org/10.1038/ncomms4365
https://doi.org/10.1016/j.ygeno.2015.01.006
https://doi.org/10.1016/j.cell.2016.10.031
https://doi.org/10.1016/j.cell.2015.11.024
https://doi.org/10.1007/978-1-4684-0192-9
https://doi.org/10.2527/1996.74112586x
https://doi.org/10.1038/srep06874
https://doi.org/10.1093/bib/bbu046
https://doi.org/10.1016/j.ajhg.2010.11.011
https://doi.org/10.1038/ng.546
https://doi.org/10.1038/ng.3737
https://doi.org/10.1371/journal.pgen.1003264
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Bayesian Inference for Mixed Model-Based Genome-Wide Analysis of Expression Quantitative Trait Loci by Gibbs Sampling
	Introduction
	Bayesian, Markov Chain Monte Carlo, and Gibbs Sampling
	Mixed Models For Genome-Wide eQTL Analysis
	Bayesian eQTL Analysis Based on Mixed Models
	Considerations and Cautions For Bayesian eQTL Analyses Using Mixed Models
	Strengths of Bayesian eQTL analyses Using Mixed Models
	Software
	Computational Challenge
	Closing Remarks
	Author Contributions
	Funding
	References


