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Variational Bayesian Multimodal EncephaloGraphy (VBMEG) is a MATLAB

toolbox that estimates distributed source currents from magnetoencephalography

(MEG)/electroencephalography (EEG) data by integrating functional MRI (fMRI) (https://

vbmeg.atr.jp/). VBMEG also estimates whole-brain connectome dynamics using

anatomical connectivity derived from a diffusion MRI (dMRI). In this paper, we introduce

the VBMEG toolbox and demonstrate its usefulness. By collaborating with VBMEG’s

tutorial page (https://vbmeg.atr.jp/docs/v2/static/vbmeg2_tutorial_neuromag.html),

we show its full pipeline using an open dataset recorded by Wakeman and Henson

(2015). We import the MEG data and preprocess them to estimate the source currents.

From the estimated source currents, we perform a group analysis and examine the

differences of current amplitudes between conditions by controlling the false discovery

rate (FDR), which yields results consistent with previous studies. We highlight VBMEG’s

characteristics by comparing these results with those obtained by other source imaging

methods: weighted minimum norm estimate (wMNE), dynamic statistical parametric

mapping (dSPM), and linearly constrained minimum variance (LCMV) beamformer. We

also estimate source currents from the EEG data and the whole-brain connectome

dynamics from the MEG data and dMRI. The observed results indicate the reliability,

characteristics, and usefulness of VBMEG.
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1. INTRODUCTION

Both magnetoencephalography (MEG) and electroencephalography (EEG) measure electrical
neural activities and have excellent temporal resolution on the millisecond order. However,
estimating source currents from them is an ill-posed problem because the number of sensors is
insufficient to precisely reconstruct the source currents. We cannot identify from them a unique
source current that only generates MEG/EEG data. To solve this problem, prior information about
the source current is necessary to reduce the solution space. Several prior assumptions have been
used, such as the minimum norm method (Hämäläinen et al., 1993; Hämäläinen and Ilmoniemi,
1994) and the maximum smoothness method (Pascual-Marqui et al., 1994). However, their prior
assumptions are insufficient to reconstruct the source current with high spatial resolution. An
alternative is to obtain prior information from other modalities, such as functional MRI (fMRI),
which measures hemodynamic responses to neural activities. Although it has low temporal
resolution owing to slow hemodynamic responses, it has high spatial resolution on the millimeter
order. Therefore, using fMRI activity as prior information provides a source current with high
spatiotemporal resolution. Generally, integrating multimodal measurements effectively alleviates
the ill-posed nature of MEG/EEG source imaging and provides reliable and informative knowledge
of human brain activities.
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Variational Bayesian Multimodal EncephaloGraphy
(VBMEG), which is a Matlab toolbox, estimates distributed
source currents and connectome dynamics from MEG and/or
EEG data by integrating such multimodal measurements
as fMRI. VBMEG was originally developed to perform a
hierarchical Bayesian source current estimation proposed by
Sato et al. (2004), and the first version was released in 2011
(https://vbmeg.atr.jp/). Its reliability was confirmed in various
studies by our group (Yoshioka et al., 2008; Callan et al., 2010;
Aihara et al., 2012; Takeda et al., 2014) and others (Toda et al.,
2011; Yoshimura et al., 2012, 2017; Yamagishi and Anderson,
2013; Morioka et al., 2014; Callan et al., 2016; Ohata et al., 2016;
Yanagisawa et al., 2016; Fukuma et al., 2018; Mejia et al., 2018;
Sato et al., 2018). Recently, VBMEG was extended to perform a
connectome dynamics estimation proposed by Fukushima et al.
(2015), and its second version was released in 2017. Its usefulness
was also confirmed by Filatova et al. (2018).

VBMEG’s main advantage is its ability to integrate multimodal
measurements for improving estimation accuracies. In
estimating source currents, VBMEG can integrate fMRI
activity for improved source localization accuracy (Sato et al.,
2004). Dynamic statistical parametric mapping (dSPM) can also
integrate fMRI activity (Liu et al., 1998; Dale et al., 2000). This
method uses fMRI activity as prior information on the source
current variance. In contrast, VBMEG uses fMRI activity as prior
information on the variance distribution rather than the variance
itself to produce a soft constraint on the variance. Because of
this, VBMEG is also robust to inaccurate fMRI activities (Sato
et al., 2004; Aihara et al., 2012). In estimating connectome
dynamics, VBMEG uses anatomical connectivity derived from
a diffusion MRI (dMRI). Without assuming region of interests
(ROIs), it estimates a whole-brain linear dynamics model by
only assuming connectivity coefficients between anatomically
connected regions. This drastically reduces the connectivity
coefficients to estimate and suppress false positive connectivities
(Filatova et al., 2018).

Although VBMEG’s algorithms (Sato et al., 2004; Fukushima
et al., 2015) and their application results have been published,
VBMEG itself has not been introduced yet. In this paper, we
introduce the VBMEG toolbox and demonstrate its usefulness.
In collaboration with VBMEG’s tutorial page (https://vbmeg.atr.
jp/docs/v2/static/vbmeg2_tutorial_neuromag.html), we show its
full pipeline using an open dataset recorded by Wakeman and
Henson (2015).We import theMEG data and preprocess them to
estimate source currents. From the estimated source currents, we
perform a group analysis and examine the differences of current
amplitudes between conditions by controlling the false discovery
rate (FDR), which yields results consistent with previous studies.
To highlight VBMEG’s characteristics, we compared these results
with those obtained by other source imaging methods: weighted
minimum norm estimate (wMNE), dSPM (Liu et al., 1998; Dale
et al., 2000) and linearly constrained minimum variance (LCMV)
beamformer (Van Veen et al., 1997). We also estimate the source
currents from the EEG data and the whole-brain connectome
dynamics from the MEG data and dMRI. The observed
results indicate the reliability, characteristics, and usefulness
of VBMEG.

2. GENERAL INFORMATION

2.1. VBMEG’s Aim
VBMEG was developed to achieve accurate source imaging
by integrating multimodal measurements (Figure 1). From
MEG and/or EEG data, VBMEG estimates source currents
using fMRI activity as prior information on current variance
distribution (Sato et al., 2004). VBMEG also estimates whole-
brain connectome dynamics using anatomical connectivity
derived from a dMRI (Fukushima et al., 2015). The estimated
dynamics are visualized by a movie that displays signal flows
(https://vbmeg.atr.jp/gallery/ for example movies).

2.2. Starting VBMEG
To start VBMEG, go to its web page (https://vbmeg.atr.jp/),
which provides an introduction and a download link.

Several VBMEG usages can also be learned through tutorials
(https://vbmeg.atr.jp/document/). Using actual experimental
data, they describe step-by-step procedures from importing raw
data to visualizing the estimation results of source currents and
connectome dynamics using a graphical user interface (GUI) or
batch scripts.

2.3. System Requirements
2.3.1. Operating System
A GNU Linux is strongly recommended because VBMEG is
usually developed and tested on Linux. Its use on Microsoft
Windows 7/10 and Apple OS X hasn’t been satisfactorily
tested yet.

2.3.2. Software
VBMEG works on MATLAB (version 7 [R14] to 8.3 [R2014a]).
Signal Processing Toolbox is needed to process MEG/EEG
data. FreeSurfer4.2 or newer (http://surfer.nmr.mgh.harvard.
edu/) is needed to extract cortical surfaces from T1 images.
SPM8 (https://www.fil.ion.ucl.ac.uk/spm/software/spm8/) is also
needed to process the T1 images and fMRIs. For estimating
connectome dynamics, MRtrix 0.2.1x (https://www.nitrc.org/
projects/mrtrix/) and FSL 4.1 or newer (http://www.fmrib.ox.ac.
uk/fsl) are also needed for processing dMRIs.

3. TUTORIAL

By collaborating with VBMEG’s tutorial page, we introduce
its pipeline. We import the open MEG dataset recorded by
Wakeman and Henson (2015) and preprocess it to estimate the
source currents. For each subject, we assume 10,004 current
dipoles perpendicular to the cortical surface and estimate
their currents by integrating the fMRI activity. Then from
the estimated source currents of all the subjects, we examine
the differences of the current amplitudes between conditions.
Furthermore, we estimate the source currents from the EEG data
and the whole-brain connectome dynamics from the MEG data
and dMRI.

This tutorial was developed using MATLAB 2013b with a
Signal Processing Toolbox on LinuxwhereMRtrix 0.2.10 and FSL
4.1 had been installed.

Frontiers in Neuroscience | www.frontiersin.org 2 March 2019 | Volume 13 | Article 241

https://vbmeg.atr.jp/
https://vbmeg.atr.jp/docs/v2/static/vbmeg2_tutorial_neuromag.html
https://vbmeg.atr.jp/docs/v2/static/vbmeg2_tutorial_neuromag.html
https://vbmeg.atr.jp/gallery/
https://vbmeg.atr.jp/
https://vbmeg.atr.jp/document/
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
https://www.fil.ion.ucl.ac.uk/spm/software/spm8/
https://www.nitrc.org/projects/mrtrix/
https://www.nitrc.org/projects/mrtrix/
http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Takeda et al. MEG Source Imaging Using VBMEG

FIGURE 1 | Two main VBMEG functions. (A) From MEG and/or EEG data, VBMEG estimates source currents by integrating fMRI activity. (B) It also estimates

whole-brain connectome dynamics by integrating anatomical connectivity derived from a dMRI.

3.1. Starting Tutorial
We analyze the multi-subject, multi-modal neuroimaging dataset
for face processing (OpenNEURO ds000117-v1.0.1) created by
Wakeman and Henson (2015). This dataset contains the evoked
responses of 16 subjects to three types of face stimuli: famous,
unfamiliar, and scrambled. MEG, EEG, electro-oculograms
(EOGs), and electro-cardiograms (ECGs) were simultaneously
recorded at 1,100 Hz with an Elekta Neuromag Vectorview 306
system (Helsinki). T1 images and fMRIs were also collected with
a Siemens 3T TIM TRIO (Siemens, Erlangen, Germany). These
data are stored in the Brain Imaging Data Structure (BIDS)
format (http://bids.neuroimaging.io/).

VBMEG defines the current sources on the cortical surfaces
based on the FreeSurfer’s results, which we prepared in advance
because obtaining them is time-consuming.We also prepared the
fMRI activities for estimating the current variances by analyzing
the fMRI data using SPM8.

To highlight VBMEG’s characteristics, we compared its results
with those estimated by other source imaging methods: wMNE,
dSPM, and LCMV beamformer. They were performed using the
functions from the Brainstorm software (Tadel et al., 2011).

This tutorial is started by downloading these data and the
software from the following links:

VBMEG

https://vbmeg.atr.jp/download2/

SPM8

https://www.fil.ion.ucl.ac.uk/spm/software/spm8/

Brainstorm

https://neuroimage.usc.edu/brainstorm/

MEG data (OpenNEURO ds000117-v1.0.1)

https://openneuro.org/datasets/ds000117/versions/1.0.1/

Tutorial programs, FreeSurfer’s results, and fMRI activities

https://vbmeg.atr.jp/docs/v2/static/vbmeg2_tutorial_
neuromag.html

See the above tutorial page for program-level descriptions. This
page also presents the resultant figures and movie that serve as
Supplementary Material.

3.2. Modeling Brain
VBMEG defines the current sources on each subject’s cortical
surface, the boundary between the gray and white matter, and
stores them as a brain model.

To construct a brain model, we first import the T1 image
(.nii) by converting its coordinate system to that of VBMEG,
where the orientation is RAS and the origin is the center of the
image. The coordinates of the fiducials (left and right pulmonary
arteries [LPA and RPA] and the nasion) are also converted
from voxels to the VBMEG coordinate system. Because current
sources are defined in this coordinate system, the following
analyses (including the SPM analysis of the fMRI data) need to
be conducted using the imported T1 image.

From the imported T1 image, we construct a polygon
model of the cortical surface using FreeSurfer. From the
constructed polygon model, we select 10,004 vertices as the
current sources based on the predefined sources in a standard
brain (MNI-ICBM152). As a result, the sources of different
subjects correspond to the same location on the standard brain.
For example, the 7975th source is always located at the right
fusiform face area (FFA) corresponding to x = 38, y = −62,
and z = −18 mm in the Montreal Neurological Institute (MNI)
coordinate. This allows a simple comparison of the estimated
source currents across subjects for each source. Therefore, we
can proceed to group analyses on the source currents without
any transformation. The positions of the current sources and
their normal directions to the cortical surface are stored as a
brain model (.brain.mat). A constructed brain model of sub-08
is shown in Figure 2.

3.3. Importing fMRI Activity
VBMEG imports the statistical results of fMRI data generated
by SPM8 by mapping voxel t-values and percent signal changes
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FIGURE 2 | Constructed brain model (sub-08). Current sources are plotted on T1 image by yellow dots.

to the cortical surface using an inverse-distance weighted
interpolation method. We import the statistical results generated
by contrasting all the stimuli (famous, unfamiliar, and scrambled)
against a baseline. Figure 3 shows the imported fMRI activity of
sub-08 plotted on the standard brain. By default, VBMEG plots
individual subjects’ brain activities on the standard brain.

3.4. Preprocessing MEG Data
We preprocess the MEG data for source current estimation.

3.4.1. Importing the MEG Data
VBMEG can import MEG data recorded by Yokogawa
and Neuromag systems and EEG data recorded by Biosemi
and Brainamp.

Next we import the Neuromag MEG data (.fif) by reading
the .fif files using the functions from the MNE software (http://
www.nmr.mgh.harvard.edu/martinos/userInfo/data/MNE_
register/index.php) and converting them to the VBMEG format
(.meg.mat). We also convert the sensor coordinates to the
VBMEG coordinate system by aligning the fiducials and head
points recorded in the MEG experiment to the fiducials and the
head surface in the VBMEG coordinate system (Figure 4). The
head surface is extracted from the T1 image.

After importing the MEG data, we modify the trigger signals
(STI101) based on the event files (*_events.tsv). This is because
Wakeman and Henson (2015) identified a fixed 34-ms delay
between the appearance of a trigger in an MEG file (on channel
STI101) and the stimulus’s appearance on the screen. We read
the stimulus onsets from the event files and make the values of
trigger signals 1 and 2 for the face (famous and unfamiliar) and
the scrambled conditions 1 s after the stimulus onsets.

3.4.2. Denoising MEG Data
The MEG data include such environmental noises as line and
biological noises from eye movements and heartbeats. To remove
them, for each channel, we apply a lowpass filter at 40 Hz and
a highpass filter at 1 Hz and regress out the EOG and ECG
components.We also resample theMEG data at 100 Hz to reduce
the computational cost.

3.4.3. Making Trial Data
We detect the stimulus onsets from the trigger signal (STI101)
and segment the continuous data into 1.5-s epochs 0.5 s before
and 1 s after the stimulus onset.

3.4.4. Combining Trials Across Runs
To handle all the trials collectively, we virtually combine them
into one info file (.info.mat). We can load the data of all the trials
from the info file using “vb_load_meg_data.m.”

3.4.5. Rejecting Channels and Trials
The info file includes structure array “fileinfo” with
“ActiveChannel” and “ActiveTrial” fields. By editing these
fields, we can control the channels and the trials to be loaded. We
reject the bad channels and the trials by editing them.

This completes the preprocessing of the MEG data.
Figure 5 shows the preprocessed MEG data of sub-08 in
the face condition.

3.5. Estimating Source Current From MEG
Data
We next estimate the source currents from the preprocessed
MEG data.

3.5.1. Preparing Leadfield
VBMEG can respectively construct 1-shell (cerebrospinal fluid
[CSF]) and 3-shell (CSF, skull, and scalp) head conductivity
models for MEG and EEG source imaging from the cortical
surface model obtained by FreeSurfer and the gray matter file
obtained by SPM8. Here we construct a 1-shell head conductivity
model for MEG source imaging. Based on the model, we
make a leadfield matrix by solving the Maxwell equations with
a boundary element method (BEM). VBMEG supports three
types of dipoles for each source: a one-dimensional dipole
perpendicular to the cortical surface, a two-dimensional dipole
tangential to the cortical surface, and a three-dimensional dipole
parallel to the three axes (x, y, z). Here we assume a one-
dimensional dipole.

3.5.2. Estimating the Source Current
In VBMEG, source currents are estimated in two steps: first the
current variance and then the source currents.
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FIGURE 3 | Imported fMRI activity contrasting all stimuli against baseline (sub-08). T-values over 0.1 of their maximum value are shown.

FIGURE 4 | MEG sensor coordinates converted into VBMEG coordinate system (sub-08).

The current variance is estimated by the hierarchical Bayesian
method proposed by Sato et al. (2004). This method is
an extension of automatic relevance determination (ARD)
(Neal, 1996) in which fMRI activity is incorporated into
the hierarchical prior distribution (prior distribution of the
relevance parameters). Following the original idea of the sparse
promoting nature of ARD, a sparse current is obtained when
fMRI activity is unavailable. Indeed, such sparse currents
have been estimated by several methods (Matsuura and
Okabe, 1995; Uutela et al., 1999; Wipf et al., 2010; Chang
et al., 2013; Khan et al., 2014; Bekhti et al., 2018). Here
we estimate the current variance by setting a confidence
parameter, “bayes_parm.prior_weight,” to 0.3. This parameter
controls the confidence in the fMRI prior relative to the
amount of data samples (ranging from 0 to 1), where a larger
value makes the current variance more closely resemble the
fMRI prior.

Using the estimated current variance, we make an inverse
filter, which is a transformation matrix from the MEG data to
the source currents, and estimate the source currents using it.
Figure 6 shows the source currents of sub-08 estimated from the
MEG data in the face condition.

To highlight VBMEG’s characteristics, we compared the
source currents estimated by VBMEG with those estimated by
other source imaging methods. From the same MEG data and
the leadfield matrix used in the above analyses, we estimated
the source currents by wMNE, dSPM, and LCMV beamformer
using the Brainstorm functions. In applying dSPM, the fMRI
activity was not used as prior information on the source current
variance because the Brainstorm functions do not support it.
Figure 7 shows the source currents estimated by these methods.
Compared to wMNE, dSPM, and LCMV beamformer, VBMEG
exhibits localized activities around the areas with large fMRI
activity (Figures 3, 7).
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FIGURE 5 | Stimulus-triggered average of preprocessed MEG data in face condition (sub-08). Its time series (top) and spatial maps at 0.16 s (bottom) are shown.

FIGURE 6 | Stimulus-triggered average of source currents estimated from MEG data in face condition (sub-08). Its time series (top) and amplitudes averaged within

0–0.3 s (bottom) are shown. In bottom figures, activities over 0.3 of their maximum value are shown.

3.6. Group Analyses
Using all the subjects’ source currents estimated from the MEG
data by VBMEG, we conducted a group analysis and examined
the differences of the current amplitudes between the face and
scrambled conditions.

For each subject, condition, and source, we calculated the
stimulus-triggered average of the source currents estimated from
the MEG data, normalized it so that its baseline period (–0.3
to 0 s) has mean 0 and standard deviation 1, and calculated its
amplitude. Then for each source and time, we compared the

16 subjects’ current amplitudes between the face and scrambled
conditions by a paired t-test. From the differences of the current
amplitudes between the conditions, we calculated the t- and p-
values based on Student’s t-distribution under a null hypothesis
where the current amplitudes were not different between the
conditions. This procedure produced a total of 586,515 p-values
(9,615 sources× 61 time points).

We solved this multiple comparison problem by controlling
the FDR, whichmanages the expected proportion of false positive
findings among all the rejected null hypotheses (Benjamini and
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FIGURE 7 | Source currents estimated by VBMEG, wMNE, dSPM, and LCMV beamformer. Stimulus-triggered averages of source currents estimated from MEG data

in face condition (sub-08) were calculated, and their amplitudes averaged within 0–0.3 s are shown. For each method, activities over 0.3 of their maximum value are

shown.

FIGURE 8 | Differences of current amplitudes between face and scrambled conditions. Top figure shows number of sources exhibiting significant differences

(q < 0.05). Bottom figures show significant t-values at 0.17 s.

Hochberg, 1995). We estimated the q-values by Storey and
Tibshirani’s method (2003). From the distribution of the 586,515
p-values, we first estimated the proportion of the null p-values
π0, and based on π0 we converted the p-values to q-values. The
FDRs were controlled at 0.05. This group analysis was performed
by “examine_diff_between_conds.m” in the tutorial programs.

Figure 8 shows the detected differences between the face
and scrambled conditions. At 0.17 s, the largest difference
was observed at the right FFA. This result is consistent with

previous studies that reported that this area exhibits face-
selective responses (Grill-Spector et al., 2004, 2017; Wakeman
and Henson, 2015; Jas et al., 2018; Rossion et al., 2018).

We also compared this group analysis result with those
obtained by wMNE, dSPM, and LCMV beamformer. Using
the source currents estimated by these methods (Figure 7), we
examined the differences of the current amplitudes between the
face and scrambled conditions by the same procedure described
above. Figure 9 shows the detected differences between the
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FIGURE 9 | Differences of current amplitudes between face and scrambled conditions obtained by VBMEG, wMNE, dSPM, and LCMV beamformer. Significant

t-values at 0.17 s are shown (q < 0.05).

conditions at 0.17 s. Compared with VBMEG, wMNE and dSPM
exhibited significant differences in the broader areas, including
the right FFA, the right insula, and the left temporal pole. LCMV
beamformer did not exhibit a significant difference at that time.

3.7. Estimating Source Current From EEG
Data
Here we estimate the source currents from the EEG data.

We import and preprocess them in the same way as the
MEG data (section 3.4). Additionally, we take a common average
reference and make the averages of the EEG data across the
channels to 0.

We construct a 3-shell (CSF, skull, and scalp) head
conductivity model. The conductivities are respectively set to
0.62, 0.03, and 0.62 S/m for the brain, the skull, and the scalp.
Based on themodel, wemake a leadfieldmatrix with the common
average reference. From the leadfieldmatrix and the preprocessed
EEG data, we estimate the source currents in the same way as the
MEG data (section 3.5). Figure 10 shows the source currents of
sub-08 estimated from the EEG data in the face condition.

3.8. Estimating Source Current From Both
MEG and EEG Data
VBMEG can also estimate the source currents from both
MEG and EEG data. Because MEG and EEG have different
sensitivities to source currents, integrating them further alleviates
the ill-posed nature of MEG/EEG source imaging, providing a
reliable estimate.

We first match the trials between the MEG and EEG data so
that identical trials remain. Then from the matched MEG/EEG
data and their leadfield matrices, we estimate the source currents.
To accommodate the different scales between the MEG and
EEG data, the data and leadfield matrices are normalized by the

leadfield norms (Henson et al., 2011). The normalized MEG and
EEG data and the leadfield matrices are concatenated together.
The hierarchical Bayesian method (Sato et al., 2004) is applied to
the concatenated data and the leadfieldmatrices. Figure 11 shows
the source currents of sub-08 estimated from both the MEG and
EEG data in the face condition.

3.9. Estimating Whole-Brain Connectome
Dynamics
Finally, we estimate the whole-brain connectome dynamics from
the source currents estimated from the MEG data in the face
condition. Its procedure consists of two steps: first estimating the
anatomical connectivity and then the dynamics model.

The anatomical connectivity is estimated from the dMRI using
FSL and MRtrix. We correct the subject motion during the
dMRI acquisition by FSL. To obtain ROIs for fiber tracking,
we cluster the cortical surfaces into 1,998 parcels. Based on
a six-dimensional fiber orientation distribution, the fibers are
probabilistically tracked from each ROI using MRtrix. We
quantify the strength of the connectivity based on the fiber counts
and binarized it using a threshold. The binarized connections
are used for specifying pairs of anatomically connected ROIs.
Furthermore, from the inter-ROI fiber lengths, we calculate the
time lags between the ROIs assuming a fixed conduction velocity
at 6 m/s.

Using the anatomical connectivity, we estimate the whole-
brain connectome dynamics. We generate the ROI current by
averaging the source currents across the trials and the sources
within each ROI. From the ROI current, we estimate a linear
dynamics model constrained by the anatomical connectivity.
In this model, only the anatomically connected pairs of ROIs
have connectivity coefficients at the anatomically determined
time lags. This drastically reduces the connectivity coefficients to
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FIGURE 10 | Stimulus-triggered average of source currents estimated from EEG data in face condition (sub-08). Its time series (top) and amplitudes averaged within

0–0.3 s (bottom) are shown. In bottom figures, activities over 0.3 of their maximum value are shown.

FIGURE 11 | Stimulus-triggered average of source currents estimated from both MEG and EEG data in face condition (sub-08). Its time series (top) and amplitudes

averaged within 0–0.3 s (bottom) are shown. In bottom figures, activities over 0.3 of their maximum value are shown.

estimate and suppress the false positive connectivities (Filatova
et al., 2018). The estimated dynamics model is visualized by a
movie showing the signal flows between the ROIs. The created
signal flow movie of sub-01 can be seen on the tutorial page.

4. DISCUSSION

In this paper, using the open dataset recorded by Wakeman
and Henson (2015), we introduced the VBMEG toolbox and
demonstrated its practical usage by showing its full pipeline. We
imported the MEG data and preprocessed them to estimate the
source currents. From the estimated source currents of all the

subjects, we performed a group analysis where the face-selective
responses were detected by controlling the FDRs. Our results are
consistent with previous studies (Grill-Spector et al., 2004, 2017;
Wakeman andHenson, 2015; Jas et al., 2018; Rossion et al., 2018),
indicating VBMEG’s ability to extract reliable knowledge through
group analyses.

4.1. VBMEG’s Advantages
VBMEG’s main advantage is its ability to integrate fMRI activity
for estimating source currents from MEG/EEG data. Due to
this advantage, its estimated source currents tend to be localized
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around areas with large fMRI activity, and as a result false positive
activities are effectively suppressed (Figures 3, 7).

This advantage might also suppress the false positive detection
of face-selective responses (Figure 9). So far, face-selective
responses have been observed at the ventral occipitotemporal
cortex (VOTC) (Grill-Spector et al., 2004, 2017; Wakeman and
Henson, 2015; Jas et al., 2018; Rossion et al., 2018). Consistent
with these observations, VBMEG, wMNE, and dSPM exhibited
face-selective responses at VOTC (Figure 9). However, they also
exhibited them outside VOTC, such as insula. This may be
due to signal leakage (Brookes et al., 2012; Colclough et al.,
2015; Palva et al., 2018; Sato et al., 2018); the face-selective
responses at VOTC leaked out in the estimated source currents.
Outside VOTC, VBMEG exhibited face-selective responses in
narrower areas than wMNE and dSPM (Figure 9), suggesting
that integrating the fMRI activity suppressed the signal leakage
and the false positive detection.

dSPM can also integrate fMRI activity (Liu et al., 1998;
Dale et al., 2000). This method uses fMRI activity as prior
information on the current variance, which is computed only
from fMRI activity. In contrast, VBMEG uses fMRI activity as
prior information on the variance distribution rather than the
variance itself, which is computed from both the fMRI activity
and the MEG/EEG data. Therefore, VBMEG is also robust to
inaccurate fMRI activities (Sato et al., 2004; Aihara et al., 2012).

VBMEG’s other advantage is its ability to construct a
connectome dynamics model for event-related brain activity.
SPM can also construct a dynamics model by dynamic causal
modeling (DCM), which constructs a nonlinear dynamics model
based on a few predetermined ROIs. In contrast, since VBMEG
constructs a linear dynamics model of the whole-brain without
assuming such ROIs, it is suitable for revealing whole-brain
dynamics in a data-driven way.

4.2. VBMEG’s Limitations
Currently, VBMEG relies on a few old versions of the software,
such as MATLAB (version 7 [R14] to 8.3 [R2014a]) and SPM8.
This situation is complicated for young researchers who are
interested in trying VBMEG. We plan to extend VBMEG so that
it works on more recent versions.

VBMEG supports the importing of MEG data recorded
by Yokogawa (.con) and Neuromag (.fif) systems and EEG
data recorded by Biosemi (.bdf) and Brainamp (.vhdr, .vmrk,
and .eeg). Other formats, such as the European data format
(EDF), are currently not supported. We plan to extend the
supported formats.

VBMEG does not have a framework to import data processed
by other software, such as Brainstorm. To do so, the data must
be converted to the VBMEG format. On the other hand, it
may be easier to use other software’s functions in the VBMEG
pipeline. Indeed, VBMEG uses several functions from other free
software, such as EEGLAB (Delorme and Makeig, 2004) (https://
sccn.ucsd.edu/eeglab/index.php), MRIcron (Rorden et al., 2007)
(http://people.cas.sc.edu/rorden/mricron/index.html), and Tools
for NIfTI and ANALYZE image (https://jp.mathworks.com/
matlabcentral/fileexchange/8797), which are included in the
“external/” directory of our toolbox. Furthermore, this tutorial

used the Brainstorm functions to estimate the source currents by
wMNE, dSPM, and LCMV beamformer.

VBMEG can construct a whole-brain connectome dynamics
model. However, since the model is very high-dimensional, it is
too complicated to interpret. Further analysis and statistical tests
are necessary to extract physiological knowledge from it. They are
now under development.

4.3. Alternatives to fMRI
VBMEG estimates source currents from MEG/EEG data using
fMRI activity as prior information on the current variance
distribution. However, measuring fMRIs requires expensive
equipment that is not always available. In such cases, we can
choose from among several alternatives.

We can use uniform distribution as prior information with
very small confidence. In this case, the estimated current
variances tend to be sparse due to the effect of ARD (Neal, 1996).
Although the estimation accuracy obtained by the uniform prior
is worse than that obtained by the fMRI prior, it still outperforms
a minimum norm method if the source currents are sparse
(Sato et al., 2004).

We can also use near-infrared spectroscopies (NIRSs), which
measure hemodynamic responses to neural activities like with
fMRIs. NIRS activities mapped to the sources can be used as prior
information. The efficacy of this method was validated by Aihara
et al. (2012) and Morioka et al. (2014).

On the other hand, obtaining the meta-analysis results of
fMRI studies from Neurosynth.org (http://neurosynth.org/) and
using them as prior information is another possibility. We are
now testing the efficacy of this approach.

4.4. Other VBMEG Usages
In this paper, we demonstrated VBMEG usage by analyzing
the MEG/EEG data during the face recognition. VBMEG’s
performances for other experiences have been validated, such as
a visual experiment with checkerboard patterns (Yoshioka et al.,
2008), a somatosensory experiment with electric stimuli (Filatova
et al., 2018), and several motor experiments (Callan et al., 2010,
2016; Toda et al., 2011; Takeda et al., 2014; Yoshimura et al.,
2017). Furthermore, its performance can be tested for MEG/EEG
data during simple auditory, somatosensory, and visual stimuli
through the following tutorial page: https://vbmeg.atr.jp/docs/
v2/static/vbmeg2_tutorial_advanced.html.
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