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Catharanthus roseus is a medicinal plant, which can produce monoterpene indole
alkaloid (MIA) metabolites with biological activity and is rich in vinblastine and
vincristine. With release of the scaffolded genome sequence of C. roseus, it is
necessary to annotate gene functions on the whole-genome level. Recently, 53
RNA-seq datasets are available in public with different tissues (flower, root, leaf,
seedling, and shoot) and different treatments (MeJA, PnWB infection and yeast
elicitor). We used in-house data process pipeline with the combination of PCC and
MR algorithms to construct a co-expression network exploring multi-dimensional
gene expression (global, tissue preferential, and treat response) through multi-layered
approaches. In the meanwhile, we added miRNA-target pairs, predicted PPI pairs
into the network and provided several tools such as gene set enrichment analysis,
functional module enrichment analysis, and motif analysis for functional prediction of
the co-expression genes. Finally, we have constructed an online croFGD database
(http://bioinformatics.cau.edu.cn/croFGD/). We hope croFGD can help the communities
to study the C. roseus functional genomics and make novel discoveries about key genes
involved in some important biological processes.

Keywords: Catharanthus roseus, co-expression network, functional module, gene function, monoterpene indole
alkaloid

INTRODUCTION

Catharanthus roseus, a model plant of the Apocynaceae family, is best known for production of
the bis-indole monoterpene indole alkaloids (MIAs). There are four important MIAs, vinblastine
and vincristine used in the clinic as anti-cancer agents (Aslam et al., 2010), catharanthine which
can reduce blood sugar content (Pan et al., 2012), and vindoline. MIAs belong to a class of
terpenoid indole alkaloids (TIAs). Some TIAs exhibit strong pharmacological activities, whose
production has beneficial effects on human health (Almagro et al., 2015). The biosynthesis
of TIAs is regulated by several key transcription factors (TFs), such as ORCA3, ORCA2,
WRKY, MYC, ZCT1, and BIS, which can enhance alkaloid production (Van Der Fits and
Memelink, 2000; Suttipanta et al., 2011; Zhang et al., 2011; Li et al., 2013; Van Moerkercke
et al., 2015; Rizvi et al., 2016). In addition to these key TFs, some hormones and transporters
are essential for the regulation of TIA biosynthesis in C. roseus (Liu et al., 2017). Some
external signals such as elicitor and jasmonate (JA) can regulate the activities of several
TFs involved in TIA biosynthesis (Memelink and Gantet, 2007). Although much progress
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has been made in the field of TIAs, functions of some key
genes and enzymes associated with the regulation of TIA
biosynthesis are still unknown, which makes it difficult to
understand the whole process. Notably, the release of the
scaffolded genome sequence of C. roseus (Kellner et al., 2015),
makes it possible to refine functional annotations of genes by
integrating multidimensional data and existing methods.

The integration of biological information through gene
expression profiling analysis can benefit to elucidating gene
function (Noordewier and Warren, 2001). Transcriptomic
datasets can be used to establish the gene expression profiles,
which can provide some useful information for inferring
gene regulatory relationship (Newton and Wernisch, 2014).
Transcriptome analysis reveals that some genes involved in TIA
biosynthesis are differentially expressed in leaf and root tissues,
which can help understand specialized metabolic pathways in
C. roseus (Verma et al., 2014). Integrated transcriptome and
metabolome analysis can establish connections between genes
and specialized metabolites, which can identify many genes
involved in TIA synthesis and elucidate particular biological
pathways (Rischer et al., 2006). Basing on transcriptomic datasets,
the network construction can provide important biological
knowledge, especially for digging out possible gene functions
(Rhee and Mutwil, 2014).

Currently, there has been a plenty of transcriptomic datasets
available on the public platform, which lay the foundation
for the research in C. roseus. By considering all collected
transcriptomic samples available together, co-expression network
is applied to predicting gene functions on a large scale
(Ma et al., 2014). Co-expression network analysis can mimic
some important regulatory mechanism in vivo and thus discover
key regulatory genes or functional modules. van Dam et al. (2017)
excavated disease-related functional modules and annotated core
genes based on co-expression network analysis. Considering
that genes within a specialized metabolite pathway may form
tight associations with each other in co-expression network,
the method for connecting genes to specialized metabolic
pathways in plant is effective, which can identify novel genes
associated with specialized metabolic pathways (Wisecaver et al.,
2017). Co-expression network analysis identified two missing
enzymes, PAS and DPAS, necessary for vinblastine biosynthesis
in C. roseus, which is important for understanding many other
bioactive alkaloids (Caputi et al., 2018).

A growing number of studies have supported the utility of co-
expression network analysis for inferring and annotating gene
function, and excavating core genes involved in specific biological
process. PlaNet used Heuristic Cluster Chiseling Algorithm
(HCCA) to construct whole-genome co-expression networks
for Arabidopsis and six important plant crop species (Mutwil
et al., 2011). AraNet presented co-functional gene network for
Arabidopsis and generated functional predictions for 27 non-
model plant species using an orthologous-based projection (Lee
et al., 2015). ATTED-II provided 16 co-expression platforms for
nine plant species through combining the Pearson correlation
coefficient (PCC) and mutual rank (MR) algorithm (Aoki
et al., 2016). Our lab have published several functional
genomics databases with co-expression network for plant species

(Yu et al., 2014; You et al., 2015, 2016; Zhang et al., 2015;
Tian et al., 2016; Ma et al., 2018). Besides, ccNET provided
comparative gene functional analyses at a multi-dimensional
network and epigenome level across diploid and polyploid
Gossypium species based on the co-expression network (You
et al., 2017). With the combination of transcriptomic and
epigenomic data, MCENet provided global and conditional
networks to help identify maize functional genes or modules
associated with agronomic traits (Tian et al., 2018).

Here, we constructed a functional genomics database for
C. roseus (croFGD). It provided three types of co-expression
network, which allowed user to perform network search
and analysis from a multi-dimensional perspective. Functional
annotation information and several analysis tools were provided
for functional prediction of the co-expression genes. Basing on
co-expression network, we identified some functional modules
which could be applied to the discovery of vital genes associated
with agronomic traits. The integration of co-expression network
analysis and functional module identification can be used to
improve C. roseus gene function annotation and helpful for
the functional genomics research. Besides, it can promote the
research for the synthesis, metabolism of active substances and
drug development.

MATERIALS AND METHODS

Transcriptomic Data Source
There were 53 samples in Catharanthus roseus collected from
the NCBI Sequence Read Archive (SRA), which covered different
tissues (root, hairy root, shoot, stem, leaf, flower, seedling,
and callus) and different treatments, such as methyl jasmonate
(MeJA), peanut witches’ broom (PnWB) infection and yeast
elicitor (Supplementary Table S1).

Data Processing and Gene Expression
Profiling Analysis
The C. roseus genome had a size of ∼500 Mb, and 33,829
protein-coding genes. All transcriptomic datasets were subjected
to quality control using FastQC software (v0.10.1) (Brown
et al., 2017). Those datasets with mapping rate <50% were
filtered out. The sequence reads were mapped to the C. roseus
reference genome (ASM94934v1) (Kellner et al., 2015) using
Tophat (v2.0.10) software (Trapnell et al., 2009) with default
parameters. Cufflinks (v2.2.1) (Trapnell et al., 2010) was used
to calculate the FPKM (fragments per kilobase of transcript
per million mapped reads) values with default parameters. And
differentially expressed genes was calculated by Cuffdiff (v2.2.1)
(Trapnell et al., 2013).

Co-expression Network Construction
Pearson correlation coefficient is used to calculate correlation
coefficient between two genes. MR represents high credible co-
expression gene pairs after ranking the PCC. PCC is calculated
based on the formula below. The more similar the expression
pattern in samples between genes is, the higher the PCC score
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might be. MR is an algorithm basing on PCC, which takes a
geometric average of the PCC rank from gene A to gene B and
from gene B to gene A.

PCC =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2 ·

∑n
i=1(yi − ȳ)2

MR(AB) =
√

(Rank(A→ B)× Rank(B→ A))

X or Y represents the FPKM value, and n represents the number
of samples. MR ensures those co-expression gene pairs with
low credibility will be filtered out, so the PCC and MR are
combined to construct co-expression network. Here, all samples
were used for the construction of global co-expression network.
Among all samples, 44 samples without treatment were used
to construct tissue-preferential network, and 32 samples with
treatment and corresponding control were used to construct the
treat-response network.

Functional Module Identification and
Parameter Selection
The Clique Percolation Method (CPM) (Adamcsek et al., 2006)
was used to identify modules with nodes densely connected to
each other in three types of co-expression networks, including
global network, tissue-preferential network and treat-response
network. Parameter selection was based on module number,
module overlap rate and gene coverage rate. Here, we selected
the k = 5 clique size for global co-expression network, which
meant each module had at least five nodes and each node
had co-expression relationship with each other (Supplementary
Figure S2). In fact, one functional module could be regarded
as a small network. Similarly, we selected the k = 6 clique
size for tissue-preferential network and treat-response network.
The functions of the modules were annotated through gene set
enrichment analysis (GSEA) (Yi et al., 2013), including GO terms,
gene families, plantCyc and KEGG pathways.

The Identification of Orthologous
Genes in Arabidopsis
Bidirectional blast alignments were conducted for the analysis
of protein sequences between C. roseus and Arabidopsis. Our
criteria for the identification of orthologous gene pairs were
as follows: the top three hits in each bidirectional blast
alignment were selected as the best orthologous pairs; in addition,
orthologous pairs with an e-value less than 1E-25 were regarded
as the second level.

The Classification of Gene Family
Five main gene families, including TFs and regulator factors
(TRs), carbohydrate-active enzymes, kinase, ubiquitin and
cytochrome P450, were classified to improve limited functional
annotation. TF/TRs and kinase family were identified mainly by
iTAK tool (Zheng et al., 2016) based on the rule in PlnTFDB
(Pérez-Rodríguez et al., 2009) and PlantsP Kinase Classification
(Tchieu et al., 2003), respectively. The carbohydrate-active
enzymes (CAZy) family (Lombard et al., 2014) was predicted

through the method of orthologous search based on Arabidopsis
thaliana. The enzymes were classified into six groups: glycoside
hydrolases (GH), glycosyltransferase (GT), polysaccharide lyases
(PL), carbohydrate esterase (CE), auxiliary activities (AA) and
carbohydrate-binding modules (CBM). Ubiquitin family was
identified through Hidden Markov Model (HMM) search based
on models from UUCD (Gao et al., 2013). And cytochrome
P450 family was predicted by orthologous relationship with
Arabidopsis and the candidates were confirmed with ID of
PF00067 by Pfam (Finn et al., 2014) search.

Z-Score for Motif Analysis
Motif (cis-element) analysis tool is developed to identify
significant motifs in one sequence or in the promoter region of
interested gene list and thus predict possible functions. Z-score is
a statistical measurement of the distance in standard deviations of
a sample, which can act as a normalization method to eliminate
the difference caused by background for different samples. So far,
it is widely applied to calculating the cis-element significance
(Endo et al., 2014).

The Z-score is calculated as:

Z =
X̄ − µ

σ/
√

n

X̄ represents sum value of a motif in the promoter of one gene
list. µ represents mean value of the same motif in 1,000 random
gene lists with same scale. σ represents standard deviation of the
1,000 mean value based on random selection.

Plant Materials and Growth Conditions
C. roseus seeds were planted in small pots and kept moistened
until the seeds had germinated, and allowed to grow until they
had three to five leaves, then transferred to a greenhouse (16 h
light/8 h darkness, 28/25◦C). For MeJA treatment, 100 µM MeJA
was sprayed evenly on leaves and stem of well-growth plants.
In order to prevent MeJA decomposition, leaves and stem with
treatment and corresponding control were under darkness. After
treatment for 6 and 24 h, the leaves and stem were harvested,
immediately frozen in liquid nitrogen, and then stored at −80◦C
for use. Control samples were also harvested. Three biologically
repeated samples were harvested.

RNA Isolation and Quantitative
Real Time RT-PCR
About 100 mg of tissue was ground in liquid nitrogen before
isolation of the RNA. Total RNA was isolated using TRIZOL

R©

reagent (Invitrogen, Carlsbad, CA, United States) and purified
using Qiagen RNeasy columns (Qiagen, Hilden, Germany).
Reverse transcription was performed using Moloney murine
leukemia virus (M-MLV; Invitrogen). We heated 10 µL samples
containing 2 µg of total RNA, and 20 pmol of random hexamers
(Invitrogen) at 70◦C for 2 min to denature the RNA and then
chilled the samples on ice for 2 min. We added reaction buffer
and M-MLV to a total volume of 20 µL containing 500 µM
dNTPs, 50 mM Tris-HCl (PH 8.3), 75 mM KCl, 3 mM MgCl2,
5 mM dithiothreitol, 200 units of M-MLV and 20 pmol random
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hexamers. The samples were then heated at 42◦C for 1.5 h.
The cDNA samples were diluted to 2 ng/µL for real time
RT-PCR analysis.

For quantitative real-time RT-PCR, triplicate quantitative
assays were performed on 1 µL of each cDNA dilution
using the SYBR Green Master Mix with an ABI 7900
sequence detection system according to the manufacture’s
protocol (Applied Biosystems). The gene-specific primers were
designed using PRIMER31. The amplification of 18S rRNA
was used as an internal control to normalize all data
(forward primer, 5′-CGGCTACCACATCCAAGGAA-3′; reverse
primer, 5′-TGTCACTACCT CCCCGTGTCA-3′). Gene-specific
primers were listed in Supplementary Table S2. The relative
quantification method (11CT) was used to evaluate quantitative
variation between replicates examined.

CONSTRUCTION AND CONTENT

Database Construction
The database was constructed under the LAMP (Linux +
Apache + Mysql + PHP) environment. It mainly contains
three parts: (I) functional annotation, which includes gene
family, KEGG pathway and miRNA detailed information,
etc.; (II) network and module, including co-expression
network search and analysis, network comparison and module
search; (III) some analysis tools, mainly including cis-element
enrichment analysis, GSEA, functional module enrichment
analysis and UCSC Genome Browser visualization (Figure 1).

Functional Annotation
We obtained the functional annotation information in C. roseus
from the Dryad Digital Repository (Kellner et al., 2015). Among
33,829 protein-coding genes, 14,527 genes were annotated with
4,734 GO terms by blast2GO (Conesa and Gotz, 2008). 5,571
enzymes involved in 213 metabolism pathways were annotated
by GhostKOALA (Kanehisa et al., 2016) from KEGG database.
We mapped C. roseus protein sequences against CathaCyc (Van
Moerkercke et al., 2013) using the BLASTP program and 2,421
enzymes involved in 513 metabolism pathways were annotated.
Then we predicted 36,882 orthologous pairs between C. roseus
and Arabidopsis through bidirectional blast alignment. There
were a total of 1,035 plant motifs collected from the Plant Cis-
acting Regulatory DNA Elements (PLACE) database (Higo et al.,
1999), PlantCARE database (Rombauts et al., 1999), AthaMap
database (Steffens, 2004) and literatures. Furthermore, we
adopted the inparanoid algorithm (Sonnhammer and Östlund,
2015) and predicted 9,377 protein–protein interaction (PPI)
pairs in C. roseus from over 18,000 experimentally validated
PPI pairs in Arabidopsis integrated from several databases, such
as BIOGRID (Chatr-Aryamontri et al., 2017), IntAct (Orchard
et al., 2014) and related literature (Lumba et al., 2014). We
also collected 227 miRNA sequence information derived from
a literature (Shen et al., 2017), and then mapped these miRNA
sequences against the whole-genome sequence using the GMAP

1http://frodo.wi.mit.edu/primer3/input.htm

program (Wu and Watanabe, 2005). Furthermore, 143 miRNA
targets were identified by psRNATarget (Dai and Zhao, 2011).
The miRNA detailed information mainly included location,
sequence and structure, miRNA target and expression profiles
in seedling after MeJA treatment (Supplementary Figure S3).
Furthermore, we conducted the gene family classification
and finally predicted 88 TFs/TRs families with 1,702 genes,
21 ubiquitin families with 1,192 genes, 98 cytochrome P450
families with 191 genes, 85 kinase families with 778 genes and
96 CAZy families with 1,505 genes (Table 1).

Co-expression Network and
Functional Module
A well-developed strategy with the integration of PCC and
MR algorithm was widely applied to the construction of co-
expression network (You et al., 2016, 2017; Obayashi et al., 2018;
Tian et al., 2018). We used the 240 BP terms of GO associated
with >4 and <20 genes to evaluate the networks. To get optimal
gene pairs and evaluate the credibility of co-expression network,
we selected different PCC thresholds of PCC > 0.7, PCC > 0.8,
PCC > 0.9 and different MR thresholds of MR top3 +MR ≤ 30,
MR top3 + MR ≤ 50, MR top3 + MR ≤ 100 to predict
gene functions basing on selected GO terms and generated
receiver operating characteristic (ROC) curves (Supplementary
Figure S1). The larger the area under the curve (AUC) value of
co-expression network is, the higher the credibility of the network
will be. Finally, we selected the thresholds of PCC > 0.7 and
MR top3 +MR ≤ 30 to filter out those co-expression gene pairs
with low credibility to construct co-expression network. In total,
there were 30,096, 29,808 and 30,541 nodes in global network,
tissue-preferential network and treat-response network with gene
expression view, which covered 88.9%, 88.1%, and 90.3% of genes
in C. roseus, respectively (Table 1). All networks were visualized
by Cytoscape 2.8 (Smoot et al., 2011).

Then we overlaid the gene expression value onto the co-
expression network to identify whether genes in the network
were expressed or not based on the minimum threshold FPKM
value. To determine the minimum threshold of the gene
expression value (FPKM) among all C. roseus samples (detailed
mapping results are shown in Supplementary Table S3), the
lowest 5% of all gene FPKM values in each sample and
the standard deviation (SD) of each experimental group were
computed. The mathematical formula “threshold = average
(5% value) + 3 ∗ SD” (You et al., 2016, 2017) was used to
calculate the minimum expression value of each experimental
group. The minimum threshold of FPKM was 0.094. We
identified differential expressed genes between treatment and
control samples by the cutoff: |log2FC| ≥ 1 and p-value ≤ 0.05.
Tissue-preferential analysis in different tissues (root, hairy
root, shoot, stem, leaf, flower, seedling, and callus) and treat-
response analysis under three types of treatments (MeJA,
PnWB infection and yeast elicitor) among five tissues (root,
shoot, flower, callus, and hairy root) were supplied for the
co-expression network analysis. Meanwhile, predicted miRNA
target and PPI pairs were integrated into the network, and
further analysis was provided for all members in the network,

Frontiers in Genetics | www.frontiersin.org 4 March 2019 | Volume 10 | Article 238

http://frodo.wi.mit.edu/primer3/input.htm
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00238 March 21, 2019 Time: 16:56 # 5

She et al. croFGD Database

FIGURE 1 | Database architecture. The croFGD database is divided into three main pieces: network & module, functional annotation, and analysis tools. The line
with different colors indicates different pieces.

such as gene expression profiling analysis, GSEA, and cis-
element analysis.

Furthermore, co-expression network could be used to perform
modularized analysis and excavation for the discovery of
agronomic trait-related vital gene and functional module. The
CPM proposed to detect the overlapping communities in the
complex network (Palla et al., 2005; Li et al., 2014), provided
certain practicability for the discovery of key gene and module.
Finally, we applied the algorithm and predicted 2,310, 1,849, and
2,177 functional modules in global network, tissue-preferential
network and treat-response network in C. roseus, respectively
(Table 1). The functions of these modules were annotated
through GSEA (Yi et al., 2013). The entries which were not
significant were filtered out by Fisher’s tests and multiple test
correction method (FDR ≤ 0.05). These functional modules
covered diverse functions such as vindoline and vinblastine
biosynthesis, jasmonic acid biosynthesis, pathogen resistance and
hormone response, etc.

Analysis Tools
Gene Set Enrichment Analysis
Gene set enrichment analysis (Yi et al., 2013) is a powerful
method for the functional annotation of interested gene list
by computing the overlaps with well-defined background gene
sets. Some categories of gene sets, such as GO terms, gene
families, plantCyc and KEGG pathways, miRNA targets and
functional modules identified from three types of network,
were used as background gene sets. The significantly enriched
gene set with FDRs ≤ 0.05 would be displayed on the
GSEA result page.

Functional Module Enrichment Analysis
The tool was used to identify some functional modules from
interested gene list especially in the network. The previously
annotated miRNA target modules and functional modules
identified from three types of network were used as background
functional modules. The modules with FDRs ≤ 0.05 would be

regarded as significantly enriched and the enrichment analysis
result page included module annotation, module source, overlap
gene number, and FDR value.

TABLE 1 | Data collection and statistics in croFGD.

Database content Number Source Reference

GO terms (genes) 55,505 (14,527) Blast2GO tool Conesa and Gotz,
2008

KEGG pathway
(genes)

213 (5,571) GhostKOALA tool Kanehisa et al., 2016

PlantCyc (genes) 513 (2,421) Blastp prediction –

Cis-elements (motifs) 1,035 Database and
literature collection

–

Orthologous pairs in
Arabidopsis (genes)

36,882 (14,719) Blast alignment –

Transcription factor
and regulators
(members)

88 (1,702) iTAK prediction Zheng et al., 2016

Kinases (members) 85 (778)

Carbohydrate-active
enzymes (members)

96 (1,505) Blast alignment Lombard et al., 2014

Ubiquitin (members) 21 (1,192) Blast alignment Zhou et al., 2018

Cytochrome P450
(members)

98 (191) the cytochrome
p450 homepage

Nelson, 2009

Co-expression
network nodes (%)

30,096 (88.9%) PCC and MR Aoki et al., 2016

Tissue-preferential
network nodes (%)

29,808 (88.1%)

Treat-response
network nodes (%)

30,541 (90.3%)

Protein–protein
interaction pairs

9,377 InParanoid algorithm Sonnhammer and
Östlund, 2015

miRNA target
modules

143 psRNAtarget
prediction

Dai and Zhao, 2011

Function modules
from global network
(nodes)

2,310 (10,757) CFinder tool Adamcsek et al.,
2006

Function modules
from
tissue-preferential
network (nodes)

1,849 (12,090)

Function modules
from treat-response
network (nodes)

2,177 (12,073)

Frontiers in Genetics | www.frontiersin.org 5 March 2019 | Volume 10 | Article 238

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00238 March 21, 2019 Time: 16:56 # 6

She et al. croFGD Database

Cis-Element Enrichment Analysis
Cis-element (motif), a short conserved sequence, can be
recognized by some TFs to regulate the expression levels of
downstream genes. The tool was developed to identify motifs
in a set of gene promoters and thus predict the function of
gene set. The cis-element significance test is an algorithm using
statistical method based on Z-score and p-value filtering (Yu
et al., 2014) that can identify significant cis-regulatory elements
in the promoter region of one gene. The promoter region was set
as 3 kb in C. roseus. When scanned in the 3 kb promoter region
of C. roseus genes, motifs with p-value ≤ 0.05 were significantly
enriched on account of the frequency of motif occurrence.

Other Tools Supported in croFGD
A quick search, UCSC Genome Browser (Speir et al., 2016)
visualization and a manual were provided for users. The
search page mainly included gene detail search, gene function
search, functional module search and orthologous search. The
orthologous search allowed user to input one gene list in
Arabidopsis to search for corresponding C. roseus genes.

FUNCTION APPLICATION

Comprehensive Exploration for the
Function of 16OMT Gene
CRO_T004356 (16OMT), o-methyltransferase family member,
which was reported to be involved in the biosynthesis of TIAs
(Pandey et al., 2016; Yamamoto et al., 2016). Taking 16OMT gene
as an example, we explored possible function of the gene through
the database. By gene detail search, we found that the gene: (I)
was annotated with alkaloid biosynthetic process (GO: 0009821)
and myricetin 3′-O-methyltransferase activity (GO: 0033799),
etc.; (II) had two pfam domains: “Dimerisation (PF08100)” and
“Methyltransf_2 (PF00891)” domains; (III) was mainly involved
in vindoline and vinblastine biosynthesis; (IV) was relatively high
in expression in leaf tissue (Figure 2A). We conducted network
analysis for three types of co-expression network of 16OMT
gene including tissue-preferential network (Figure 2B), global
network (Figure 2C) and treat-response network (Figure 2D).
GSEA results for global network genes indicated that these
genes might be involved in phenylpropanoid biosynthesis,
vindoline and vinblastine biosynthesis. Network comparison
results suggested that it was relatively conservative between
global network and tissue-preferential network (Figure 2E), and
there were great differences between global network and treat-
response network (Figure 2F). Through module search, the gene
in the module (Figure 2G) might be involved in vindoline
and vinblastine biosynthesis, alkaloid biosynthetic process, and
protein phosphorylation, etc. Therefore, 16OMT gene might
have diverse function in several biological processes like hos1
gene (MacGregor and Penfield, 2015). The expression heatmaps
of all genes in the module were included (Figure 2H). UCSC
genome browser visualization (Figure 2I) indicated that most
RNA-seq peaks were enriched in the genic region. Furthermore,
stilbenoid, diarylheptanoid, and gingerol biosynthesis pathway
was shown (Figure 2J).

Co-expression Network
Analysis for CPR Gene
CPR, NADPH–cytochrome P450 reductase, which is essential
for the activation of cytochrome P450 enzymes, is critical for
the biosynthesis of MIAs (Parage et al., 2016). The detailed
information of all genes in the global network of CPR gene
(Figure 3A) was listed in Supplementary Table S4. In the
CPR network, some genes (GES, 7DLH, GOR, HDS, G8H,
ISY, MCS, HDR, 7DLGT and IO) were involved in MIA
biosynthesis pathway (Chebbi et al., 2014; Kumar et al.,
2015). These genes were labeled with bold in the MIA
biosynthesis pathway (Figure 3C). Through GO enrichment
analysis (Tian et al., 2017) for all genes in the CPR network,
the significantly enriched GO terms were associated with
terpene biosynthetic process, and isoprenoid biosynthetic process
(Figure 3B), which were related to MIA biosynthesis (Geu-
Flores et al., 2012; Dugé de Bernonville et al., 2015). Through
module enrichment analysis for all genes in CPR network,
three genes (CYP76C, CRO_T015823, and CRO_T014922) in
significantly enriched functional modules might be involved in
brassinosteroid (BR) biosynthesis, gibberellic acid (GA) response
and indole alkaloid biosynthesis, respectively (Figure 3D).
Therefore, in addition to MIA biosynthesis, CYP76C and
CRO_T015823 also played important role in plant growth and
development. Besides, CRO_T014922 might also be involved
in MIA biosynthesis together with other genes (CRO_T019924,
CRO_T030883, CRO_T015465, and CRO_T025273) in the
module (Figure 3D). Thus, in addition to the function of
network, co-expressed genes might be involved in some
other functions. Furthermore, co-expression analysis can be
combined with module enrichment analysis to predict gene
function effectively.

Network Comparison Between Global
Network and Tissue-Preferential
Network of JAZ1 Gene
JAZ1, a jasmonate-zim-domain protein, was discovered as
repressors of jasmonate signaling, which was involved in
TIA biosynthesis (Pan et al., 2018). We conducted network
comparison between global network and tissue-preferential
network of JAZ1 (Figure 4A). The information of co-expressed
genes in global network and tissue-preferential network was
shown in Supplementary Table S5. We found that the two
networks displayed different network structure. There were nine
overlapped genes including JAZ1 gene between two networks.
Fifteen unique genes (including TIFY, CYP94C, and JAZ3)
appeared in global network, while sixteen unique genes including
MYB15 appeared in tissue-preferential network. GSEA results for
the genes in global network of JAZ1 indicated that some gene sets
were significantly enriched, such as jasmonic acid biosynthesis,
alpha-linolenic acid metabolism, steroid biosynthesis and plant
hormone signal transduction (Menke et al., 1999; Koo et al.,
2014; Patra et al., 2018). GSEA results for the genes in tissue-
preferential network of JAZ1 illustrated that some gene sets were
significantly enriched, such as jasmonic acid biosynthetic process,
12-oxophytodienoate reductase activity, NADPH dehydrogenase
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FIGURE 2 | Comprehensive explorations for the function of 16OMT (CRO_T004356) gene. (A) The detailed information of 16OMT gene in C. roseus. Three types of
co-expression network, including tissue-preferential network (B), global network (C) and treat-response network (D). In these networks, the node with yellow color
represents the gene submitted initially, and the nodes with green color represent co-expressed genes; the edge with pink color links two genes with positive
co-expression relationship; the edge with blue color links two genes with negative co-expression relationship. (E) Network comparison between global network and
tissue-preferential network. The nodes with yellow color represent overlap genes between two networks, and the nodes with green and dark green color stand for
unique genes in two networks, respectively. (F) Network comparison between global network and treat-response network. (G) The “CFinderADM000741” module.
(H) Expression heatmaps of genes in “CFinderADM000741” module. (I) UCSC genome browser visualization. (J) Stilbenoid, diarylheptanoid, and gingerol
biosynthesis pathway.

activity, triglyceride lipase activity and oxylipin biosynthetic
process (Figure 4B) (Tani et al., 2008; Wallström et al., 2014;
Wang et al., 2018). Based on the structure and function of the
two networks of JAZ1 gene, there were some conservation and
differences between two networks. In Arabidopsis, cytochrome
p450 family member CYP94C1 and CYP94B3 played important

role in the regulation of jasmonate response (Niu et al., 2011;
Heitz et al., 2012; Koo et al., 2014). In Gossypium hirsutum,
GhJAZ2 regulated the jasmonic acid signaling pathway by
interacting with the R2R3-MYB transcription factor GhMYB25
(Hu et al., 2016). It needed further study whether the two genes
CYP94C and MYB15 coexpressed with JAZ1 in two networks had
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FIGURE 3 | The global network of CPR (CRO_T031702) gene involved in MIA pathway. (A) Global network of CPR gene. The query gene CPR is highlighted by
yellow, the blue line represents negative co-expression relationship between two genes, while the pink line represents positive co-expression relationship. The dark
purple diamond represents several genes involved in the MIA biosynthesis pathway, such as GES, 7DLH, GOR, HDS, G8H, ISY, MCS, HDR, 7DLGT, and IO, which
are co-expressed with CPR gene in the network, and the light purple circular represents other genes co-expressed with query gene. (B) Scatter plot of GO
enrichment analysis results for all genes in CPR network. (C) The simplified MIA pathway. The bold represents the gene in CPR co-expression network. (D) Several
functional modules related to genes in CPR network. The red node represents genes in CPR network.

similar function in C. roseus as in Arabidopsis and Gossypium
hirsutum, respectively. These results indicated that network
comparison is an effective approach to analyze gene function
from the perspective of different networks.

Treat-Response Network With
Expression View After MeJA Treatment
In JAZ1 network with expression view after MeJA treatment
in different tissues (shoot, root, hairy root, and seedling)

(Figure 5), most genes had significant change in expression,
such as JAZ1, JAZ3, CYP94C, MYB, MYB15, and TIFY.
Detailed information for up and down-regulated genes in these
networks was shown (Supplementary Table S6). In C. roseus,
JAZ proteins could repress MYC2 and BIS1 to respond to
JA signaling and then modulate MIA biosynthesis (Patra
et al., 2018). In rice, enhanced expression of cytochrome
p450 family member CYP94C2b could alleviate the jasmonate
response and enhanced salt tolerance (Kurotani et al., 2015).
In Arabidopsis, AtMYB44 could repress JA-mediated defense by
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FIGURE 4 | The network comparison between the global network and tissue-preferential network. (A) The comparison between the global network and
tissue-preferential network of JAZ1 (CRO_T006982). In the network comparison, the nodes with yellow color represents overlap genes between two networks, and
the nodes with dark blue color represents genes only in tissue specific network, while the nodes with sky blue color represents genes only in global network.
(B) GSEA results for two networks of JAZ1. The “G” represents global network, and the “T” represents tissue-preferential network.

activating the expression of WRKY70 at transcriptional level
(Shim et al., 2013). PvTIFY10C and GsTIFY10 gene acted as
a repressor in the JA signaling pathway in Phaseolus vulgaris
and Glycine soja (Zhu et al., 2011; Aparicio-Fabre et al.,
2013), respectively. We conferred that CYP94C, MYB, MYB15,
and TIFY co-expressed with JAZ1 might act as JA-response
candidate genes in C. roseus. Furthermore, CRO_T012104
(anthranilate synthase beta subunit), CRO_T013473 (protein
of unknown function), CRO_T010878 (alpha/beta-hydrolases
superfamily protein), CRO_T002729 (allene oxide cyclase), and
CRO_T002624 (tryptophan biosynthesis) almost up-regulated
under those five conditions, might also act as JA-response
candidate genes. Taking treat-response network of JAZ1 gene

as an example, we selected six genes (JAZ1, TIFY, MYB,
CRO_T012104, CRO_T024124, and CRO_T002729) for the real
time RT-PCR validation (Supplementary Figure S4). These
genes were up-regulated after MeJA treatment in shoot tissues
and might act as JA-response genes. The qRT-PCR results
indicated that these genes acted as JA-response genes in shoot
tissues. This not only validated the accuracy of the predicted
results, but also demonstrated the reliability of the network.
Thus, treat-response network with expression view can clear
display the dynamic change of gene expression in a network.
Therefore, the co-expression network with multi-dimensional
analysis can benefit to analyzing regulatory mechanisms in
C. roseus development and stress response.
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FIGURE 5 | The expression view of JAZ1 network after MeJA treatment in different tissues (shoot, root, hairy root, and seedling). The JAZ1 network after MeJA
treatment 6 h in shoot (A), MeJA treatment 24 h in shoot (B), 250 µM MeJA treatment 24 h in hairy root (C), MeJA treatment 24 h in root (D), 6 µm MeJA treatment
12 days in sterile seedling (E). The red hexagon represents up-regulated genes, the blue hexagon represents down-regulated genes, and the green hexagon
represents genes with no significant change in expression.

DISCUSSION

Our croFGD database aims to provide an online database
server for the annotation and prediction of gene function.
We constructed global network, tissue-preferential network and
treat-response network with expression view, which covered
almost 90% of gene in C. roseus and identified more than 6,000
functional modules. The annotation of these functional modules
covered vindoline and vinblastine biosynthesis, jasmonic acid
biosynthesis, hormone response and pathogen resistance, etc.
The network analysis strategy, functional module annotation
and integrated method could improve and refine gene function
annotation from diverse perspectives to some extent. For some
crops, it could be applied to excavate important functional
module related to agronomic traits, which would be beneficial for
genetic breeding.

Through some analysis tools supported in croFGD, we can
excavate key genes involved in some important biological
processes and predict gene function. In comprehensive

exploration for the function of 16OMT (Figure 2), we found
that the gene might have complex function, like hos1 gene
(MacGregor and Penfield, 2015). In global network of CPR, some
genes were involved in MIA biosynthesis, such as GES, 7DLH,
GOR, G8H, ISY, and 7DLGT (Figure 3A). The integration of
co-expression network analysis and module enrichment analysis
can be benefit to predicting gene function effectively and refining
gene annotation. Basing on network comparison between two
networks of JAZ1, there were certain similarities and differences
whether in the structure or in the function of two networks
(Figure 4). In addition, function of two genes CYP94C and
MYB15 needed further research. In treat-response network of
JAZ1 gene with expression view after MeJA treatment in different
tissues, we identified several possible JA-response candidate
genes (Figure 5 and Supplementary Table S6), which was
experimentally validated by real time RT-PCR (Supplementary
Figure S4). These results would be beneficial to understanding
some molecular regulatory mechanisms in C. roseus, such as
MIA biosynthesis and jasmonic acid biosynthesis, etc.
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Comparative co-expression network analysis between species
is an effective approach to predict gene function and improve
functional annotation (Pathania et al., 2016). We conducted
network comparison for gene list with PCC ranks in the
top 300 between C. roseus and Arabidopsis (obtained from
ATTED-II) (Supplementary Figure S5). High similarity between
co-expression network of JAZ1 in C. roseus and AT1G19180
(JAZ1) in Arabidopsis not only demonstrated the reliability of co-
expression network, but also illustrated the conservation of JAZ1
gene function between these two species.

Based on co-expression network with multi-dimensional level,
predicting functional module and refining gene function is an
effective strategy, which can be used to identify more key genes
and regulatory modules when we focus on a detailed biological
process. Interestingly, co-expression network is highly associated
with the regulation of epigenetic modification, such as DNA
methylation (El-Sharkawy et al., 2015) and H3K4me3 (Farris
et al., 2015), which can be integrated to understand detailed
molecular mechanism, such as the biosynthesis of specific
metabolites. There is a certain correlation between co-expression
network and metabolic network, the integration of which can
be used to predict key enzyme-coding genes and metabolites
(Chen et al., 2013), and contribute to better understanding of
the molecular mechanisms related to plant metabolic pathway
(Rischer et al., 2006; Coneva et al., 2014).

Notably, there are additional limitations and possible
improvements for croFGD database. Firstly, the release of the
chromosome-level genome of C. roseus in the future, will
greatly promote the research on functional genomics. Secondly,
more RNA-seq samples of other tissues and treatments could
be integrated into the co-expression network construction on
the transcriptomic level, which will be beneficial to excavate
gene function and improve the whole genome annotation in
C. roseus. Thirdly, epigenomic data, such as ChIP-seq and
DNase-seq data, can be integrated to improve the annotation
of cis-elements and predict gene function. Furthermore, more

accurate data, such as gene families, new type of non-coding
RNAs, KEGG pathway and GO terms, needs to be integrated,
too. Our croFGD database will be updated regularly, and
we hope the database can help the community study the
functional genomics and yield novel insights into the molecular
regulatory mechanisms.
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