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Abstract. With the advances of new proximal soil sensing technologies, soil properties can be inferred by a
variety of sensors, each having its distinct level of accuracy. This measurement error affects subsequent mod-
elling and therefore must be integrated when calibrating a spatial prediction model. This paper introduces a deep
learning model for contextual digital soil mapping (DSM) using uncertain measurements of the soil property.
The deep learning model, called the convolutional neural network (CNN), has the advantage that it uses as input
a local representation of environmental covariates to leverage the spatial information contained in the vicinity of
a location. Spatial non-linear relationships between measured soil properties and neighbouring covariate pixel
values are found by optimizing an objective function, which can be weighted with respect to a measurement error
of soil observations. In addition, a single model can be trained to predict a soil property at different soil depths.
This method is tested in mapping top- and subsoil organic carbon using laboratory-analysed and spectroscopi-
cally inferred measurements. Results show that the CNN significantly increased prediction accuracy as indicated
by the coefficient of determination and concordance correlation coefficient, when compared to a conventional
DSM technique. Deeper soil layer prediction error decreased, while preserving the interrelation between soil
property and depths. The tests conducted suggest that the CNN benefits from using local contextual informa-
tion up to 260 to 360 m. We conclude that the CNN is a flexible, effective and promising model to predict soil
properties at multiple depths while accounting for contextual covariate information and measurement error.

1 Introduction

Digital soil mapping (DSM) techniques are commonly used
to predict a soil property at unsampled locations using mea-
surements at a finite number of spatial locations. Prediction
is routinely done by exploiting the relationship between a
soil property and one or several environmental covariates,
which are assumed to represent soil forming factors. Exam-
ples of covariates are the digital elevation model (DEM) or its
derivatives (Moore et al., 1993). Demattê et al. (2018) used
multi-temporal and multispectral remote sensing images to
map soil spectral reflectance while Nussbaum et al. (2018)
investigated the use of a large set of covariates for mapping
eight soil properties at four soil depths. The choice of covari-
ates is governed either by their availability, preselected using
a priori pedological expertise, or based on the pedological

concepts whereby covariates must portray the factors of soil
formation such as climate, organisms, relief, parent material
and time (McBratney et al., 2018). In most cases, the relation
between soil property and the chosen covariates is modelled
by a regression model which relates either linearly (Wadoux
et al., 2018) or non-linearly (Grimm et al., 2008) sampled
(point) soil properties and a vector of covariate values ex-
tracted at the same point location.

Several authors have shown that this is not satisfactory
(e.g. Moran and Bui, 2002). Pedogenesis and thus soil prop-
erty spatial variation are governed by complex relation-
ships with soil forming factors and landscape characteris-
tics, materialized at a local, regional or supra-regional scale
(Behrens et al., 2014). Point information of the covariates
can only describe approximately the soil property because
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a large part of the spatial contextual information is missing.
For example, soils on a gentle slope might have a great accu-
mulation of soil organic matter, accumulation which varies
according to the surrounding slope gradients. Several studies
have shown that incorporating covariate contextual informa-
tion improves prediction accuracy (Behrens et al., 2014; Gri-
nand et al., 2008; Gallant and Dowling, 2003). Smith et al.
(2006) tested different neighbouring size in computing ter-
rain attributes for use in a soil survey. The authors showed
that the amount of contextual information supplied to the
model significantly impacts the output of the survey. In spite
of these conclusions, contextual information surrounding a
sampling location is usually disregarded in DSM studies.

Several attempts have been made to incorporate the spa-
tial domain of the covariates into the analysis. Behrens et al.
(2010a) developed ConMAP, which computes the elevation
difference from the centre pixel to each pixel in a neighbour-
hood, and ConStat (Behrens et al., 2014), which derives sta-
tistical measures of elevation within a growing radius of the
centre pixel. This generates a very large number of hyper-
covariates, abstract representation of the context, which can
be used as predictors in subsequent regression models. An-
other approach uses spatial transformations such as wavelet
transform to represent the covariate as a function of various
local spatial supports (e.g. Lark and Webster, 2001). Alterna-
tively, one may account for contextual information by simply
using covariates aggregated at larger support than their orig-
inal resolution (Miller et al., 2015). This technique, referred
to as the multi-scale approach, provides a surprisingly large
increase in prediction accuracy. It is now acknowledged that
using covariates with coarse spatial resolution can provide
satisfactory prediction (Samuel-Rosa et al., 2015).

However, while these approaches enable us to contextu-
alize the spatial information supplied to the regression, they
rely either on heavy covariate preprocessing (Behrens et al.,
2014), subjective decisions based on the resolution to which
covariates must be treated as input to the model (Miller et al.,
2015) or the modeller’s choice regarding neighbouring size
(Behrens et al., 2010b). In light of these drawbacks, we pro-
pose the use of the convolutional neural network (CNN)
as an alternative tool for mapping while explicitly account-
ing for local contextual information contained in covariates.
Recently, Padarian et al. (2019) have shown that it is pos-
sible to use the CNN for soil mapping while accounting
for contextual covariate information, whereas Behrens et al.
(2018) compared the deep neural network to the random for-
est model for mapping and found that the former model pro-
vides more accurate predictions. In Behrens et al. (2018),
the covariates must still be preprocessed. The authors used a
deep learning architecture which uses a vector as input. The
CNN proposed here has the advantage that it relies on the lo-
cal representation of covariates so as to leverage the spatial
information contained in the vicinity of a sampled point. The
CNN uses an image as input, does not require any prepro-
cessing of the input covariates and performs a multi-scaling

analysis directly on the image (Padarian et al., 2019). As for
other regression methods, the CNN is trained using measured
soil properties at the point location.

Measured soil properties are never error-free. Soil mea-
surements can be best performed under controlled conditions
in the laboratory. In the latter case, the error of those mea-
surements is small and their impact on prediction is safely
ignored. With the advent of new technology, soil measure-
ments are often inferred using sensors such as spectrometers.
The result is the creation of databases of soil properties mea-
sured or inferred using several sensors which predicted soil
properties with different accuracy levels. Recently, Ramirez-
Lopez et al. (2019) and Somarathna et al. (2018) have shown
that measurement error may have a significant impact in sub-
sequent spatial analysis. For example, Ramirez-Lopez et al.
(2019) estimated a measurement error of about 50 % for top-
and subsoil Ca++ inferred using near-infrared (NIR) spec-
troscopy. In most cases, measurement error can be quanti-
fied and must therefore be accounted for when calibrating a
spatial model using uncertain measurements. While Padarian
et al. (2019) demonstrated the use of the CNN for mapping
at a country scale, we further advanced this concept for map-
ping soil properties at a landscape scale, which considers the
measurement error of soil measurements.

The objectives of this study are to (i) develop the frame-
work of the convolutional neural network for contextual spa-
tial modelling at a regional scale, (ii) develop a methodol-
ogy for multi-source data integration by accounting for the
soil property measurement error in the CNN model calibra-
tion, and (iii) demonstrate the usefulness of the CNN to map
top- and subsoil organic carbon in a potential application sce-
nario.

2 Methodology

2.1 Artificial neural network

We first describe the principle of an artificial neural network
(ANN), which is the basis of the CNN. A measured soil prop-
erty of interest zsi at location si(i = 1, . . .,n;si ∈A) in the
study area A is modelled by a regression model:

zsi = f (Xsi ;θ )+ εsi , (1)

where X is either a c× (w×h) 2-D matrix or a 3-D input
matrix of size c×w×h which contains c environmental co-
variates of size w×h pixels centred at spatial location si .
The vector θ represents model parameters used by the neural
network regression model f to map non-linearly X→ z and
leave room for a zero mean random error ε. Note that, unlike
geostatistics, measurements of the soil property are assumed
to be spatially independent and identically distributed.

An ANN model is formed of several layers, or “computa-
tion steps”. The input layer provides the raw information to
the network (see h0 in Fig. 1b), which is connected to at least
one hidden layer (hk in Fig. 1b), which in turn is connected
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to an output layer (hL in Fig. 1b), which outputs the predic-
tions of interest zsi . Each layer contains units called nodes
for the input layer (as no computation occurs at their level)
and neurons for the hidden and output layers (Fig. 1a). The
behaviour of the neurons depends on the activity of the pre-
vious layer neurons and the connection weights between the
previous and next layer neurons (LeCun et al., 2015). The
parameters of the models defined by Eq. (1) are thus the con-
nection weights to the neuron j , wj = (wj,1, . . .,wj,l), and a
bias component per neuron bj . They are associated with an
activation function φ which gives output zj by

zj = φ(〈wj ,x〉+ bj ), (2)

where 〈·, ·〉 is the dot product and x is a vector of inputs from
previous layer neuron output. A graphical representation is
provided in Fig. 1a. In this study we use the rectified linear
unit (ReLU) activation function φ(x)=max(0,x) while the
output layer for regression uses the linear activation func-
tion φ′(x)= x. Equation (2) shows that the activation func-
tion determines the output of a neuron by applying a linear
or non-linear transform on the input.

Our neural network will contain more than one single hid-
den layer. For k = 1, . . .,L hidden layers h and an input layer
h0 where no processing occurs (Fig. 1b):

h0(x)= x, (3)

hk = ReLU(Wkhk−1(x)), for k = 1, . . .,L− 1, (4)

hL =WLhL−1(x). (5)

For each layer, W is a matrix of size J k×J k−1, i.e. the num-
ber of neurons in the current layer by the number of neu-
rons in the previous layer. Therefore the model parameters
θ = (W1,b1, . . .,WL,bL).

2.2 Convolutional neural network

In this paper we use the vicinity information of the mea-
sured soil property by including the covariate pixel values
surrounding a sampling location. In this case, an ANN is not
well adapted because it uses vectors as input data, while (cor-
related) spatial information is better represented as images.
In the convolutional neural network, at least one layer is a
convolution (Goodfellow et al., 2016), i.e. an element-wise
product and sum between two matrices. Let there be an in-
put image matrix X, e.g. a digital elevation model cropped
for size w×h pixels surrounding a measured soil property at
location si . We apply a 2-D convolution using the filter F of
size m pixels×m′ pixels to the input image X such that

(F∗X)(w,h) =
∑
m,m′

F(m,m′)X(w+m′,h+m), (6)

which can be rewritten with little modification to include the
case where we have c = 3 environmental covariates (Good-
fellow et al., 2016, Eq. 9.4). Equation (6) shows that each

element in (F∗X) is calculated as the sum of the products
of one element in X and one element in F . In other words,
the elements of (F∗X) are the sum of the element-wise mul-
tiplication of F by X. The size of the output image from a
convolution is thus smaller than that of its input image (see
Fig. 1c).

Filters detect features (e.g. edges) related in the vicinity
of a sampling location and leverage the spatial structure of
the covariates. In practice, the original covariate image goes
through several filters, each exploiting an abstract represen-
tation of the image features. Similar to the ANN, the CNN
has a number of hidden layers, called convolutional layers.
The convolutions are combined with an activation function
at the end of each neuron, obtained by

zj (X)= φ(FL∗hL−1
+ bj ). (7)

In addition to the convolutional layers, another set of oper-
ations consists of pooling layers. Pooling reduce the spatial
size of the images by down-sampling along the spatial di-
mension. Several types of pooling operations exist, such as
minimum, maximum or average pooling. The most common
is the max-pooling operation, which consists in selecting the
maximum value in the convoluted image using a given filter
size. Each convolution accepts one input image of a given
size and number of channels, i.e. covariates, and returns an-
other image of possibly a different size and number of chan-
nels. Usually, one wants to reduce the size of each image at
each convolution while augmenting the number of channels.
Then, the last convolution returns an image of size 1× 1 and
with a number of channels. This operation is named “flat-
tening”, as it converts the matrices into a vector which can
pass to a fully connected layer. A fully connected layer is an
ANN layer, as noted in Fig. 1b. The large number of connec-
tions between neurons generates a high number of param-
eters which can provoke overfitting. This can be restrained
by introducing dropout layers which randomly disconnect a
number of neurons. Usually, the dropout rate is no greater
than 0.5.

2.3 Parameter estimation

The CNN model is trained on dataset D =
{(Xsi ,zsi ). . .(Xsn ,zsn )}, that is, a 4-D matrix of size
n× c×w×h. The dataset D is used to derive an optimized
value of the parameters θ̂ for θ by minimizing the mean
squared error (MSE) as the objective function, given by

MSE=
1
n

n∑
i=1

δi(zsi − f̂ (Xsi ; θ̂ ))2, (8)

where δ are the measurement error weights, which are all 1
if the soil property is measured without error. In this study,
we used the Adam optimizer (Kingma and Ba, 2015) to min-
imize Eq. (8). The Adam optimizer uses the derivative of the
objective function with respect to each model parameter to
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Figure 1. Representation of the CNN architecture developed in this study for (a) a neuron, (b) the ANN architecture or fully connected
layer, and (c) the convolutional and pooling layers. Note that

∑
= 〈wj ,x〉. The size of the output from a convolutional or pooling layer (c)

is smaller than that of its input. Panel (c) is the shared structure to extract common features between the two depths which is then separated
into two branches (one per soil depth) in (b).

update its value. This process is called backpropagation (Le-
Cun et al., 1989). The optimization process runs for a number
of epochs. An epoch describes the number of times the net-
work sees the entire input dataset. During each epoch, the
entire dataset is shown to the network in small subsets shuf-
fled at random, called “minibatches”. The number of epochs
must be chosen, as well as the batch size. In addition, one
must choose the learning rate of the optimizer, i.e. how fast
the optimizer moves the connection weights in the opposite
direction of the gradient after each update. A too-small learn-
ing rate increases the computation time to find the optimum
of the objective function because the steps are small. If the
learning rate is too large, training may not converge because
the connection weights oscillate. The learning rate can be
tuned as other model architecture hyperparameters. This is
explained in the next sections.

2.4 Multi-source data integration

The values of the soil property zsi used to train the CNN
model might be uncertain. For example, they are derived us-
ing an infrared spectroscopy model. This uncertainty must
be accounted for when calibrating the CNN model. A solu-
tion is to assign a measurement error weight to each value of
the soil property, depending of its relative error compared to
a “true” measurement of the soil property at the same loca-
tion. We refer to the “true” measurement of a soil property as
a measurement made using a standard laboratory technique
which has a small error. Meanwhile the spectroscopically in-
ferred property is the value predicted using measurements
from an infrared spectrometer. The prediction is based on

a calibration model that relates observations of spectra and
their true measurement values. For a vector of a soil property
inferred using a spectroscopic model zIR, one can assign a
measurement error weight by comparing the variance of the
predicted soil property by the infrared model to the variance
of the measurements used for the infrared model calibration.
The measurement error weight δ is given by

δ = 1−
var(zIR)
var(z)

, (9)

which can then be applied to weight the importance of the
values of the soil property inferred by the infrared model, at
locations where the true soil property is unknown. Note that
while all measurements have a measurement error weight,
the same value of measurement error is used for a given spec-
troscopic model (NIR or MIR) and soil depth. In this work,
a true value of a soil property is measured in the laboratory,
with assigned measurement error weight of 1. The measure-
ment error weights for each observation are used in model
calibration, by updating the objective function to minimize
in Eq. (8).

2.5 Quality of predictions

Once model parameter vector θ values have been estimated,
they are used to predict at a new, unobserved location s0 by

ẑs0 = f̂ (Xs0; θ̂ ), (10)

which is used to evaluate the prediction accuracy on an inde-
pendent test set. Let there beN−n independent test locations
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si, i = (N − n), . . .,N ) where N is the total number of mea-
surements and n is the set of samples used for calibration,
generally 80 % of the measured values. We quantify the qual-
ity of predictions by the root mean squared error (RMSE) and
the R2. The bias is assessed by the mean error (ME),

ME=

N−n∑
i=1

(zsi − ẑsi )

N − n
, (11)

and the agreement of the predictions to the measurements
with respect to the 1 : 1 line is assessed by the concordance
correlation coefficient (ρ) (Lawrence and Lin, 1989):

ρ =
2ρ′σzσẑ

σ 2
z + σ

2
ẑ
+ (µz−µẑ)2

, (12)

where µ and σ 2 are mean and variance for either the vector
of true measurements z or the vector of predicted values ẑ.
The value ρ′ represents the correlation between µz and µẑ.

3 Case study

3.1 Study area and data

We tested the methodology in a 220 km2 area located in the
lower Hunter valley area, Australia. Elevation ranges from 27
to 322 m above sea level with a pronounced slope ascending
in the south-west direction. Measurements of the total soil
carbon (TC) expressed in g 100 g−1 are available for topsoil
(0–10 cm) and subsoil (40–50 cm). There was inorganic car-
bon in the measurements of the TC. Especially in the sec-
ond depth, some of the large TC values are due to inorganic
carbon. The lower Hunter area measurements were surveyed
along several years, which yielded the use of three TC mea-
surement methods, referred to as CNS, NIR and MIR here-
after.

– Laboratory analysis (CNS). Soil samples were anal-
ysed for TC using the dry combustion method, i.e.
by determining the loss on ignition at 400 ◦C under
controlled conditions. This was done by an Elementar
Vario Max CNS analyser (Elementar Analysensysteme
GmbH, Hanau, Germany). The standard deviation of the
TC values inferred by the latter device is small (less than
0.004 g 100 g−1).

– Inferred using near-infrared (NIR) spectroscopy. Soil
samples were scanned in the NIR range using an
AgriSpec portable spectrophotometer with a contact
probe attachment (Analytical Spectral Devices, Boul-
der, Colorado). TC values were inferred using a spec-
troscopic model calibrated by the cubist regression tree
method, using the spectral library of 316 soil samples
from Geeves et al. (1995).

– Inferred using mid-infrared (MIR) spectroscopy. Soil
samples were scanned in the MIR region using a Bruker
Tensor 37 Fourier transform spectrometer. TC values
were inferred using the MIR calibration model defined
by Minasny et al. (2008).

A large number of locations contain more than one single
measurement of TC. This is particularly visible in the west-
ern part of the area, where many samples have been anal-
ysed using the two or three methods, and with a replication
(Fig. 2). In total, 2388 measurements of TC are available for
the first depth, among which 645 are from the CNS meth-
ods, 923 are from the NIR method and 820 are from the MIR
method. In the second depth, there are 2058 measurements
of the TC: 187 using the CNS method, 999 using the NIR
method and 872 using the MIR method. They are shown in
Fig. 2.

In addition to the TC measurements, three covariates from
the study of Somarathna et al. (2018) at 25m× 25m resolu-
tion were used:

– A digital elevation model from the SRTM (Shuttle
Radar Topography Mission) (Fig. 3a); see Farr et al.
(2007).

– A map of the Landsat 5 ETM band 5 (Fig. 3b), which
corresponds to the shortwave infrared (SWIR) band for
the wavelength 1.55–1.75 µm.

– A map of the normalized difference vegetation index
(NDVI) (Fig. 3c), derived from the NIR (band 4) and
red (band 3) of the Landsat 5 ETM sensor.

3.2 Practical implementation

3.2.1 Model definition

The dataset of TC measurements was randomly split be-
tween test (20 %) and calibration (80 %) sets. Both topsoil
and subsoil measurements were jointly selected for either
test or calibration. All soil measurements were normalized
between 0 and 1 using the minimum and maximum val-
ues of the calibration set. In addition, all covariates were
centred on 0 and scaled to a standard deviation of 1 (see
Fig. 3). Next, two 4-D matrices of dimension n×c×w×h and
(N−n)×c×w×h were created (test and calibration), where
n is the number of calibration TC measurements,N−n is the
number of test measurements, c is the number of covariates
and w = h is the vicinity size (the square matrix) surround-
ing the TC measurements. We have n= 3557 for calibration
and (N − n)= 889 for test, as well as c = 3 and w = h of
different sizes. When a square of size w×h is created in the
vicinity of a soil property at the border of the area, several
missing values are reported. Since the CNN can not handle
this type of input, we assigned to the missing values the num-
ber−1. This practical problem is discussed more extensively
in the Discussion section.
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Figure 2. Spatial distribution of the observations for each measurement type (a) for the 0–10 cm topsoil and (b) number of measurements
recorded per sampling location for the 0–10 cm topsoil. The subsoil (40–50 cm) map is not shown but closely resembles the topsoil in both
number of sampling locations and number of measurements per location.

Figure 3. Standardized covariates used in model calibration (a) DEM, (b) Landsat 5 ETM band 5 and (c) NDVI.

A sequential multitask (top- and subsoil) CNN model was
built. The CNN is composed of a common architecture for
the two soil depths (shared layers) followed by two separate
sets of fully connected layers, one for each soil depth. An il-
lustration of the model is provided in Fig. 1b–c. The model
specifications are reported in Table 1. Note that for the con-
volutional layers, zero padding is always applied to the orig-
inal input image before the dot product with the filters. This
operation keeps the original size of the input image and pre-

serves its information at an early stage of the model. We use
the max-pooling operator; i.e. we select the maximum value
in the convoluted image using a given filter size, in our case
a filter of size 2 pixels× 2 pixels.

In order to compare the CNN prediction to a reference
method, we also calibrated two random forest (RF) mod-
els, one per soil depth. Random forest is a non-linear ma-
chine learning method which has been widely used for soil
mapping. For more information, the reader is redirected to
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Table 1. Layers used in the sequential model built for topsoil and
subsoil TC prediction.

Order Layer Shared Filter Number Activation
type size of filters/

neurons

1 Convolutional yes 3× 3 64 ReLU
2 Max-pooling yes 2× 2 – –
3 Convolutional yes 2× 2 32 ReLU
4 Dropout (0.3) yes – – –
5 Flatten yes – – –
6 Fully connected no – 40 ReLU
7 Dropout (0.3) no – – –
8 Fully connected no – 50 ReLU
9 Dropout (0.2) no – – –
10 Fully connected no – 1 Linear

Hengl et al. (2018). For a fair comparison between the CNN
and RF models, we used the same calibration and test sets,
with normalized TC measurements and standardized covari-
ates as input. A RF model is calibrated for each soil depth,
using depth-specific fine-tuned parameter values.

3.2.2 Parameter estimation

Once the sequential CNN model was specified, the param-
eters were estimated by minimizing the MSE as the objec-
tive function (Eq. 8), for which we used the Adam opti-
mizer. Overfitting was carefully checked by (i) modifying
the dropout rate in the model and (ii) ensuring that the model
does not provide a considerably larger objective function on
an independent dataset. Since the test set was used solely to
validate the predictions, it could not be used for this purpose.
We therefore randomly split the calibration set into two sets,
referred to as the calibration and validation sets hereafter.
The calibration set (90 %, 3201 measurements) was used to
calibrate the model, and the validation set (10 %, 356 mea-
surements) was used to tune the parameters and prevent over-
fitting.

The model was trained using different window sizes of
the input images. We compared a model with a window size
(w×h) of 3, 5, 9, 15, 21, 29 and 35 covariate pixels for the
input. The comparisons were made based on the average be-
tween the two depths’ RMSE of the predictions, made on
the validation set. Optimization of the parameter of a single
model (Table 1) using three covariates, an input window size
of 21× 21 and 3557 TC measurements took approximately
1 h in parallel on a standard four-core laptop. All processing
was done in R 3.5.1 (R Core Team, 2018), using the keras
package (Allaire and Chollet, 2018) and tensorflow (Abadi
et al., 2016) backend.

Once the input window size was selected, the hyperpa-
rameters of the model architecture were optimized using
Bayesian optimization (Snoek et al., 2012). Note that this
is different from the optimization of the objective function

Table 2. Weights given to the measurements.

CNS NIR MIR

Topsoil 1 0.43 0.62
Subsoil 1 0.52 0.61

using the Adam optimizer. In Bayesian optimization, the ob-
jective function is treated as a random function character-
ized by a prior probability distribution. Each function evalu-
ation is treated as data, which enables updating the objective
function posterior distribution. The latter is used to determine
where to evaluate next. The process is repeated until reaching
a stopping criteria. Bayesian optimization enables us to find
optimized values of machine learning hyperparameters with
commonly less iteration than when using a random search. In
this work, we optimized the filter number, the neuron num-
ber, the batch size and the learning rate using 50 iterations.

4 Results

Based on the procedure detailed in Sect. 2.4, measurements
of TC inferred from NIR spectra were assigned a measure-
ment error weight of 0.43 and 0.52 for topsoil and subsoil,
respectively. The MIR-inferred TC measurements had a mea-
surement error weight of 0.62 for topsoil and 0.61 for subsoil.
This suggests that the MIR range of the spectra is more accu-
rate in predicting TC. Recall that all CNS-inferred measure-
ments had a measurement error weight of 1, as explained in
the previous section.

Figure 4 shows the RMSE of topsoil and subsoil TC for
different vicinity size of the input images. Contextual in-
formation is accounted for by representing the input data
as images of a square format surrounding a soil measure-
ment. Each pixel has a resolution of 25m× 25m so that a
window of size 3× 3 includes contextual information up to
3/2× 25= 37.5 m. For both soil depths, Fig. 4 shows a sim-
ilar pattern with increasing size of the window. The RMSE
becomes significantly smaller when using a larger window of
size 5× 5. The lowest averaged (topsoil and subsoil) RMSE
is found for a window size of 21×21 (radius of about 262 m).
It seems that model calibration does not benefit from using a
larger window size as the RMSE increases for a window size
of 29×29 and 35×35. From now on, all the results presented
come from using an input window size of 21 pixels× 21 pix-
els.

The scatterplots of the measured against predicted TC val-
ues are presented in Fig. 5 for both the CNN and RF mod-
els. For the CNN model, the agreement between measured
and predicted TC was found to be satisfactory for both soil
depths. Topsoil predicted TC tends to be underestimated for
large measured values of TC. This is also the case for subsoil
where large measured values of TC (e.g. 7.5 and 8 g 100 g−1)
have smaller predicted values at around 4 g 100 g−1. There
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Figure 4. Effect of the vicinity size of input images. The RMSE (in g 100 g−1) corresponds to the error between the predictions and measured
values in the test set.

is a high density of predicted values close to the 1 : 1 line.
In contrast to the CNN model, the predictions using the RF
model are more dispersed, with several over-predicted values
for the low range of the measured TC values. Visual inspec-
tion of Fig. 5 suggests that the CNN model predicts more
accurately than the RF model.

This is confirmed by the quantitative assessments of the
predictions shown in Table 3. Correlation between predicted
and measured TC, as measured by the R2, is stronger for the
CNN (R2

= 0.55 for topsoil and R2
= 0.46 for subsoil) than

for the RF model (R2
= 0.35 for topsoil and R2

= 0.21 for
subsoil). The ME (in g 100 g−1) shows that predictions for
both models are relatively unbiased (ME close to zero in all
cases). The CNN model provides a significantly smaller ac-
curacy measure (topsoil RMSE of 0.93 against 1.08 for the
RF model) while providing as well a larger degree of predic-
tion falling on the 45◦ line through the origin (about 15 %
higher for both topsoil and subsoil), as already noticed visu-
ally in Fig. 5.

The maps produced using the CNN are shown in Fig. 6
for topsoil (left) and subsoil (right) soil organic carbon. Both
maps have a relatively smooth pattern. The topsoil map of
TC shows the highest concentrations in the south-east border
of the area (> 8 g 100 g−1), with a relatively large concentra-
tion in the centre of the area (5 g 100 g−1). There seems to
be more TC in areas where the NDVI has large values, but
this pattern is not obvious. The subsoil maps of TC have a
very different pattern than the topsoil map. There seems to
be a uniform distribution of TC around 1 g 100 g−1 for most
of the area. High concentrations of TC (> 5 g 100 g−1) are
seen in a patch in the centre of the catchment and in a large
area in the south.

Table 3. Evaluation of prediction accuracy on the independent
test set (R2 – coefficient of determination; ME – mean error, in
g 100 g−1; RMSE – root mean square error, in g 100 g−1; ρ – Lin’s
concordance coefficient).

R2 ME RMSE ρ

Convolutional neural network

Topsoil 0.55 0.04 0.93 0.68
Subsoil 0.46 −0.02 0.43 0.59

Random forest

Topsoil 0.35 −0.01 1.08 0.56
Subsoil 0.21 −0.01 0.54 0.40

5 Discussion

The proposed modelling approach explicitly accounts for the
TC measurement error in the model calibration. The mea-
surement error of NIR-inferred TC was larger than that of
the MIR-inferred TC. This is an expected result reported in
many previous studies (e.g. Rossel et al., 2006). The rea-
son is that fundamental molecular vibration of bands as-
sociated with soil organic constituents occurs in the MIR
region, while overtones and combinations appear in the
NIR. Accounting for measurement error in spatial mod-
elling of soil property using spectroscopically inferred soil
data received recently much attention. Using the same case
study, Somarathna et al. (2018) showed that acknowledging
for measurement error almost halved prediction uncertainty.
Similarly, Ramirez-Lopez et al. (2019) emphasized the im-
portance of estimating and accounting for measurement error
of spectroscopically inferred soil properties, as those can be
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Figure 5. Scatterplot of the measured against predicted topsoil and subsoil TC for the CNN and RF models, along with the 1 : 1 line. Values
are expressed in g 100 g−1.

larger than the sampling error. To the best of our knowledge,
our study is one of the first to account for measurement error
for mapping using machine learning. We note the contribu-
tion of Hengl et al. (2018), who used the measurement error
to change the probability of a measurement to be selected in
the bootstrap sample to calibrate a RF model.

The window size of the input images had a significant im-
pact on the model’s accuracy measure, as tested on an inde-
pendent test set. This is because the size of the input image
is closely related to the amount of contextual information we
supply to our model. The CNN integrates spatial context by
using the pixels of covariates surrounding a sampling loca-
tion. In our regional-scale case study of TC mapping, a win-
dow size of 21 pixels× 21 pixels and 29 pixels× 29 pixels
provided the lowest prediction error, but larger window size
worsened the prediction accuracy. In a similar context, this
confirms the results found by Behrens et al. (2010b). The au-
thors showed that prediction accuracy of topsoil silt content
increased remarkably by using larger neighbourhood size.
However, our results also clearly indicated that including
larger-scale contextual information (larger input image win-

dow size) is not always better. This is similar to the results of
Smith et al. (2006), who noted that the windows size greatly
varies between landscapes and concluded that the appropri-
ate size is case-dependent.

Using a window size of 21 pixels× 21 pixels and
29 pixels× 29 pixels is equivalent to including spatial infor-
mation in a radius from the sampling location of about 262 to
362 m. Thus, it can be assumed that the window size relates
to the range of spatial autocorrelation of TC. Several authors
provided equivalent values of the spatial correlation range.
Kumhálová et al. (2011) reported values of the organic matter
spatial correlation range between 240 and 270 m using data
of an experimental field in the Czech Republic. Similarly,
Jian-Bing et al. (2006) found a spatial correlation range of
309 m for a small watershed in northeast China. For our case
study, we verified this assumption by fitting a spherical vari-
ogram to the experimental variogram of TC. The fitted value
of the range was 329 m for the topsoil and 275 m for the sub-
soil. This is close to the actual radius of the window size that
we found optimal. It is however difficult to draw conclusions
based on the results. The actual correlation between the auto-
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Figure 6. Maps of the prediction of organic carbon for (a) topsoil (0–10 cm) and (b) subsoil (40–50 cm). The values are expressed in
g 100 g−1.

correlation range of a soil property and window size deserves
further investigation so as to generate rules.

Our approach predicts TC for both topsoil and subsoil us-
ing a single model. The predictions benefit from using a com-
mon architecture for the two soil depths. When compared
to predicting each depth separately using the random forest
model, our method reduced the mean squared error by 15 %
and 25 % for topsoil and subsoil, respectively. Other stud-
ies reported similar results to those produced by the random
forest model. For example Kempen et al. (2011) reported an
R2 of 0.23 for the 30–60 cm depth range. Brus et al. (2016)
also noticed a significant increase in the error for predicting
organic carbon at deeper soil layers. Our results confirm the
recent study of Padarian et al. (2019), who showed a sub-
stantial decrease in the error associated with the prediction
of the deeper soil layer using the CNN. The authors showed
that the CNN generates a representation of the vertical dis-
tribution of the soil profile, which reproduced closely the ob-
served vertical distribution. Following Angelini et al. (2017)
we also tested this by assessing the interrelation between top-
soil and subsoil for the measured TC, for the TC predicted
by the CNN or for the TC predicted using the RF model (Ta-
ble 4). The CNN maintains the correlation between depths
much better than the RF model, as shown by the value of the
Pearson r correlation coefficient. This is an important finding

which needs to be confirmed in further studies. Soil proper-
ties are often predicted depth by depth, which can result in
predicting physically unrealistic soil profiles. In this study
we showed that the deterministic behaviour of a depth func-
tion can be partly reproduced by the CNN.

We used three covariates to calibrate the CNN model. This
might be a surprisingly small number compared to other
studies on mapping with machine learning techniques (e.g.
Nussbaum et al., 2018). However, this is a similar number
compared to Padarian et al. (2019), who used four covariates
for mapping organic carbon at a large scale. Further research
will test the effect of the number of covariates on the CNN
model calibration. We foresee a large increase in the com-
putational load when using more covariates. This is because,
in most studies on deep learning, only three colour channels
are used. In this study we showed that only a small number
of covariates was sufficient to provide satisfactory prediction
accuracy.

Adapting the CNN for soil mapping poses some practical
problems. We mention two of them along with our solution
for future research.

– Input images containing missing values are disregarded
by the CNN during calibration and prediction. This
means that (i) sampling locations close to the border
of the area will be discarded from the analysis because
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Table 4. Pearson’s r correlation coefficient between the topsoil and
subsoil TC for the original measurements of the test set, the pre-
dicted TC by the CNN and the predicted TC by the RF model.

Original CNN RF

Pearson’s r 0.20 0.27 0.39

their corresponding covariate images contain missing
values and (ii) prediction will suffer from an edge ef-
fect; i.e. pixels at the edge of the area will not be pre-
dicted. This is a common problem when using a moving
window operation in GIS. In our study, we padded the
rows and columns of the covariates with −1, so as to
avoid providing missing values to the model. The CNN
is capable of predicting TC while learning that values
containing−1 are missing values so that the subsequent
prediction does not acknowledge an edge effect. We
note that padding a value of −1 is an arbitrary choice
which might not be right in another case study.

– A CNN model takes more time to train and predict than
a RF one. In our case study, it took 5 s to fit the RF
model and about 30 s to predict about 600 000 centre of
grid cells, using a standard four-core laptop. The CNN
took 15 min to fit and 30 s to predict but requires prepar-
ing a 4-D matrix of size n× c×w×h for the training
(n is the number of sampling locations) and for pre-
dicting (n is the number of prediction locations). This
is tractable when the study area is small or for pre-
dicting on a coarse grid but becomes quickly computa-
tionally cumbersome for large-scale or high-resolution
mapping. This is a new problem arising from using mul-
tiple covariates when image recognition problems com-
monly use three channels (colour channels RGB). A
straightforward solution is to increase the number of
cores available. Most available software implementa-
tions of deep learning models already support the use
of parallel computing solutions.

Finally, we note that, in spite of its predictive power, the
CNN has the major disadvantage of being a “black box” ma-
chine learning model, where results provide little knowledge,
if any, on soil processes. In fact, many authors have noted
that machine learning models are difficult to interpret. Re-
cent publications (e.g. Angelini et al., 2017) have take a step
toward “conscious” digital soil mapping where cause–effect
relationships are adjusted with pedological knowledge. Solu-
tions to interpret the CNN or more common ANN models ex-
ist but they have been unexplored in digital soil mapping, for
example automated sensitivity analysis (Tickle et al., 1998)
which consists in keeping track of the error computed during
back propagation to measure the degree to which each co-
variate contributes to the prediction error. The larger the con-
tribution, the larger the influence of the covariate. Another

solution is to extract set of rules (Andrews et al., 1995) for
each hidden layer based on the connection weight vector and
associated bias of each neuron. Taking these methods into
account would certainly make a valuable extension to future
CNN studies.

6 Conclusions

We have shown how to train a deep learning model to pre-
dict total organic carbon at two soil depths using uncertain
measurement of the soil property. The results and discussion
bring us to the following conclusions.

– The uncertainty of the organic carbon values inferred
by NIR spectroscopy was larger than those inferred by
MIR. The uncertainty of the NIR-inferred soil carbon
measurement was large. Ignoring the latter uncertainty
during model calibration results in a substantial part
of the uncertainty being ignored, which can potentially
lead to biased parameter estimates.

– A known measurement error can easily be accounted
for when calibrating a CNN model, by weighting the
objective function to be optimized.

– The CNN can be used for soil mapping using contextual
covariate information. However the amount of contex-
tual information we supply to the model, as represented
by the window size of the input covariates, must be cho-
sen with attention. In our case study a radius of 262 to
360 m provided the best results. This is closely related
to the range of the soil organic carbon spatial autocor-
relation. Future studies may show whether this is a con-
sistent finding or case-dependent.

– In our case study, the CNN outperforms the RF model
as assessed by several prediction accuracy measures.

– A single CNN model can be used to predict multiple
outputs. In our case study, we predicted simultaneously
at two soil depths. Deeper depth was much better pre-
dicted by the CNN than the RF model. In addition, the
reported predictions preserve the interrelation between
depths. The CNN is more suited for predicting corre-
lated outputs. This also needs to be further investigated
so as to generate rules.

– More research is needed to (i) identify solutions for fast
CNN soil data (pre-)processing for large-scale or high-
resolution soil mapping, (ii) develop methods to inter-
pret CNN models and extract pedological knowledge
from the neural network, and (iii) derive uncertainty
bounds of the predictions made by the CNN.
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