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Abstract

The reasons why some plant species were selected as crops and others were abandoned during the Neolithic emergence of
agriculture are poorly understood. We tested the hypothesis that the traits of Fertile Crescent crop progenitors were
advantageous in the fertile, disturbed habitats surrounding early settlements and in cultivated fields. We screened
functional traits related to competition and disturbance in a group of grass species that were increasingly exploited by early
plant gatherers, and that were later domesticated (crop progenitors); and in a set of grass species for which there is
archaeological evidence of gathering, but which were never domesticated (wild species). We hypothesised that crop
progenitors would have greater seed mass, growth rate, height and yield than wild species, as these traits are indicative of
greater competitive ability, and that crop progenitors would be more resilient to defoliation. Our results show that crop
progenitors have larger seed mass than wild species, germinate faster and have greater seedling size. Increased seed size is
weakly but positively correlated with a higher growth rate, which is primarily driven by greater biomass assimilation per unit
leaf area. Crop progenitors also tend to have a taller stature, greater grain yield and higher resilience to defoliation.
Collectively, the data are consistent with the hypothesis that adaptations to competition and disturbance gave crop
progenitors a selective advantage in the areas surrounding early human settlements and in cultivated environments,
leading to their adoption as crops through processes of unconscious selection.
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Introduction

Grain assemblages from early settlements in the Fertile Crescent

of Southwest Asia show that hunter-gatherers collected a large,

diverse range of species before the origin of agriculture [1–8].

However, later assemblages in the region suggest a progressive

specialization in diet, characterized by a decline in the occurrence

of some wild plant species, and an increase of other species as they

were brought into cultivation [5,8,9]. Domesticated crops emerged

in the Fertile Crescent of Southwest Asia between ,11,000 and

8,000 BP [10–12], and are characterized by the evolution of a

‘domestication syndrome’, including the loss of natural dispersal

mechanisms and an increase in seed mass [13,14]. However, it is

not clear what drove the selection of some species as crops and

what caused the abandonment of others.

The selection of crop species could have been an intentional

selection process by early farmers in response to demographic [15]

or social [16] pressures, or it could be the result of unconscious

selection [17–20]. Unconscious selection arises from the interac-

tions between humans and their food plants, and has the potential

to determine the species that were domesticated and to drive the

domestication process. Some authors have suggested a prolonged

period of pre-domestication cultivation, during which certain

species were cultivated but had not yet acquired the morphological

changes associated with domestication [8,21–23]. We propose an

ecological model, whereby selection could have occurred in two

distinct settings prior to the establishment of full agricultural

systems, each introducing plant species to novel anthropogenic

environments. Initially, the gathering of wild plants for subsistence

and the accidental spillage of seeds may have concentrated food

plants in the area surrounding settlements. Selection then acted on

this local species pool via disturbance, competition and high soil

fertility. Cultivation subsequently modified the selection regime

through the deliberate sowing of seeds in tilled soil and, at some

point, by other management practices such as weeding, manuring

and irrigation. This paper explores the potential role of these

ecological selection processes in the domestication of crops. We set

up an experiment to compare the crop progenitors and co-

collected wild species to investigate whether there are functional

traits of these crop progenitors that would have favoured their

selection in these early agricultural environments.

High relative growth rate (RGR), defined as the rate of dry

matter production per unit of dry matter under optimal conditions
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[24,25], is generally considered a crucial adaptation to fertile,

disturbed niches. RGR represents one of the fundamental axes of

ecological variation, corresponding with rapid rates of resource

acquisition, and trading off against allocation to storage, defence

and survival [25–27]. High RGR has previously been shown to

correlate negatively with seed mass, suggesting that small-seeded

species have growth strategies (physiological, morphological or

structural adaptations) to facilitate rapid growth [28,29]. However,

because RGR typically declines as plants grow, comparisons of

species with different seed sizes will inevitably confound size effects

with true differences in growth strategy [30–32]. To separate the

effects of size and growth strategy, Metcalf et al. [33] suggested

making comparisons at a common size and, when this was done, a

positive relationship between RGR and seed mass was found in

short-lived species [34] raising the possibility that fast growth may

be an important component of the domestication syndrome in

large-seeded crops. Large seed size also correlates with a range of

other traits that would be an advantage in early anthropogenic

environments, including quicker and earlier germination [35],

enhanced competitive ability [36] and survival following burial

[37].

This paper tests the overarching idea that Fertile Crescent crop

progenitors might be better adapted to disturbed, fertile environ-

ments than other wild grass species exploited by pre-agricultural

societies by testing five hypotheses: (i) crop progenitors have larger

seeds and seedlings, and faster germination than the other wild

species; (ii) the RGR under fertile soil conditions is greater in crop

progenitors than the other wild species, when compared at a

common size; (iii) size and seed yield at maturity are greater in

crop progenitors than the other wild species; (iv) resilience (survival

and fecundity) of crop progenitors when defoliated is greater than

that of wild species; and (v) the differences between wild species

and crop progenitors outlined in (ii) to (v) can be explained by

correlations of each trait with seed mass.

Materials and Methods

Three experiments were designed to test the hypotheses.

Experiment 1 investigated whether seed mass had an effect on

the timing and rate of germination. Experiment 2 investigated the

relationship between seed mass and growth rate using a functional

approach with repeated harvests to calculate RGR using

conventional and size standardised methods. The RGR data have

been presented previously as part of a meta-analysis investigating

the association of seed size, plant size and growth rate [34]. Here,

the data are further analysed to determine how variation in plant

allometry and physiological processes contribute to interspecific

variation in RGR. The third experiment tested how crop

progenitors and wild species respond to simulated disturbance

via complete removal of above ground biomass, comparing

survival and yield.

Species selection
Nine species were selected for the experiments. All were grown

from seed obtained from germplasm holdings, and different seed

accessions were used for the three experiments (Table S1). To

ensure that these accessions were reasonable representatives of the

original progenitors, they were selected based on their region of

origin, being as close to the centres of domestication as possible.

While intraspecific variation and maternal effects are to be

expected, previous experiments show that they are typically less

important than interspecific variation. Species identity was

ensured by the use of taxonomic and molecular markers to look

for contamination in the germplasm holding centres [38]. The

outer glumes were removed from all seeds before weighing. Since

this study focuses on cereal cultivation, only grasses were chosen to

ensure that comparisons between crop progenitors and wild

species were not confounded by growth habit or phylogeny.

Three wild grasses, which became the major domesticates and

staple foods in Southwest Asia were selected to represent the crop

progenitors: Hordeum spontaneum Koch, Triticum boeoticum Boiss., and

Triticum dicoccoides Koern. Six wild grass species that were never

domesticated were also investigated: Aegilops crassa Boiss., Aegilops

speltoides Coss., Aegilops tauschii Coss., Eremopyrum bonaepartis

(Spreng.) Nevski, Eremopyrum distans (K.Koch) Nevski and Tae-

niatherum caput-medusae (L.) Nevski. These particular species were

chosen because they are present in significant numbers in

archaeobotanical assemblages, from numerous sedentary sites

across Southwest Asia ranging in age from 23,000- 9,700 BP

[1,2,4,5,7,8,10,39,40]. From the range of preserved plant remains,

wild annual grasses were abundant at the majority of these early

settlements and were chosen as a focus for the study.

For example, from the 90,000 plant remains collected at Ohalo

II, an Upper Palaeolithic site in Israel, 19,000 were grass grains

[4,5]. The abundance of wild grasses at this location suggests they

were a staple food source. Furthermore, there is evidence for the

processing of plant material at this site, with a large concentration

of remains around a grinding stone, and the presence of starch

grains indicating the pounding and grinding of grass seeds [41].

Four sites in northern Syria show evidence of the collection of a

wide range of grasses, with Aegilops spp., T. caput-medusae and

Eremopyrum spp. being identified at all locations and H. spontaneum

and T. boeoticum highly abundant in the majority of samples

collected [8]. At Neolithic Çatalhöyük, east Turkey, two out of

eight archaeobotanical samples from storage structures in burnt

houses were dominated by T. caput-medusae accompanied by a

lesser, but still substantial, amount of Eremopyrum type grass [7].

The purity of the samples, including one consisting solely of T.

caput-medusae and Eremopyrum spp., suggests that seeds were being

gathered, processed and stored.

Experiment 1 – Seed mass and germination rate
(a) Plant material and growth conditions. Germination

took place under propagator lids and a thin layer of wet compost,

within a controlled environment chamber (BDR 16, Conviron,

Winnipeg, Manitoba, Canada) under a 20/10uC day/night with

an 8 hour photoperiod, PPFD of 300 mmol photons m22 s21, and

humidity of 70%/50% day/night. Seeds were uncovered after two

days to observe radicle length and then observed daily for

germination. Seedlings were harvested when the ligule of the first

true leaf emerged. Roots were washed free of compost, and

seedlings were oven dried to a constant weight at 80uC before

weighing.

(b) Statistical analysis. Regressions lines were fitted to plots

of germination vs seed size, and seedling mass vs seed size. R2

values were calculated to estimate the goodness of fit and the

significance of the relationship was tested using the lm() function in

R (version 2.6.14, The R Foundation for Statistical Computing).

Experiment 2 – Seed mass and RGR
(a) Plant material and growth conditions. Seeds were

germinated on moist, washed sand (Chelford 52; WBB Minerals,

Sandbach, Cheshire) under propagator lids in a controlled

environment room (BDW 40, Conviron). Conditions were 20/

10uC (day/night) with an 8 hour photoperiod and PPFD of

300 mmol photons m22 s21.

The general approach for growth analysis was based on studies

by Grime and Hunt [25], Poorter and Remkes [42], Poorter [43],

Functional Traits of Plants Used in the Neolithic
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Hunt and Cornelissen [44] and Hendry & Grime [45]. Three days

after germination, 24 seedlings of a uniform size were selected for

each species and planted into 1 litre pots containing washed sand.

These were top-watered every two days with full-strength Long

Ashton nutrient solution ([46] Tables 40, 41), and bottom-watered

with distilled water on alternate days. The seedlings were returned

to the controlled environment room at: 20/10uC (day/night) with

a 16 hour photoperiod, maximum PPFD of 756 mmol photons

m22s21 and RH of 70%. Although these light levels are lower

than the peak value in full sunlight, the levels are comparable to or

higher than the irradiance levels used in most previous growth

experiments measuring RGR and its growth components (see

Shipley et al. [47]). For reference, the daily quantum input (DQI)

in this experiment was 43.6 mol m22 day21.

(b) Harvesting schedule and measurements. The exper-

iment was started 7 days after germination, when all plants had

reached a fresh weight of approximately 100 mg (day 7). Harvests

were carried out over a 3-week period on days 7, 10, 14, 17, 21

and 27. Each day, 4 plants of each species were harvested and

divided into leaf blades, roots and leaf sheaths. Each plant was

cleaned of the growth medium, and dried to a constant weight at

80uC for 2 days. The total leaf area of each plant was determined

by scanning the freshly harvested leaf blades and using image

analysis software (ImageJ 1.36b., Wayne Rasband, National

Institute of Health, Bethesda, Maryland, USA).

(c) Statistical analysis. Regression lines were fitted to plots

of seedling mass vs seed size, final dry mass vs seed size and final

leaf area vs seed size. R2 values were calculated to estimate the

goodness of fit and the significance of the relationship was tested

using the lm() function in R (version 2.6.14, The R Foundation for

Statistical Computing).

(d) Estimating RGR at a common size. A species-specific

functional growth analysis was performed by fitting growth

functions to plots of ln-total plant mass against time (Fig. S1),

which were then used to estimate RGR at a common reference

size for each species. For full details of the fitting and RGR

estimation see references: [30,32,34,48]. Fitting these curves and

estimating RGR at a common size (sRGR) rather than calculating

RGR via classical methods [44] accounts for size-dependent

variation in growth rate bought about by changes in physiology,

morphology and allocation. The 30th percentile (0.067 g) of the

distribution of plant mass was used as the reference size because it

encompasses all the species, resource limitation should still be

minimal, and growth approaching its maximum rate. Plant mass

in the data set ranged from 0.005 g to 5.816 g.

RGR is determined by the net assimilation rate (NAR), which is

the absolute growth rate per unit leaf area, and the leaf area per

unit of plant mass, termed the leaf area ratio (LAR). The LAR is

further factorized into: (1) leaf mass ratio (LMR), the proportion of

biomass invested in leaves, and (2) specific leaf area (SLA), the leaf

area per unit leaf mass. To better understand why RGR varies

among species, the components of sRGR were calculated at the

reference size (sNAR, sLMR and sSLA) based on predictions from

linear regressions of ln-leaf area and ln-leaf mass against ln-total

plant mass. In all cases the species 6 total plant mass interaction

was significant (P,.05), so that all regression models had species-

specific intercepts and slopes [30,48].

Experiment 3 – Components of yield and response to
defoliation

(a) Plant material and growth conditions. Seeds were

germinated in 24-cell plug-trays containing a 1:1 sand: compost

mix. Trays were placed in a controlled environment chamber

(BDR 16, Conviron) under a 20/10uC day/night with an 8 hour

photoperiod and a PPFD of 300 mmol photons m22 s21. Once the

seeds had germinated and the seedlings had reached the second

leaf stage, an 8-week vernalization treatment was imposed to

enable flowering. Temperatures were set at 4uC (day and night)

with PPFD and photoperiod as during germination. At the end of

vernalization in late April, plants were re-potted into 4 litre pots

containing the same growth medium. Plants were divided between

three rooms in a glasshouse and organised in a randomised block

design (Tapton Experimental Gardens, Broomhill, Sheffield).

They were grown until maturity in mid-July. Artificial lighting

was supplied by sodium lamps at 16 h d21 throughout the

experiment to supplement and extend natural daylight. The

PPFD, temperature and humidity were logged at 5 minute

intervals (DL2e data logger, Delta-T Devices Ltd., Cambridge,

UK) to give mean maximum daily PPFD values of

420631.1 mmol photons m22 s21, mean maximum daily temper-

atures of 2460.6uC and mean minimum temperatures of

1660.2uC. Mean maximum and minimum humidity values over

a diurnal cycle were 6260.8% and 4361.6%, respectively. Over

the full growing season, maximum daily temperatures ranged from

16uC to 35uC, maximum daily PPFD varied from 79 mmol

photons m22 s21 to 830 mmol photons m22 s21, and maximum

daily RH from 52% to 73%. Plants were watered every other day

at the beginning of the experiment; this was reduced after

flowering as the water demands of the plant decreased.

(b) Defoliation treatment and data collection. A defoli-

ation treatment was applied to all nine species during the

vegetative stage, two weeks after plants were transferred to the

glasshouse by completely removing all plant material at 2 cm

above the soil surface. There were eight replicates in the defoliated

and unperturbed control treatments, giving a total of 16

individuals (8 replicates 62 treatments) per species.

Measurements were made of six characters: survival (whether

the plants flowered and set seed), time of flowering (days from end

of vernalization period to extrusion of inflorescence on the leading

tillers), plant height (measured from soil surface to the collar of the

leading spike), the number of tillers (flowering and not flowering),

number of seeds and potential yield. Survival and flowering were

recorded whenever plants were watered. Plants were harvested

after grain filling, but before spikes had started to shatter.

Archaeological records show that prior to crop domestication,

plants were harvested when grains were immature and still

attached to the seed head, since the rachis of wild grasses shatters

when mature, thereby dispersing the seeds [13]. Plant height and

number of tillers (flowering and not-flowering) were recorded. The

number of seeds on each plant was estimated by finding a

relationship between the length of a spike and the number of seeds

on a spike for each species. Grain yield of each species was

estimated by multiplying seed number by the average values of

seed weight measured in the RGR analysis.

(c) Statistical analysis. Data were analysed using the

statistical computing package R (version 2.6.14, The R Founda-

tion for Statistical Computing). All characters were tested using a

generalized linear model (glm) with the appropriate error

distribution and link function. In all cases the putative minimal

model was determined by using the dropterm() function, and the

best fit was determined by comparing dispersion parameters and

AIC values. Comparisons were then carried out using a contrasts

matrix [R-routine: contrasts(Species)] to determine whether there

were differences in response to the disturbance treatment between

crop progenitors and wild species.

Functional Traits of Plants Used in the Neolithic
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Results

Seed mass and germination
Seed mass at the start of the experiment showed significant

variation among species (F8,63 = 95.8, P,.001), ranging from

3.1860.07 mg (mean6s.e.) in E. bonaepartis to 28.961 mg in H.

spontaneum (Fig. 1). Seed mass was significantly larger in the crop

progenitors than in the other wild species (t1 = 16.12, P,.001,

Fig. 1). However, seeds of the crop progenitor T. boeoticum weighed

2160.6 mg, only 10% larger than those of the two largest-seeded

wild species, A. crassa and A. tauschii, which weighed 1960.8 mg

and 1960.4 mg respectively. Seed mass differed between acces-

sions (Fig. 1), but this variation did not obscure the strong overall

difference between crop progenitors and wild species.

Seed mass was negatively correlated with the time to

germination, with larger seeded species germinating at a faster

rate (F1,7 = 5.6, P,.05, Fig. 2A). Germination was approximately

two days slower in the smallest seeded species (E. bonaepartis)

compared to the largest seeded species (H. spontaneum). The larger

seed mass in the crop progenitors meant that this group had a

faster rate of germination when compared to the other wild

species.

Larger seed mass was positively correlated with seedling dry

mass in experiment 1 (F1,7 = 120.2, P,.001, Fig. 2B) and dry mass

at seven days after germination in experiment 2 (F2,6 = 75.8, P,

.001, Fig. 2B). This seed mass effect also carried through to the end

of experiment 2, as shown by the positive correlations between dry

mass and leaf area at 27 days (Fig. S2).

Seed mass and RGR
RGR was calculated using classical and size-standardised

methods, and these models showed contrasting results. Using the

classical method there was no relationship between seed mass and

RGR (Fig. S3), whereas a weak, positive relationship arose using

the size-standardized method (F2,6 = 6.2, P,.05, Fig. 3). This

positive relationship was largely driven by the high value of sRGR

for H. spontaneum, and larger seed mass did not always translate to

greater sRGR. In particular, T. boeoticum had a much lower sRGR

than wild grain species (A. crassa and A. tauschii) with similar seed

masses (Figs. 1 and 3). In comparison, the two other crop

progenitors (T. dicoccoides and H. spontaneum), which had the largest

seed masses, also had the highest sRGRs. The sRGR value of 0.31

for H. spontaneum was more than double that of the wild species

with the lowest sRGR (E. distans) and 34% greater than the wild

species with the highest sRGR (A. crassa). T. dicoccoides similarly

showed growth advantages of 73% and 10% respectively over

these two wild species.

Components of RGR
The best predictor of sRGR was sNAR (F2,6 = 20.1, P,.01,

Fig. 4A), followed by sSLA (F1,7 = 6.8, P,.05, Fig 4B) whilst no

relationship was found with sLMR (Fig. 4C). Supporting these

findings, calculation of the contributions of sLMR, sSLA and

sNAR to the variance in sRGR showed that sNAR made the

largest contribution (82.5%), whilst sSLA (32.8%) made a small

contribution, and sLMR a smaller, negative contribution (2

15.3%). Normalization of the variance and covariance for each of

these components of sRGR yields an ‘‘importance’’ value [30].

Importance values again showed sNAR to be the main driver of

interspecific variation in sRGR (48.3%). However, sLMR was of

equal importance to sSLA (26.9 vs 24.8% respectively). As

expected from these results, sNAR correlates strongly with seed

mass, whilst the relationship is weaker for the sLMR and sSLA

components (see Fig. S4).

Resilience to disturbance
The defoliation treatment significantly reduced survival

(F1,134 = 76.4, P,.001, Fig. 5A), with the magnitude of the

response varying among species (F8,135 = 9.5, P,.001, Fig. 5A).

The majority of the species defoliated showed 70–100% survival

but, in E. bonaepartis, only 25% of the plants survived. Comparisons

Figure 1. Initial seed mass in the three crop progenitors and six wild species. The black bars show the mean seed mass of accessions used
in experiment 1 and the white bars show those used in experiment 2 (+SE). Standard errors are not shown for experiment 1 because seeds were not
weighed individually.
doi:10.1371/journal.pone.0087586.g001

Functional Traits of Plants Used in the Neolithic
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of survival between the crop progenitors and wild species showed

no significant difference in the response to defoliation.

Defoliation significantly reduced the final height of plants

(F1,121 = 103.4, P,.001, Fig. 5B), and the response varied between

species from a 10% to 48% loss of height compared to the control

treatment, leading to a significant interaction between species and

treatment (F8,113 = 6.5, P,.001, Fig. 5B). Comparisons of plant

height between the crop progenitors and wild species showed that,

under the control treatment, the crop progenitors were signifi-

cantly taller than the wild ones (t1 = 10.1, P,.001, Fig. 5B).

However, there was no significant difference between the two

types in the response of plant height to defoliation.

The defoliation treatment significantly decreased the number of

tillers produced by each species (x2
1(N = 144) = 287.2, P,.001,

Fig. 5C). This varied between species from 19% in T. boeoticum to

81% in A. tauschii, leading to a significant species by treatment

interaction (x2
8(N = 144) = 134.3, P,.001, Fig. 5C). The wild

species had a significantly greater number of tillers than the crop

progenitors under the control treatment (z = 13.3, P,.001,

Fig. 5C). The two types also showed a differential response to

the defoliation treatment, with the decline in tiller number being

greater in the wild species than crop progenitors (z = 7.1, P,.001,

Fig. 5C). The full defoliation treatment led to, on average, a 62%

decrease in the number of tillers in the wild species but only a 26%

decline in the crop progenitors.

The period of time plants took to flower was extended

significantly when a defoliation treatment was applied, with

flowering taking 25–49% longer in the defoliated plants compared

to the controls (x2
1(N = 144) = 60.9, P,.001, data not shown).

Once flowering was complete and seed set had begun, comparison

of seed number between the control and defoliation treatment

showed that the decrease in tiller number due to defoliation caused

a large decline in seed number (x2
1(N = 144) = 211.3, P,.001,

Fig. 5D) and therefore potential yield (x2
1(N = 144) = 119.4, P,

.001, Fig. 5E). The proportion of tillers that set seed was not

affected by defoliation (data not shown), so the decrease in seed

number and potential yield was due to the reduction in tillers

alone. The reduction in seed number due to defoliation varied

between species (x2
8(N = 144) = 118.4, P,.001, Fig. 5D) and was

greater in the wild species compared to the crop progenitors

(z = 6.6, P,.001, Fig 5D). The decrease in potential yield due to

defoliation varied between species from 25% in T. boeoticum to 85%

in A. tauschii, leading to a significant interaction between species

and treatment (x2
8(N = 144) = 16.1, P,.05, Fig. 5E). Comparison

between the two types showed that, in the unperturbed control

treatment, the crop progenitors were capable of producing a

significantly larger yield than the wild species (z = 6.2, P,.001,

Fig 5E). The two groups also showed a differential response to the

defoliation treatment, with a significantly greater decline in yield in

the wild species than crop progenitors (z = 2.8, P,.01, Fig 5E).

The full defoliation treatment led to, on average, a 61% decrease

Figure 2. Relationship between seed germination, seedling
mass and seed mass. Regression slopes for the relationship between
(a) time to 50% of seeds germinated and seed mass (F1,7 = 5.55, P,.05,
R2 = 0.44); and (b) seedling mass and seed mass, [experiment 1: circles
(F1,7 = 120.156, P,.001, R2 = 0.9756), experiment 2: squares (F2,6 = 75.78,
P,.001, R2 0.9619)] for the three crop progenitors (closed symbols) and
six wild species (open symbols).
doi:10.1371/journal.pone.0087586.g002

Figure 3. Relationship between size standardised RGR (sRGR)
and seed mass. Regression slope for the relationship between sRGR
and seed mass (F2,6 = 6.186, P,.05, R2 = 0.6734) for the three crop
progenitors (closed symbols) and six wild species (open symbols).
doi:10.1371/journal.pone.0087586.g003
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in potential yield in the wild species, but only a 31% decline in the

crop progenitors.

Discussion

Results from the three experiments showed that crop progen-

itors have larger seed and seedling mass, earlier germination, and

greater biomass and leaf area during early stages of vegetative

growth than the other wild species known to have been gathered

by pre-agricultural communities. Additionally, the greater seed

mass was weakly but positively correlated with a higher sRGR in

two of the three crop progenitors tested. The crop progenitors

were more resilient in their response to defoliation and were taller

at maturity, with a higher potential grain yield than the other wild

species.

We hypothesize that this suite of functional traits observed in

crop progenitors would have been advantageous in an anthropo-

genic environment. Initially, gathering would have occurred in the

natural habitat of these wild plants and involved collection across a

wide range of plant taxa. The gathering of wild plant seeds likely

led to their dispersal in and around early human settlements. Seeds

dispersed in this way would have been exposed to new selective

pressures. Collected species that survived and flourished in such

environments would have been those best able to survive

disturbance and take advantage of greater levels of soil fertility.

These species would also respond well to early attempts at

cultivation. Enhanced competitive ability over smaller seedlings

[36] and greater resilience to defoliation are of particular

importance in this context [49,50].

This suggestion is superficially similar to the so-called ‘dump

heap hypothesis’ that crop plants originated from weeds associated

with human refuse heaps and disturbed habitats surrounding pre-

agricultural settlements (e.g. [51–53]; and subsequently discussed

by, for example: Harlan [54,55], Blumler and Byrne [56] and

Abbo et al. [57]). It differs from it, however, in that we are not

suggesting that crop progenitors were from naturally weedy

habitats. Rather our hypothesis rests upon the more subtle

differences between collected crop progenitors and other wild

species that were also collected but never domesticated, and their

relative competitive ability when introduced to a new environ-

ment. Our experiments focus specifically on the comparison

between these collected species of Southwest Asia.

We argue that by out-competing other species less well adapted

to these human-managed environments cereal crop progenitors

became more abundant around human settlements and under

early cultivation, and therefore more likely to be collected and

harvested. This may have driven species selection in the early

stages of plant domestication making human populations more

dependent on a narrower range of species [18,58], which then

became the most likely candidates for, and successful products of,

cultivation. Later, as wild progenitors were taken into cultivation,

these same functional traits would have continued to offer

competitive advantages, within cultivated species in deliberately

sown, possibly weeded and/or manured cultivation plots.

Larger size may confer a competitive advantage in crop
progenitors

In this study, the crop progenitors had a larger seed mass than

wild species that were not domesticated. Greater seed mass and

seedling size enhance competitive ability [36] through a number of

mechanisms. Under conditions of drought, burial or competition,

survival is greater due to the longer initial hypocotyl or radicle,

termed the ‘seedling size effect’ [37,59], and we found a strong

correlation between seed size and seedling size in experiment 1. If

larger seedlings have lower RGR, as shown in previous studies

[28], this is hypothesised to give a metabolic effect [37] where a

species with a slower growth rate has a slower respiration rate and

consumes metabolic resources more slowly. However, in this study

and others [30,31], RGR was size-dependent, and the relationship

between size-corrected growth rate and seed mass was positive.

Larger seeds have an additional benefit of having extra metabolic

resources that may serve to better support carbon deficits, the

‘reserve effect’, where a greater amount of resources is left

uncommitted at a given time after germination [37,59]. This is of

particular significance when defoliation occurs at a young age

[49].

This study shows that larger seed size is weakly but positively

associated with a higher RGR at a given plant size. A high sRGR

offers larger seeds an advantage by allowing more rapid

colonization of an environment. The crop progenitors H.

Figure 4. Relationship between sNAR, sSLA and sLMR and sRGR. Regression slopes for the relationships between (a) sNAR and sRGR
(F2,6 = 31.98, P,.001, R2 = 0.914); (b) sSLA and sRGR (F1,7 = 6.781, P,.05, R2 = 0.492); and (c) sLMR and sRGR for the three crop progenitors (closed
symbols) and six wild species (open symbols).
doi:10.1371/journal.pone.0087586.g004
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Figure 5. Impact of a defoliation treatment on plant survival, size and yield. Impact of defoliation treatment on (a) survival (%), (b) plant
height, (c) number of tillers, (d) number of seeds, and (e) potential yield in crop progenitors and wild species. The defoliation treatment is shown by
the white bar and the control treatment (no defoliation) is shown by the black. Data are means + SE of 8 replicates.
doi:10.1371/journal.pone.0087586.g005
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spontaneum and T. dicoccoides had the largest seed sizes in this study

and the corresponding highest sRGR, the relationship being

stronger in H. spontaneum. However, the third crop progenitor, T.

boeoticum, had a similar seed mass to the larger seeded Aegilops spp.,

but a much lower sRGR than expected from its seed size, which

weakens the relationship. A useful future addition to this study

would be to extend the work to the other primary domesticates

including pulses such as pea, lentil, chickpea and bitter vetch to

test whether the same relationships exist between seed size and

functional traits related to competition and disturbance.

sNAR was the main driver of interspecific variation in sRGR, in

contrast to other size-corrected studies [30,42] where sSLA was

most important. This dependence on sNAR may relate to high

growth irradiance. In a meta-analysis by Shipley et al. [47], NAR

was the most important driver of RGR in experiments conducted

at a DQI of above 25 mol m22 day21; in our experiment the DQI

was 43.6 mol m22 day21. Below 15 mol m22 day21 (low

irradiance) SLA dominates, and between 15 and 25 mol m22

day21 SLA and NAR are of equal importance [47]. Furthermore,

other studies have shown NAR to have increased importance at

high irradiance [41,60,61]. In fact, there is a strong trade-off

between NAR and SLA with changing light intensity [60]. The

fast growing species in this study are likely to have a high

photosynthetic capacity, which is realised under high irradiance.

Photosynthetic rate and NAR are closely correlated, with

photosynthesis in different species having different light saturation

points, driving species differences in NAR at high light [60,61].

Although large seeds may gain an advantage in seedling

competition, small seeds have the advantage of being produced in

much greater numbers for a given reproductive effort [27]. For

example, under the control treatment in this study, the greatest

number of seeds in the crop progenitors was 393 in T. boeoticum,

whilst in the wild species the maximum was 711 in E. bonaepartis.

Therefore, although large seeded species may be more compet-

itive, they are often recruitment-limited [36]. However, as humans

increasingly become the agents of dispersal for crop species, this

limitation diminishes in importance, thereby removing an

important cost from the evolutionary trade-off acting on seed size.

The advantages of large seed/seedling size mainly operate

during the early stages of plant establishment and growth.

However, we found that plant traits in established plants are also

correlated with seed mass, albeit less strongly. The larger seed size

and higher sRGR translate to mature plants with a taller stature

and greater yield. Plant height, measured in the third experiment,

differed between the two groups; crop progenitors were signifi-

cantly taller overall, varying from 0.77 m to 0.95 m, whilst the

wild species ranged from 0.27 to 0.80 m in height. As well as

offering greater apparency in a landscape for human gatherers,

this height advantage confers competitive ability through prior

access to light, and may be particularly advantageous in conditions

of high fertility where competitive plants are better equipped to

take advantage of the higher nutrient availability [62,63]. The

ability of wild progenitors to exploit high fertility locations is

expected to have been particularly advantageous in and around

the human settlements, with nutrient enriched soils, to which they

were transported by human gathering from the wild.

Fuller et al. [64] list three competing hypotheses to explain the

observed increase in grain size during domestication (other than

conscious human selection of larger grains within an existing

population): (1) that larger grain size is a plastic response to the

favourable soil conditions of cultivation, resulting in more fully

developed grains [8]; (2) that larger grain varieties were adopted

from elsewhere [8]; and (3) that larger size was an adaptive

response to disturbance and/or deeper burial during cultivation

[65]. Furthermore, genetics is likely to have played a significant

role in the increase in seed size, with genetic control of grain size

demonstrated not only in wheat [66], but also in other cereals e.g.

rice [67,68] and maize [69]. Our experiments provide empirical

evidence for an association between grain size and other

potentially adaptive plant characteristics and, in particular,

indicate that increased grain size could reflect an adaptive

response to both improved soil conditions and disturbance.

Resilience to defoliation meant that yields were less
impacted in crop progenitors

In this study, large seed mass was associated with substantial

increases in potential yield; under the control treatment, the

average yield per plant was 2.9 times greater in crop progenitors

than wild species, which in itself may have been an important

selection criterion for early farmers. Response to the defoliation

treatment also differed significantly between the crop progenitors

and wild species, with potential yield reduced more in the wild

species. Although large seedlings are known to survive defoliation

better, with higher subsequent growth rates [49], the plants in this

study were beyond the seedling stage before the defoliation

treatment was applied, so the response to defoliation cannot be

attributed directly to seed mass.

Yield after defoliation was controlled by the number of tillers

that re-sprouted; the number of tillers was significantly reduced by

the defoliation treatment and this effect was much stronger in the

wild species. Re-sprouting after the loss of practically all above-

ground biomass requires surviving buds or other meristematic

tissue, as well as reserves of carbohydrate and nutrients that can

fund expansion of the first leaves of the new sprout [70,71]. Re-

sprouting is also related strongly to growth form, with grasses

being strong re-sprouters [72]. This explains why the level of

survival was high in our experiment. However, considerable

between-species variation in the response to defoliation suggests

that grasses may employ diverse strategies [73]. The smaller-

seeded wild species used in this study could have a reduced ability

to re-sprout after defoliation (resilience) because they recruit more

resources into producing a larger soil seed bank [74,75].

Alternatively, a smaller reduction in the tillering of crop

progenitors could be an adaptation to grazing [76].

Conclusions

Comparison of cereal crop progenitors with other wild grass

species exploited by pre-agricultural societies in the Fertile

Crescent of Southwest Asia revealed significant differences in

functional traits related to competition and disturbance. Support-

ing our hypothesis (i), the crop progenitors had larger seeds and

seedlings than the other wild species, and this was associated with

faster germination. The larger seed size was also correlated with a

greater size-corrected RGR for two of the three crop progenitors

(ii). The height of the crop progenitors and the seed yield were

greater at maturity, in agreement with hypothesis (iii) and,

although the survival and ability to produce seeds did not differ

between the crop progenitors and wild species [hypothesis (iv)], the

crop progenitors were more resilient and seed yields were less

impacted by defoliation. Hypotheses (i) and (ii) were linked to seed

mass, whilst hypotheses (iii) and (iv) were more weakly associated.

For the crop progenitors, this combination of traits related to

competition and disturbance confers the ability to effectively

exploit sites with high levels of fertility and disturbance, potentially

allowing them to thrive around early pre-agricultural settlements

while other collected species did not. The greater height and

potential yield of these species would also have offered a highly
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apparent and more abundant food resource for gatherers. These

same traits would have pre-adapted crop progenitors to the

cultivated and managed field environment. Based on this evidence,

we argue that the interaction of plant functional traits and

ecological processes had the potential to exert a strong influence

on the narrowing of the food resource base during the transition to

agriculture in the Fertile Crescent. It would be interesting to make

similar comparisons of the competitive ability of the progenitors of

pulse crops and small-seeded grass crops in anthropogenic

conditions, compared with other collected species in their areas

of origin,
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