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Abstract 

The recent emphasis in combinatorial library design has shifted from the 

design of very large diverse libraries to the design of smaller more focussed libraries. 

Typically the aim is to incorporate as much knowledge into the design as possible. 

This knowledge may relate to the target protein itself or may be derived from known 

active and inactive compounds. Other factors should also be taken into account, such 

as the cost of the library and the physicochemical properties of the compounds that 

are contained within the library. Thus library design is a multiobjective optimisation 

problem. Most approaches to optimising multiple objectives are based on aggregation 

methods whereby the objectives are assigned relative weights and are combined into a 

single fitness function. A more recent approach involves the use of a Multiobjective 

Genetic Algorithm in which the individual objectives are handled independently 

without the need to assign weights. The result is a family of solutions each of which 

represents a different compromise in the objectives. Thus, the library designer is able 

to make an informed choice on an appropriate compromise solution. 

mailto:v.gillet@sheffield.ac.uk
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1. Introduction 

The last decade has seen a shift from the traditional approach to chemical 

synthesis, based on one compound at a time, to the use of robotics allowing the 

synthesis of large numbers of compounds in parallel, in what are known as 

combinatorial libraries. The related technique of high-throughput screening allows 

tens to hundreds of thousands of compounds to be tested for biological activity in a 

single day (1). Thus, the throughput of the synthesis and test cycle has increased 

enormously. However, despite the increase in the number of compounds that can be 

handled they still represent a very small fraction of the number of drug-like 

compounds that could potentially be made, for example, it has been estimated that as 

many as 1040 such compounds could exist (2). Thus, it is clear that there is a need to 

be selective about the compounds that are made in combinatorial libraries (3). 

In the early days of combinatorial synthesis the emphasis was on synthesising 

as many diverse compounds as possible on the assumption that maximising diversity 

would maximise the coverage of different types of biological activity. However, these 

early libraries gave disappointing results: they had lower hits rates than expected and 

the hits that were found tended to have too unfavourable physicochemical properties 

to provide good starting points for lead discovery (4). 

It is now clear that if the new technologies are to be effective for drug 

discovery the libraries need to be designed very carefully. Consequently, the emphasis 
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has shifted away from large diverse libraries to the design of smaller libraries that 

incorporate as much knowledge about the target as is available. At one extreme, the 

three-dimensional (3D) structure of the biological target may be known, in which 

case, structure-based methods such as docking or de novo design can be used in an 

attempt to design compounds that will fit into the binding site (5,6). It is still the case, 

however, that in most drug discovery programmes the 3D structure of the target is 

unknown. When several actives and inactives are known it may be possible to 

generate a model of activity in the form of a quantitative-structure activity 

relationship (QSAR), the model could then be used to design libraries consisting of 

compounds with high predicted activities (7). Other approaches are based on 

similarity methods (8) where compounds are selected based on their 2D or 3D 

similarity to one or more known active compounds. Diverse libraries are appropriate 

when a library is to be screened against a range of biological targets or when little is 

known about the target of interest. As a general rule, the amount of diversity required 

is inversely related to the amount of information that is available about the target. 

Whether the primary aim is to design diverse or focussed libraries, or indeed 

to provide a balance between the two, many other criteria should also be taken into 

account. For example, the compounds should possess appropriate physicochemical 

properties to enable them to be progressed through the drug discovery pipeline (9). In 

addition, the reactants should be readily available, for example, already present in in-

house collections or cheap to purchase with acceptable delivery times. Thus, library 

design is increasingly being treated as a multiobjective optimisation problem which 

requires the simultaneous optimisation of several criteria. In common with most real 

world optimisation problems, the criteria are often in conflict, for example, achieving 

diversity simultaneously with drug-like properties, and thus a compromise in the 
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objectives is usually sought. This chapter discusses approaches for the optimisation of 

combinatorial libraries based on multiple objectives. 

 

2. Methods 

2.1. Reactant versus Product Based Designs 

A simple two component combinatorial synthesis is shown in Fig. 1. The 

reaction involves the coupling of a-bromoketones and thioureas. Multiple products 

(2-aminothiazoles) can be synthesised in parallel by selecting different examples of 

each of the components, or reactants. The positions of variability in the reactants are 

indicated by the R groups. 

In general, there are many more examples of the reactants available than can 

be handled in practice and thus selection methods must be used. For example, when 

designing peptides: there are 20 amino acids and hence 20´20 or 400 dipeptides; 8000 

tripeptides; 32K tetrapeptides and so on. When designing libraries of small drug-like 

compounds, in general there could be tens or even hundreds of possible reactants 

available for each position of variability. Thus, even when libraries are limited to a 

single reaction scheme the numbers of compounds that could potentially be made can 

be very large. 

Library design methods can be divided into reactant-based or product-based 

design. In reactant-based design, reactants are chosen without consideration of the 

products that will result. For example, diverse subsets of reactants are selected in the 

hope they will give rise to a diverse library of products. In product-based design, the 

selection of reactants is determined by analysing the products that will be produced. 

Reactant-based design is computationally less demanding than product-based 

design since there are fewer molecules to consider. Consider a two component 
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reaction where there are 100 examples of each type of reactant. Now assume that the 

aim is to design a library of 100 products with configuration 10´10, i.e., 10 examples 

of each reactant. There are approximately 1013 different possible subsets of size 10 

contained within 100 compounds, as determined by the equation below: 

)!(!
!

nNn
N

-
 

Examining this number of subsets is clearly unfeasible. Hence, a number of 

computationally efficient, albeit approximate, methods have been devised for 

performing reactant-based selection (10). Product-based design, however, is much 

more computationally demanding and would require the analysis of 100´100 potential 

products (i.e. 104 molecules). Despite the increased computational cost of product-

based design it has been shown that it can result in better optimised libraries 

especially when the aim is to optimise library-based properties such as diversity 

(11,12). Product-based design is even more appropriate for targeted or focussed 

designs where it is the properties of the product molecules themselves that are to be 

optimised, e.g. similarity to a known active compound. 

Product-based approaches can be divided into those that take the 

combinatorial constraint into account such that each reactant in one pool appears in a 

product with every reactant from every other reactant pool, and those that merely pick 

product molecules with consideration of the synthetic constraint. The latter approach 

is often referred to as cherry-picking and is synthetically inefficient as far as 

combinatorial synthesis is concerned. In this chapter the emphasis is on product-based 

library design methods that take the combinatorial constraint into account. 
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2.2. Filtering 

The first step in library design is to identify potential lists of reactants. This 

can be done by searching databases of available compounds, for example, in-house 

databases or databases of compounds that are available for purchase such as the 

Available Chemicals Directory (13). The next step is to filter the reactant lists. This is 

a very important step since it can vastly reduce the computational complexity of the 

subsequent library design step. The aim is to remove reactants that could not possibly 

lead to ‘good’ products. A variety of filtering steps can be used. For example, removal 

of compounds that contain functionality that will interfere with the synthesis or that 

contain functional groups known to be toxic. In addition, thresholds on various 

physicochemical properties could also be applied, for example, removal of 

compounds with more than 8 rotatable bonds or molecular weights greater than 300 

since compounds with these properties are not generally considered as drug-like. 

 

2.3. Library Enumeration 

Enumeration is the computational equivalent of carrying out a combinatorial 

synthesis. The result is a virtual library of product molecules that can then be analysed 

using a library design program to select compounds of interest. Two different 

approaches to library enumeration have been developed: fragment marking and the 

reaction transform approach (14). 

Fragment marking involves representing a library by a central core (for 

example a benzodiazepine ring) which is common to all compounds in the virtual 

library with one or more R groups to indicate the positions of variability. The library 

is enumerated by creating bonds between the core template and the reactants. The 

reactant lists must first be ‘clipped’, for example, the hydoxyl group must be removed 
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from a carboxylic acid selected to be combined with an amine group in the formation 

of an amide bond. Fragment marking approaches usually require that there is a central 

core template that can be defined and that fragment clipping can be automated, 

however, this may not always possible, for example, for a Diels-Alder reaction. 

The reaction transform approach is based on a computer-readable 

representation of the reaction mechanism which describes the transformation of the 

atoms in the reactants to the product. The transform is applied to the input reactants 

themselves to generate the products. The reaction transform approach thus more 

closely mimics the actual synthetic process, however, it can be difficult to construct 

efficient transforms. This is the approach used in the ADEPT software (14). 

 

2.4. Design Criteria 

As discussed in the Introduction, the primary design criterion is often based on 

either similarity or diversity. Quantifying these measures requires that the compounds 

are represented by numerical descriptors that enable pairwise molecular similarities or 

distances to be calculated or that allow the definition of a multidimensional property 

space in which the molecules can be placed. 

A variety of different descriptors have been used in library design (15,16). 

They can be divided into descriptors that represent whole molecule properties; 

descriptors that can be calculated from the 2D graph representations of molecules 

including topological indices and 2D fingerprints; and descriptors calculated from 3D 

representations of molecules. Whole molecule properties include physicochemical 

properties such as molecular weight, molar refractivity and calculated logP. 

Topological indices are single-valued descriptors that characterise structures 

according to their size, degree of branching and overall shape. Many different 
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topological indices have been devised and they are often used together with a 

molecule being represented by a vector of real numbers. 2D fingerprints are binary 

vectors and can be divided into fragment-based methods and path-based methods. In 

the fragment-based methods, each bit in the vector corresponds to a particular 

substructural fragment and is set to “on” or “off” to indicate the presence or absence 

of the substructure within a molecule. In the path-based methods, all paths up to a 

given length in the molecule are determined and each path is hashed to a small 

number of bits which are then set to “on”.  

The most commonly used 3D descriptors are pharmacophore keys which are 

usually represented as binary vectors (17). The starting point when generating a 

pharmacophore key is a 3D conformation of a molecule that is represented by its 

pharmacophoric features, that is its atoms or groups of atoms that can form 

interactions with a receptor such as hydrogen bond donors, acceptors, aromatic 

centres, anions and cations. In 3-point pharmacophore keys, each bit in the vector 

represents three pharmacophoric features together with a set of distance ranges that 

define how the features are positioned in 3D space. As with 2D fragment-based 

fingerprints, a bit is set to “on” to indicate the presence of a pharmacophore triplet 

within a molecule, otherwise it is set to “off”. 

When molecules are represented by high-dimensional descriptors such as 2D 

fingerprints or several hundred topological indices then the diversity of a library of 

compounds is usually calculated using a function based on the pairwise 

(dis)similarities of the molecules. Pairwise similarity can be quantified using a 

similarity or distance coefficient. The Tanimoto coefficient is most often used with 

binary fingerprints and is given by the formula below: 

cba
cS AB -+

=  
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where there are a bits set to “on” in molecule A, b bits set to “on” in molecule B, and c 

“on” bits common to both A and B. When molecules are represented by real-

numbered vectors then the comparison is usually based on Euclidean distance. 

Various diversity functions have been suggested for library design including the 

average nearest neighbours distance and the sum of pairwise dissimilarities (18). 

When molecules are represented by low-dimensional descriptors then the 

descriptors can be used to define the axes of a chemistry space. Typical descriptors 

are a small number of physicochemical properties or the principal components 

generated by the application of principal components analysis to high dimensional 

descriptors. Each descriptor then defines one axis and is divided into a series of bins. 

The combination of all bins over all descriptors defines a set of cells over a chemistry 

space. Molecules can be mapped onto the cells according to their physicochemical 

properties. A diverse library is one that occupies a large number of cells in the space, 

whereas, a focussed library is one where the molecules occupy a small localised 

region of the space. 

The optimisation of physicochemical properties can be dealt with by applying 

simple thresholds such as Lipinski’s rule-of-five (19). The rule states that if a 

compound violates any two of the following rules it is predicted to have poor oral 

absorption: 

· molecular weight > 500 

· logP > 5 

· > 5 hydrogen bond donors (defined as the sum of OH and NH groups) 

· > 10 hydrogen bond acceptors (defined as the number of N and O atoms). 

Alternatively, they can be optimised by matching the profile of properties in the 

library to some collection of known drug-like molecules. The latter method will 
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typically allow some compounds to be present in the library that violate the more 

stringent rules. Several groups have developed more sophisticated methods for 

predicting drug-likeness (20) and, more recently, lead-likeness (since it has been 

recognised that lead compounds tend to be less complex than drugs) (21,22). 

 

2.5. Optimisation Methods 

The computational complexity of product-based library design has led to the 

development of programs that are based on optimisation techniques such as genetic 

algorithms and simulated annealing. The methods require the definition of a function 

that is able to measure the degree to which a potential solution meets the library 

design criteria. The optimisation technique then attempts to maximise (or minimise) 

the given function. Typically, many potential solutions are explored during the 

operation of the algorithm and thus the function must be relatively rapid to calculate.  

Several groups have approached multiobjective library design by combining 

individual objectives into a single combined fitness function. This is a widely used 

approach to multiojective optimisation and effectively reduces a multiobjective 

optimisation problem to one of optimising a single objective. 

This approach has been adopted in the SELECT library design program (23). 

SELECT is based on a GA and aims to identify a combinatorial subset of pre-

determined size and configuration, from within a virtual, fully enumerated library. 

The chromosome representation in SELECT encodes potential subsets as the lists of 

reactants from which the library will be synthesised. Thus, the chromosome is an 

integer string which is partitioned according to the number of positions of variability 

in the library. The size of a partition is determined by the number of reactants to be 

selected. Thus, when configured to select an nA×nB subset from a virtual library of 



 11

size NA×NB, the chromosome consist of nA+nB integers. Each integer corresponds to 

one of the possible reactants available. The standard genetic operators of crossover 

and mutation are used with the special condition that the same reactant must not 

appear more than once in a partition. 

SELECT has been designed to allow optimisation of a variety of different 

objectives. Diversity (and similarity) is optimised using functions either based on 

pairwise dissimilarities and fingerprints or using cell-based measures. The 

physicochemical properties of libraries are optimised by minimising the difference in 

the distribution of the library being designed and some reference distribution, such as 

that seen in the World Drugs Index (WDI) (24). Cost is optimised simply by 

minimising the sum of the cost of the reactants. Each objective is usually standardised 

to be in the range 0 to 1 and user-defined weights are applied prior to summing the 

contributions into a weighted-sum fitness function as show below: 

....2.1...)( 4321 ++++= propertywpropertywcostwdiversitywnf  

The HARPick program also tackles multiobjective library design by 

combining individual objectives, via weights, into a single function. HARPick uses 

Monte Carlo simulated annealing as the optimisation technique (25) with library 

design being based on pharmacophore keys. A library is represented by an ensemble 

pharmacophore key which is the union of the individual molecule keys. In HARPick 

the pharmacophore keys are integer vectors which indicate the frequency of 

occurrence of each 3-point pharmacophore. The fitness function is composed of 

several individual functions: diversity is based on the number of unique 

pharmacophore triplets covered by the library and is tuned to force molecules to 

occupy relative voids (under-represented 3-point pharmacophores) as well as absolute 

voids; libraries can be optimised to fill voids under-represented in an existing library; 
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a function based on the number of conformations per molecule is used to control 

molecular flexibility; various properties are calculated that are crude measures of 

molecular shape with the aim being to produce an even distribution of shapes in the 

library; and finally a count of the total number of pharmacophores present is used to 

limit the inclusion of promiscuous molecules (that is, molecules that contain a large 

number of pharmacophore triplets). As in the SELECT program, the individual 

functions are combined into a single fitness function via user-defined weights. 

The method has subsequently been extended to include 4-point 

pharmacophores and to allow pharmacophoric measures to be combined with 3D 

BCUT descriptors (26). BCUT descriptors were designed to encode atomic properties 

relevant to intermolecular interactions. They are calculated from a matrix 

representation of a molecule’s connection table where the diagonals of the matrix 

represent various atomic properties such as atomic charge, atomic polarisability, and 

atomic hydrogen bonding ability and the off-diagonals are assigned the interatomic 

distances. The eigenvalues of the matrix are then extracted for use as descriptors. Five 

such descriptors were calculated: two based on charge; two on atomic polarisability 

and one based on hydrogen bond acceptors. These descriptors then define a 3D BCUT 

chemistry space, as for the cell-based methods described previously, with BCUT 

diversity being measured as the ratio of occupied cells to the total possible occupied 

cells. Pharmacophore diversity is based on the number of unique pharmacophores and 

the total number of pharmacophores in the product subset. An overall score for a 

library is then calculated by summing the two diversity measures. The method has 

been tested on a virtual library of 86140 amide products in which pharmacophores 

were calculated on-the-fly, i.e., during the optimisation process itself, with 

pharmacophore keys being stored for reuse as they are calculated. 
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Other similar aggregation approaches to multiobjective library design include 

the methods described by Agrafiotis (27), Zheng et al. (28) and Brown et al. (29). 

 

2.6. Multiobjective Optimisation Using a MOGA 

The aggregation approach to multiobjective optimisation in which multiple 

objectives are combined into a single fitness function is limited for a number of 

reasons, some of which are identified here. First, the selection of weights for the 

individual components is non-intuitive especially when comparing different properties 

for example, diversity and calculated logP. Second, the use of weights limits the 

search space that is explored. Third, in general the methods are restricted to finding a 

single solution which represents one particular compromise in the objectives; 

assigning a different set of weights will typically result in a different solution, one that 

may be equally valid but that represents a different compromise in the objectives. 

Thus, in practice it is usual to perform a number of trial-and-error runs using different 

weights in order to identify a ‘good’ solution. 

Multiobjective Evolutionary Algorithms (MOEAs) are a class of algorithms 

that are based on optimising each objective independently and thus avoid the need to 

assign weights to individual objectives (30). They exploit the population nature of 

evolutionary algorithms in order to explore multiple solutions in parallel. The MOGA 

is one example of a MOEA and is based on a GA (31). In MOGA, the fitness ranking 

in a traditional GA is replaced by Pareto ranking. Pareto ranking is based on the 

concept of dominance, where, in a given population, one solution dominates another 

if it is better in all objectives and a non-dominated solution is one for which no other 

solution is better in all the objectives. In MOGA, an individual is assigned fitness 

according to the number of individuals by which it is dominated. Parent selection is 
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then biased towards the least dominated individuals so that all non-dominated 

solutions have equal chance of being selected and they have a higher chance of being 

selected than solutions that are dominated. The non-dominated individuals form what 

is known as the Pareto surface. In the absence of further information, all solutions on 

the Pareto surface are equally valid with each one representing a different 

compromise in the objectives. 

The MOGA algorithm has been adopted in the MoSELECT library design 

program (32-34). MoSELECT derives from the earlier SELECT program with the 

original GA being replaced by a MOGA. Thus, in MoSELECT different objectives 

such as diversity, similarity, physicochemical property profiles and cost are treated 

independently to generate a family of different compromise solutions as will be 

shown in the Results section. 

 

2.7. Varying Library Size and Configuration 

Many library design methods require that the size (number of products) and 

configuration (numbers of reactants selected for each component) of the library are 

specified upfront. However, it is often difficult to determine optimum values a-priori 

and usually there is a trade-off between these criteria and the other criteria to be 

optimised. Consider the design of a library where the aim is to maximise coverage of 

some cell-based chemistry space. It is clear that as more products are included in the 

library the chance of occupying more cells increases. Thus, an optimal library is likely 

to be one that represents a compromise in size and diversity. 

MoSELECT has been adapted so that size and configuration can be optimised 

simultaneously with other library design criteria. Size is allowed to vary by using a 

binary chromosome representation. The chromosome is partitioned, as before, with 
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one partition for each position of variability. However, now each partition is of length 

equal to the number of reactants available with each reactant represented by a binary 

value. The value “1” indicates that a reactant has been selected and the value of “0” 

indicates that it has not been selected for the final library. Thus the chromosome is 

now of length NA+NB (as opposed to nA+nB as described earlier). The application of 

the genetic operators results in different reactants being selected and deselected and 

library size (and configuration) are varied by altering the number of bits set to “1”. 

As described previously, diversity and library size are usually in conflict with 

larger libraries resulting in greater cell coverage. Thus, when optimising on diversity 

alone there will be a tendency to select very large libraries. Thus, in MoSELECT size 

is included as an objective alongside diversity with each objective being handled 

independently. This allows the trade-off between size and diversity to be explored in a 

single run. 

 

2.8 Multiobjective Design Under Constraints 

The MOGA approach allows the mapping of the entire Pareto surface with 

solutions at the extremes being identified as well as a range of solutions in between 

the extremes. When optimising size and diversity this means that a wide range of 

solutions are possible, from libraries consisting of a single product up to the library 

size that achieves maximum cell coverage. While having the ability to map the entire 

Pareto surface can provide useful insights into the shape of the search space of a 

particular library design problem, in practice there are often external constraints that 

must be taken into account. For example, constraints on library size may arise from 

the equipment available or simply on the basis of cost. 
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Library configuration can be a factor in cost as well as library size itself. 

Typically it is desirable to minimise the total number of reactants required. Thus, if 

the aim is to synthesise a library of 400 products from two positions of variability 

then the most efficient use of reactants is achieved for the configuration 20´20. Other 

configurations (40´10; 25´16 etc.) would require access to a greater number of 

unique reactants. 

Constraints can be implemented within the MOGA to direct the search 

towards restricted regions of the search space. Constraints are handled by penalising 

solutions that violate the constraints. Such infeasible solutions are allowed to exist 

within the population (rather than being removed entirely) since their presence may 

lead to feasible solutions later in the search through the use of crossover. They are 

penalised so that they have a lower chance of being selected for reproduction and so 

that they do not appear in the final solution set. In the example described in the next 

section, constraints are applied on library size and configuration, however, they could 

equally be applied to any of the objectives incorporated within the library design. 

 

3. Results: Designing 2-aminothiazole Libraries 

The two-component 2-aminothiazole library shown in Fig. 1 is used to 

illustrate different library design scenarios using the SELECT and MoSELECT 

programs. 

As discussed, the starting point for library design is to identify available 

reactants, for example, by searching in-house databases and/or by identifying 

reactants that can be purchased. In this case, substructure searches were performed on 

the ACD. When constructing a query it is often necessary to place constraints on the 

compounds to be returned as hits. Thus, the a-bromoketone substructure was 
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constrained so that it should not be embedded within a ring and explicit hydrogens 

were attached to one of the nitrogen atoms in the thiourea query with the additional 

constraint that substitution on the sulphur atom was prohibited. 

Once initial sets of reactants were found computational filters were applied to 

remove reactants that are known to be undesirable. This was done using the ADEPT 

software (14) with the following compounds being removed: reactants having 

molecular weight greater than 300; reactants having more than 8 rotatable bonds; and 

a series of substructure searches were performed to remove reactants containing 

undesirable substructural fragments. After filtering there were 74 a-bromoketones 

and 170 thioureas remaining, which represents a virtual library of 12850 product 

molecules. The next step in the design process was to enumerate the full virtual 

library which was done using the transform method in ADEPT. 

The virtual library was then characterised using the Cerius2 default topological 

descriptors and physicochemical properties (35). The 50 default descriptors were 

reduced to three principal components using principal components analysis and this 

defined a three dimensional chemistry space into which the virtual library could be 

plotted. The chemistry space consisted of 1134 cells and when the virtual library was 

mapped into the space it was found to occupy 364 of the cells, this thus represents the 

maximum cell coverage that is achievable. 

The SELECT program was then used to design a 15´30 library that was 

simultaneously optimised on diversity (measured by the number of occupied cells) 

and to have a drug-like molecular weight profile (measure by the RMSD between the 

profile of the library and the profile of molecular weights found in the WDI. The 

resulting library was found to occupy a total of 234 cells and its molecular weight 

profile is shown in Fig. 2 together with the profile of molecular weight found in WDI. 
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When optimising a library on diversity alone the best library found occupies 282 cells 

and when optimising on molecular weight profile alone, the best library was found to 

occupy 169 cells. Thus, when optimising both objectives simultaneously using the 

weighted-sum approach in SELECT, the resulting library represents a compromise in 

the two objectives. 

Performing a single run of SELECT with one set of weights does not allow the 

library designer to explore the relationship between the two objectives and a single 

somewhat arbitrary solution was produced.  

The relationship between molecular weight profile and diversity was then 

explored using the MOGA approach implemented in MoSELECT. The result was a 

total of 11 different libraries with each library representing a different trade-off 

between the objectives, as shown by the crosses in Fig. 3. The most drug-like library 

(the library with the best molecular weight profile) is the least diverse (169 cells 

occupied) whereas the most diverse library (282 cells occupied) has the least drug-like 

profile. The SELECT solution found previously is shown by the solid diamond. 

Thus far, the size and configuration of the libraries was fixed. The relationship 

between library size and diversity was investigated by performing multiple runs of the 

SELECT program with each run configured to find a library of increasing size. The 

results of performing this exercise are shown in the Fig. 4 where it can be seen that 

diversity (cell coverage) increases as library size increases. 

MoSELECT allows the trade-off in library size and diversity to be 

investigated in a single run. The libraries found are shown by the solid squares 

(superimposed on the SELECT results) in Fig. 5. Thus, the full range of library sizes 

is explored, from very small libraries with low diversity up to a library size of 1392 
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which has the maximum diversity that is possible: it occupies all 364 cells that are 

occupied by the full virtual library. 

The remaining library designs are based on applying the MOGA under various 

constraints. In Fig. 6, the libraries are constrained to contain between 250 and 500 

products. Finally, the libraries are constrained to contain between 15 and 20 reactants 

in each component. The libraries found when no constraint is placed on configuration 

are shown by the crosses in Fig. 7A and the libraries found when the constraints are 

applied are shown by the solid squares. Fig. 7B illustrates that the constrained (more 

efficient) libraries were found without any loss in diversity. 

 

4. Discussion and Notes 

Combinatorial library design is a complex procedure that can be divided into 

several steps as indicated above. A wide variety of different computational tools are 

available that can be applied to the different steps, however, effective use of the tools 

can require considerable user interaction in order to maximise the chances of finding 

useful compounds. Thus, the tools should not be considered as black boxes. 

For a given reaction scheme the first step is usually to identify available 

reactants. Care should be taken when constructing substructural queries to ensure that 

the compounds retrieved are indeed capable of undergoing the reaction, for example, 

when searching for primary amines it may be desirable that hits are restricted to those 

that contain a single amine group. Visual inspection of the results can be used to 

ensure that the substructural query was correctly specified and it can also be useful in 

determining which computational filters to apply. For example, the presence of highly 

flexible molecules in the answer set may suggest the use of a filter to remove 

reactants where the number of rotatable bonds is above some threshold value. Filters 
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are extremely important since the early removal of undesirable compounds can 

simplify the later stages of library design. 

Once the reactant pools have been filtered, the next step in product-based 

designs is usually to enumerate the full virtual library. This can be a very time 

consuming step and hence a useful precursor can be to enumerate carefully chosen 

subsets that will give an indication of the success or otherwise of the full virtual 

experiment. Thus, in a two component reaction it can be useful to take the first 

reactant in the first pool and combine it with all the reactants in the second pool (to 

generate 1´nB products). This should then be followed by the enumeration of one 

reactant in the second pool with all reactants in the first pool to give nA´1 products. If 

either of these two partial enumeration steps fail then the full enumeration will also 

fail. Thus, troublesome reactants can be identified early. 

The next step is to determine the descriptors to use for the library optimisation. 

It is important that descriptors are chosen that are relevant to the type of compounds 

that the library is being designed for. The descriptors should result in a high degree of 

similarity between compounds that are known to have the desired properties. Thus, if 

some active compounds are known then, ideally, these should cluster together within 

the descriptor space. Another criterion to take into account when choosing descriptors 

is the number of compounds in the virtual library. Some descriptors can be costly to 

compute, especially 3D descriptors when the conformational flexibility of the 

compounds is taken into account. Thus, it is important to be aware of the 

computational resources that will be required for a given library design strategy. 

Finally the optimisation step itself usually involves human intervention. With 

the traditional aggregation approaches to library design the user must decide on 

appropriate weights for the various objectives being optimised. This can involve 
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several trial-and-error experiments where different combinations of weights are 

applied. In the novel library design method based on a MOGA, the user no longer 

needs to determine relative weights however a family of different compromise 

solutions is found and hence the user must apply his or her own knowledge to decide 

which library represents the best compromise in the objectives. 
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Fig. 1. A 2-aminothiazole library synthesised from a-bromoketones and 

thioureas. 
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Fig. 2. The molecular weight profile of the library designed using SELECT 

(LIB) is shown together with the profile of molecular weights in WDI. 



 27

 

150

170

190

210

230

250

270

290

0.3 0.4 0.5 0.6 0.7 0.8 0.9

DMW

O
cc

up
ie

d 
C

el
ls

 

Fig. 3. A family of libraries (shown by the crosses) is found when optimising 

molecular weight profile simultaneously with cell based diversity when using the 

MoSELECT program. The single SELECT solution is shown by the solid square. 
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Fig. 4. Exploring library size and diversity with the SELECT program requires 

multiple runs with different input values. 
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Fig. 5. Library size and diversity can be explored in a single run using the 

MoSELECT program. The family of solutions found is shown by the solid squares 

and is superimposed on the SELECT curve repeated from Fig. 4. 
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Fig. 6. Library sized is constrained to between 250 and 500 products. 
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Fig. 7A. The crosses show a run where library size is constrained, but no 

constraints are placed on library configuration. The solid squares show the effect of 

also constraining configuration so that between 15 and 20 reactants are used from 

each pool. The solid line shows the ideal solution in terms of efficiency, that is, equal 

numbers of reactants are selected from each reactant pool. 
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Fig. 7B. No loss of diversity is seen in the configuration-constrained library 

relative to the less efficient unconstrained solutions. 
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