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Productivity stabilization is a critical issue facing plant factories. As such, researchers
have been investigating growth prediction with the overall goal of improving productivity.
The projected area of a plant (PA) is usually used for growth prediction, by which the
growth of a plant is estimated by observing the overall approximate movement of the
plant. To overcome this problem, this study focused on the time-series movement of
plant leaves, using optical flow (OF) analysis to acquire this information for a lettuce.
OF analysis is an image processing method that extracts the difference between two
consecutive frames caused by the movement of the subject. Experiments were carried
out at a commercial large-scale plant factory. By using a microcomputer with a camera
module placed above the lettuce seedlings, images of 338 seedlings were taken every
20 min over 9 days (from the 6th to the 15th day after sowing). Then, the features of
the leaf movement were extracted from the image by calculating the normal-vector in
the OF analysis, and these features were applied to machine learning to predict the
fresh weight of the lettuce at harvest time (38 days after sowing). The growth prediction
model using the features extracted from the OF analysis was found to perform well
with a correlation ratio of 0.743. Furthermore, this study also considered a phenotyping
system that was capable of automatically analyzing a plant image, which would allow
this growth prediction model to be widely used in commercial plant factories.

Keywords: circadian clock, lettuce, machine learning, optical flow, phenotyping, plant factory

INTRODUCTION

Closed-type plant factories, which cultivate plants in closed systems with controlled temperature,
humidity, and light, are attracting attention as a new type of cultivation method, capable
of producing the extra food needed to respond to population growth, while protecting the
environment, improving health, and achieving economic growth (Kozai et al., 2015; Anpo et al.,
2018; Kozai, 2018). However, these closed-type plant factories are more costly than outdoor
cultivation because of the initial costs and the running costs incurred in the control of the
environment. To reduce these costs, many studies have been undertaken, addressing the effect of
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light quality on plant growth and quality (Tamura et al., 2018),
and the optimization of the air flow (Takahashi et al., 2012).

Plant growth prediction is one solution to overcoming these
problems. Poorly grown plants that do not satisfy the level of
quality required for sale leads to serious losses (Kozai et al.,
2015). Poor growth of the plants occurs due to individual
differences, even when the seeds are cultivated under the
same conditions. Thus, to make plant factories viable, seedling
diagnosis technology is an important concept. Such technology
should mainly use visual information from plants, recognize the
differences between individual plants, and then identify and cull
low-grade plants at an early stage (Fukuda et al., 2011; Moriyuki
and Fukuda, 2016; Moriyuki et al., 2018). In a previous study, the
authors’ group constructed a high-throughput growth prediction
model for lettuce cultivars based on chlorophyll fluorescence for
application to a commercial plant factory (Moriyuki and Fukuda,
2016). Furthermore, this prediction model uses the circadian
rhythm extracted from the chlorophyll fluorescence, because
circadian rhythm is responsible for regulating growth (Dodd
et al., 2005; Harmer, 2009). In addition, there are individual
differences in the circadian rhythm of lettuce cultivars (Ukai et al.,
2012; Higashi et al., 2014), and the growth rate of lettuce plants
depends on circadian rhythms, which entrain to various period of
light-dark cycles (Higashi et al., 2015). From these points of view,
it is speculated that the measurement of circadian rhythms will
lead to an improved accuracy of plant growth prediction, leading
the authors to focus on the relationship between the circadian
rhythms and the visual information of the plants.

Leaf movement is recognized as being an important visual
information that is related to the circadian rhythm (Halaban,
1969). The relationship between leaf movement and circadian
rhythms has been researched on the laboratory scale (Edwards
and Millar, 2007), but few commercial large-scale experiments
have been attempted. To precisely extract the circadian rhythms,
this study focused on OF analysis. OF analysis is an image-
processing method that recognizes and extracts the difference
between two consecutive frames caused by the movement of the
subject of the image. In addition to the computer-vision field,
OF analysis is used in the field of plant science, in applications
such as the recognition of water stress in tomato vines (Kaneda
et al., 2017). In addition, the importance of the relation between
the angle and plants has been reported by Okabe (2015), who
used a mathematical model to determine that the golden angle
of phyllotaxis, which is defined by the twisting of the stem is
a key factor for minimizing energy costs. To precisely extract
plant growth and angle information, the authors propose the
application of normal-vector analysis. Normal-vector analysis is a
post-processing method applied after OF analysis, which converts
every vector calculated by OF analysis to a normal vector, relative
to the center of the seedling. By using normal-vector analysis, the
plant growth, stagnation of the plant growth, and the direction
of the leaf extension can be determined. In this study, a machine
learning model is used, which employs these features to predict
the growth of plants.

Machine learning is a promising technique for the analysis of
large amounts of data and is mostly performed for prediction
and classification tasks. This method is widely used in various

research fields, including plant production, plant science, and
plant phenotyping (Moriyuki and Fukuda, 2016; Singh et al.,
2016; Gutiérrez et al., 2018; Moghimi et al., 2018; Pineda et al.,
2018; Zhang et al., 2018). In this study, gradient boost regression
(GBR) was selected as the prediction model (Friedman, 2001).
GBR is a machine learning technique for regression, which
produces a prediction model in the form of an ensemble of weak
prediction models, called a “decision tree.” It builds a model,
stage by stage, and then generalizes the model by allowing the
optimization of an arbitrary differentiable loss function. This
algorithm is also able to visualize the feature importance, enabling
not only growth prediction but also the identification of the
contributions of features derived from normal-vector analysis.

This study involved extraction of the image data features that
are related to the leaf movement and the subsequent use of
machine learning to construct a growth prediction model for
lettuce, which is a typical crop grown in a closed-type plant
factory. Using machine learning, the authors attempted to predict
the final fresh weight at harvesting using 22 days before the
seedling diagnosis data was collected. The experiments were
performed in an actual commercial large-scale plant factory with
a daily output of 5,000 lettuces.

MATERIALS AND METHODS

This study was performed in a commercial large-scale plant
factory (Figure 1A). The plant growth occurred in three stages,
namely, the greening, nursery, and cultivation stages. The
acquisition of plant images was carried out in the nursery
stage, while the fresh weight of the plants was measured upon
harvesting at the end of the cultivation stage.

Plant Material and Growth Conditions
Experiments were carried out using lettuce seeds (Lactuca sativa
L. cv. SB555GL, a fixed line of lettuce cultivar offered by Snow
Brand Seed Co., Sapporo, Japan). First, in the greening stage,
each plant was seeded in a greening panel (a urethane sponge
carrying 600 plants) together with 5 L of tap water and fertilizer
(OAT house, OAT Agrio Co., Ltd, Tokyo, Japan). Second, the
greening panel was placed in a dark growth chamber at 25◦C
for 2 days to allow the seeds to germinate. Third, the plants
were cultivated for 4 days under white LED light (LIFELED’S;
NEC Lighting, Ltd., Tokyo, Japan) at a light/dark ratio of 15/9 h.
Fourth, the plants were cultivated in a nursery panel for 14 days
under LED light [blue, white, red, and far-red LEDs (GreenPower
LED production module DR/W/FR 120; Philips, Amsterdam,
Netherlands], again at a light/dark ratio of 15/9 h at pH 6.0,
EC 0.12 S m−1, and 23.5 ± 1.0◦C and 21.5 ± 1.2◦C in the
light and dark periods, respectively (Figure 1B). The acquisition
of an image by the proposed multi-plant imaging system was
performed from above the nursery panel every 20 min. Finally, in
the cultivation stage, 150 lettuces per nursery panel were moved
to the cultivation panel for one experiment, where they were
cultivated for 18 days and then harvested. The temperature of
the cultivation panel was 23.5 ± 1.0◦C and 21.5 ± 1.2◦C in the
light and dark periods, respectively. The fresh weight of the aerial
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FIGURE 1 | Multiple plant imaging (MPI) system in commercial plant factory. (A) Production line of commercial plant factory in Osaka Prefecture University.
Successive operations, including greening, nursing, cultivation, and cutting, are performed. (B) Nursing room. This room has three levels (left-hand upper figure
shows the third level. The lower figure shows the first level). This nursery line (right-hand figure) has a capacity to accommodate 105 seedlings. (C) MPI system for
acquiring feature values for each seedling based on time-series photographs captured on the nursing line. (D) Simultaneous measurement of seedlings on nursing
panel using MPI system.

part of each lettuce was measured at 38 days after sowing. The
experiment was performed three times.

Automatic Plant Measuring System
The proposed multiple plant imaging (MPI) system (Figure 1C)
was configured above the nursery panel in the nursery room.
The MPI system captured image data of the projected area
(PA) of seedlings using an accessible, low-cost microcomputer
(RasPi; Raspberry Pi 3; Raspberry Pi Foundation, Cambridge,
United Kingdom) and a camera module (Raspberry Pi Camera
V2; Raspberry Pi Foundation, United Kingdom) to perform high-
throughput phenotyping (Minervini et al., 2015; Tovar et al.,
2018). Twelve RasPi units were used to allow the capturing
of an image of the entire nursery panel (Figure 1D). These
data were transferred automatically to network-attached storage
(NAS, LinkStation LS520 Series; BUFFALO INC., Aichi, Japan)
which could be accessed from a main computer. During the dark

phases of the raising stage, images were captured by controlling
the LEDs with a relay box, with the lights being turned on/off
under the control of a signal from the main computer. The
resolution of each image was 3280 × 2646 pixels. A total of
640 images (image dataset) were captured by each RasPi from
6 to 15 days after sowing, with a total of 18,560 images being
used in the present study. The time point 6 days after sowing
was defined as t = 0 h, such that the dataset covered the period
from t = 0–201 h.

Extraction of Leaf Movement
From MPI System
Using the image dataset obtained with the MPI system, an OF
analysis was programmed in Python 2.7.13 and OpenCV 3.1.0,
while normal-vector analysis was programmed in Python 3.6.5
and OpenCV 3.1.0. A modeling diagram is shown in Figure 2.
The image dataset was analyzed as follows. First, the images were
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FIGURE 2 | Summary of analyses performed, and conceptual drawing of normal-vector analysis. The flowchart on the left shows the preprocessing process for the
dataset. The process with the blue background shows the type of data which were focused, and the red background shows the type of analysis method used for
preprocessing. The description in the gray box shows the definition used in this study. The image on the bottom right shows the concept of our study. The green
circle shows the detection of the panel using HT. The blue vector is the OF vector, and the red circle shows the local-normal vector.

resized from 3280 × 2464 to 640 × 480 pixels. The resizing
algorithm was based on bilinear interpolation. Next, phase-
only correlation (POC) was performed to correlate the small
movement of the panel between the image dataset caused by its
floating. Resizing and POC were performed on all the images
of the dataset. For the OF analysis, the “DeepFlow” algorithm
was used (Weinzaepfel et al., 2013). The DeepFlow algorithm
was applied using two sets of images, captured 12 h apart. The
images were resized to 320× 240 pixels, and the OF was analyzed
for each pixel. The OF vector in each pixel was defined as pijk,
where i is the width of a pixel (1 ≤ i ≤ 320), j is the height
of a pixel (1 ≤ j ≤ 240), and k is the number of the individual
image being analyzed (37 ≤ k ≤ 640). After the calculation of
the pijk, the pijk of the seedling was separated and extracted from
that of the background of panel by using an image binarization
method called Excess Green (ExG; Reid et al., 2016). ExG was
applied using the resized image, with the ExG threshold set to
0.2. Further, a hough transformation (HT), which is an object
detection method, was used to detect the circular shape of the

depression in the panel (Ballard, 1981). In this work, the center
of this circle, as determined using HT, was defined as the center
of the seedling, and the circle consisted of 28 pixels, with a radius
of 2.5 cm from the center of the seedling. Additionally, a masked
area was defined, namely, the area outside of the circle.

The local normal vector nijk was calculated for every pixel
using pijk and the center of the seedling. The overall normal
vector (Nk) and average of Nk (Nk) were defined as follows:

Nk =
∑

i,j

nijk

Nk =
Nk

mk

where mk is the total number of nijk The magnitude of Nk was
defined as

∣∣Nk
∣∣ and the angle of Nk was defined as θk. The

projected area of the plant (PA) was defined as follows:

Sk = mk
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Dimension Reduction for
Machine Learning
To develop a prediction model based on the results of the
normal-vector analysis, dimension reduction was applied, owing
to the large size of the dataset. The dimensions of the dataset
were reduced from 1,812 dimensions (604 time-series data
points for the angle, magnitude, and PA) to 115 dimensions,
as shown in Table 1. In this study, the authors chose two
different ways to reduce the number of dimensions. The first
way was a time-series analysis, as shown in Table 1. This
dimension reduction method was used to extract the time-
indicated features from the full-dimensional dataset. The second
way was a principal component analysis (PCA), which is also
shown in Table 1. The dimensions were reduced to increase
the accuracy of machine learning. The prediction without the
dimension reduction (i.e., using 1,812 dimensions) resulted in a
correlation coefficient of 0.599 using a support vector regression
(SVR). Feature “PPFD” is the photosynthetic photon flux density
(ppfd) data, measured while the light is on for each area of
the panel. Feature “Track” is that area in the panel which
exhibits a difference in the interaction between each plant
(Supplementary Figure S1). Feature “PCA” shows the result of
dimension reduction using principal component analysis (pca)
for all the dataset, including the angle data, magnitude data,

TABLE 1 | Dimension reduction process.

Number of

Type Features features Descriptions of features

Environment PPFD 1 Photosynthetic photon flux density
(ppfd) data, measured while the
light is on for each area of the panel

Track 4 Area in the panel which exhibits a
difference in the interaction
between each plant

Dimension
reduction

PCA 20 Principal component analysis (pca)
with n component of 5 for all the
dataset, including the angle data,
magnitude data, and PA data

Time-series
analysis

Angle-shift 6 Correlation between the original
time-series data and shift data of
the angle data

Magnitude-shift 6 Correlation between the original
time-series data and shift data of
the magnitude data

PA-ave 9 Average of the PA data calculated
every 24 h

Angle-diff 23 The data used to calculate the
difference between two different
time points for the angle

Magnitude-diff 23 The data used to calculate the
difference between two different
time points for the magnitude

PA-diff 23 The data used to calculate the
difference between two different
time points for the PA

Total number
of features

115

and PA data. The features “angle-shift” and “magnitude-shift”
indicate the correlation between the original time-series data and
shift data of the angle and magnitude data, respectively. Feature
“PA-ave” is the average of the PA data calculated every 24 h.
Features “angle-diff,” “magnitude-diff,” and “PA-diff” are the data
used to calculate the difference between two different time points
for the angle, magnitude, and PA, respectively.

Growth Prediction Model
Using Machine Learning
For machine learning modeling, GBR, and SVR were performed.
GBR is a type of ensemble learning combining multiple weak
learners in order to overcome the overfitting of the model.
The hyperparameters of GBR were set to min_samples_split:
[10, 30, 50, 70], max_depth: [4, 6, 8, 10], subsample: [0.7–1],
and learning_rate: [0.01, 0.05, 0.1]. Here, min_samples_split is
the minimum number of samples required to split an internal
node. The greater the value is, the more the overfitting of the
parameter is reduced. In addition, max_depth is the parameter
for the maximum depth of the individual regression estimators.
A The greater the value is, the more complex are the features
that the models describes. However, a high value might result
in overfitting the training dataset. The parameter learning_rate
shrinks the contribution of each tree by the value of learning_rate.
The parameter subsample is the fraction of samples to be used
for fitting the individual base learners. Choosing subsample <1.0
reduces variance and increases bias. The range and resolution of
the parameters were set roughly based on the default parameters
of the scikit-learn package and optimized by using grid search
methods, which compare all combinations. SVR involves the
use of algorithms based on kernels that transform the original
data into high-dimensional feature spaces (Capparuccia et al.,
1995). Before applying SVR, the dataset was normalized using
the MinMaxScaler function of the scikit-learn package. The
hyperparameters of SVR were set to C: 2a (a = −20, −19, −18,
. . . 18, 19, 20), γ: 2b (b = −20, −19, −18, . . . 18, 19, 20), and
ε: 2c (c = −20, −19, −18, . . . 18, 19, 20), respectively, while the
radial basis function (RBF) was chosen as the kernel. The range
and resolution of parameters were set over a wide range in this
study because the computational cost was low in the dataset of
this study and computing environment. The limitation of the grid
range will be an important factor for a larger dataset, which must
be focused on in the future. Before selecting a hyperparameter,
the training and test data were divided randomly into 236 and 102
items of data, respectively (train:test = 7:3). The hyperparameters
were selected using a stratified five-fold cross validation. Cross
validation is a method used for machine learning in order to
avoid the phenomenon called “overfit,” which is a modeling
error in which the model is adjusted too specifically to a given
dataset. In a five-fold cross validation, five models are validated
with four folds and are then tested with the remaining fold five
times, using different combinations. In the present study, five-
fold cross-validation was carried out using random-fold splits.
The coefficient of determination (R2) was used for the hyper-
parameter tuning, while the correlation coefficient was used to
visualize and evaluate the models. The model was described for
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GBR using the feature importance method. These models were
developed using Python 3.6.5 and scikit-learn 0.19.1.

RESULTS

Visualization of Optical Flow
and Normal Vector
Figure 3 shows the visualization results for pijk, nijk, and Nk for
a single lettuce. Figures 3A,B shows the visualization result for
a single lettuce at t = 168 and 180 h, respectively. The value of
pijk was determined using an image captured 12 h before the
plants were visualized (e.g., the images captured at t = 156 and
168 h are used to calculate the result shown in Figure 3A). The
black area in the corner of Figure 3 is the masked area. To
extract the vector of the growth direction, the values of nijk were
calculated using pijk and the centers of the plants. By focusing on
nijk and Nk, the growth of three leaves of the plant was found to
be relatively uniform while the light was off (Figure 3A), with
deviations occurring only when the light was on (Figure 3B).
In addition, the angle of nijk (θijk) can be divided into two
categories, namely, the inward and outward directions. The
inward directions represent the mixed information between the
leaf-extending and leaf-drooping while the outward directions
represent leaf-standing.

Time-Series Analysis of Single Lettuce
Figures 4A,B shows the time-series of

∣∣Nk
∣∣, Sk, and θk for a

single plant. Based on these results, it was found that
∣∣Nk

∣∣ and
θk exhibit a periodicity that is associated with the LD cycle. The
result obtained for

∣∣Nk
∣∣ contains some noise, especially prior

to t = 120 h. In addition, the results obtained for θk represent
the different patterns obtained before and after t = 48 h. The
plot of θk prior to t = 48 h shows stagnation of data points
near -π, 0, and π, which correspond to the direction of the
leaves in this stage, where the plot of θk after t = 48 h is in the
range of –π to 0 rad, which indicates a direction that does not
match the direction of the leaf at this stage. This is due to the
composition of the two different directions of the leaf, where one

FIGURE 3 | Visualization result of normal-vector analysis. Visualization result
for single lettuce at (A) t = 168 h and (B) t = 180 h. Blue vector represents pijk

Red vector represents nijk. White vector represents Nk. The visualization of Nk

was performed by at 20 × the original Nk.

is oriented to approximately π/4 rad and the other is oriented
to approximately 5π/4 rad. Sk exhibits an exponential growth,
which is in good agreement with the result reported by Evans
(1972). Figures 4C–F show a visualization of image, |nijk| and
sgn(θijk) at t = 24, 36, 120, and 132 h, respectively. From these
results, it was found that |nijk| increases over time, while there
is a time point at which the growth of the leaves is relatively
equal, as shown in Figures 4C,E, while the distribution has a
large deviation, as shown in Figures 4D,F. In Figures 4C–F,
sgn(θijk) indicates that both the inward and outward directions
of nijk are observed in a single plant, with the corresponding area
reversing in 12 h. A comparison of the distribution of sgn(θijk)
in Figures 4E,F reveal that Figure 4F exhibits an imbalanced
distribution of the inward and outward directions, which results
in a high value of

∣∣Nk
∣∣, as shown in Figure 4A.

Growth Prediction Using
Machine Learning
Figure 5A is a scatter plot of the fresh weight at the harvest
and PA at t = 180 h, combined with histograms of the data
extracted from three different experiments (total of 338 plants).
The histograms exhibit Gaussian distributions based on the
Kolmogorov-Smirnov test. The calculated coefficient correlation
was 0.454. Figure 5B shows the changes in the correlation
ratio between the fresh weight at the harvest and each value
of PA at t = 0–201 h. This result indicates that the correlation
ratio of a single experiment is lower than the result shown in
Figure 5A. Furthermore, the time-series result obtained for two
different experiments revealed a different pattern, highlighting
the difficulty of predicting the fresh weight when using only once
measuring of PA.

Machine learning was applied to predict the fresh weight from
the extracted large dataset that was constructed from Table 1.
Three types of features and a total of 10 features and 115
dimensions were used for the machine learning. The features of
the “PPFD” and the “Track” were made for the environmental
features. The “Track” feature indicates the area of the panel,
as shown in Supplementary Figure S1, which represents the
interaction between the plants. In particular, in track 1, there is
less interaction with the other plants than there is in tracks 2, 3, 4,
and 5. To compare the importance of the features obtained with
the statistical methods and circadian-related methods, “PCA”
was used as a statistical means of dimension reduction. “PCA”
was performed in four different ways, all of which used all
the angle data, magnitude data, and PA data. For the time-
series analysis of the features, six features were examined. The
features “angle-shift” and “magnitude-shift” were calculated by
determining the correlation between the original time-series
data and the data which are shifted by 24, 48, 72, 96, 120,
and 144 h for the angle data and magnitude data, respectively.
This approach considers the periodicity of the time-series data,
which is an important characteristic of circadian rhythms. The
average value of PA is determined by averaging the PA for 0–
24, 24–48, 48–72, 72–96, 96–120, 120–144, 144–168, 168–192,
and 192–201 h. This simple approach was conducted for PA
because the original time-series data for PA exhibits a relatively
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FIGURE 4 | Time-series analysis result for single plant using OF. (A,B) Time-series analysis result for single lettuce from t = 0–201 h. Red, green, and blue lines

represent
∣∣∣Nk

∣∣∣, Sk, and θk, respectively. The white and black bar at the top of the figure indicates the light and dark conditions. (C–F) shows the image data and

visualization results for
∣∣nijk

∣∣ as well as the visualization results for sgn(θijk) at t = 24, 36, 120, and 132 h, respectively. The red part of sgn(θijk) represents the
positive-direction vector, relative to the center of the seedling. The blue part of sgn(θijk) represents the negative-direction vector, relative to the center of the seedling.

simple trend. For the “angle-diff” and “magnitude-diff” features,
the averages of each of the light and dark conditions (LD) were
calculated for the angle data and magnitude data, respectively.
Then, the combination of the absolute difference between two
consecutive light conditions (LL), dark conditions (DD), and
pairs of LD was calculated. This approach to dimension reduction
represents the effect of the circadian rhythms derived from the
change in the light conditions, which is also known to be an
important characteristic of a circadian rhythm.

Gradient boost regression is used for both the prediction of
the fresh weight and to explain the importance of each feature.
SVR was performed to increase the accuracy of the prediction,
for which there are no methods for explaining the importance
of features such as GBR. Figure 5C is a scatter plot of the
observed and predicted fresh weight using GBR. Using this
model, the correlation ratio was found to be 0.669. Figure 5D
shows the feature importance as calculated from the result of
GBR shown in Figure 5C. The white, black, red, blue, and green
bars represent the environment-related features, those related to
dimension reduction, angle-related features, magnitude-related

features, and PA-related features, respectively. Each bar indicates
the sum of the related features. For example, the angle-shift
features are visualized from the sum of six features related
to angle-shift, as described in Table 1. This result shows that
not only PA-related features but also angle- and magnitude-
related features are used in the prediction with GBR. In addition,
a comparison between “pca-ang” and the angle-related features
reveals that the dimension reduction reflecting the time-series
data affected the importance of the features. By focusing on the
result obtained for “magnitude-diff,” the feature importance of
“mag-dd-diff” produced the highest result. This can be seen from
the result shown in Figure 4A, in which the averaging of the light
conditions did not represent the overall conditions, although that
under dark conditions did, because it tended to show a higher
rate of change in light conditions (e.g., about 0.02 to 0.08 for
120–140 h). This pattern can also be seen from “angle-diff,” in
which the difference between “ang-ld-diff” and “ang-dd-diff” is
small compared to that between “mag-ld-diff” and “mag-dd-diff.”
This result can also be explained by Figure 4B, in which the
change rate of angle in the light condition is higher than that in
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FIGURE 5 | Predicted fresh weight using machine-learning method. (A) Correlation ratio between fresh weight at the harvest and PA at t = 180 h. (B) Correlation
ratio between the fresh weight and PA from t = 0–201 h. The dark green and light green indicate the different sets of experiments (dark green: 141 plants, light green:
92 plants). (C) Correlation ratio between observed fresh weight and predicted fresh weight using gradient boost regression (GBR). (D) Feature importance analysis of
115 features using GBR. (E) Correlation ratio between observed fresh weight and predicted fresh weight using support vector regression (SVR).

the dark condition. To further increase the accuracy of the model,
SVR was used in Figure 5E. Using this model, the calculated
correlation coefficient was 0.743.

DISCUSSION

Information and communication technology (ICT) has been used
in the agricultural sector as a means of producing high-quality
crops (Ibayashi et al., 2016). In the present study, the authors
developed an MPI system, which uses microcomputers and a
camera module to automatically collect time-series image data
(Figure 1C). Compared to chlorophyll fluorescence, image data
is easy to collect and analyze. Furthermore, the setup of the
MPI system is convenient, which should lead to this technology
being adopted by commercial plant factories. To extract those
characteristics related to the circadian rhythm from this time-
series image, the leaf movement of the plants was considered.

In the present study, the authors applied normal-vector
analysis to extract the features from the MPI system. The
normal vector shown in Figure 3A is relatively small, in that it
represents the uniform elongation of individual leaves at night
time. This is in good agreement with the results obtained by
Miyagishima et al. (2014). On the other hand, Figure 3B shows
a deviation in nijk, which results in a relatively large value of
Nk at day time. It is assumed that the increase in the angle

defined in a previous study (Dornbusch et al., 2014) could be
extracted from this result. It is obvious that the movement
resulting from the elevation of the plant is greater than that
resulting from the elongation, such that the results obtained for∣∣Nk

∣∣ in Figure 4A are closer to the time-series pattern of the
elevation angle rate rather than to the elongation rate reported
by Dornbusch et al. (2014). The interpretation of the normal
vector will be more difficult as the plant growth leads to the
formation of multiple vectors. This issue can be resolved by
isolating an individual leaf rather than by attempting to analyze
an entire plant.

Figures 4A,B show the association between the LD cycles
and

∣∣Nk
∣∣ and θk, respectively. This circadian rhythm can also be

observed by calculating the 12-h moving average of the difference
in Sk (Supplementary Figure S2). Although

∣∣Nk
∣∣ is able to

extract circadian rhythms, the rhythms extracted from it are
noisy relative to those taken from Sk The rhythm taken from
θk also exhibits a complex feature, but a 24 h pattern and an
indefinite change in the angle can be observed, which matches the
characteristics of the plant phenotype. This complexity cannot
be explained using existing plant science and knowledge of
plant circadian rhythms, which is based on studies using simple
waveforms. This should be discussed in the future from the
viewpoint of plant morphology. The values of

∣∣Nk
∣∣ and θk are

derived from complex data which are caused by a mixture of plant
growth and elevation angle, as discussed before. To reduce the
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complexity of these data and reduce the amount of noise, it is
necessary to extract the information derived from the circadian
rhythm by averaging the light-on and light-off conditions. The
“angle-shift,” “magnitude-shift,” “angle-diff,” and “magnitude-
diff” features were applied to extract the features derived from
the circadian rhythm. As can be seen from Figure 5D, the
PCA features of the angle appeared low, as did the magnitude,
relative to the PCA features of PA. It can say that the statistical
analysis performs well for the simple results such as PA, but it is
difficult to reduce the dimensions of data having a high degree
of complexity, especially “ang-data.” Furthermore, the results of
the dimension reduction, as derived from the circadian rhythms,
exhibited a high “ang-data” value, relative to that of “pca-ang,”
which leads to the conclusion that the simplification of complex
data derived from the circadian rhythms provides a successful
means of predicting plant growth. In addition, the result obtained
for “mag-dd-diff” is as high as those for “PA-ave,” “PA-ld-diff,”
and “PA-dd-diff,” such that it can be said that “mag” data would
be an exceptionally reliable feature provided the dimensions were
correctly reduced.

The SVR-based plant growth model produced a correlation
coefficient of 0.743. This was an improvement over the former
growth prediction model, thus pointing to the accuracy of the
proposed model (Moriyuki and Fukuda, 2016). Furthermore,
Guilford (1942) proposed that correlation coefficients of
more than 0.70 be classed as a “High correlation; marked
relationship,” again pointing to the quality of the proposed
model. Furthermore, the proposed method proved capable of
predicting the fresh weight at 22 days in the future with a
high level of accuracy, whereas a former study only addressed
that at 11 days in the future (Moriyuki and Fukuda, 2016).
It is surprising that the prediction was successful, given that
the experiment involved moving the plants from the nursery
stage to cultivation stage prior to the measurement of the fresh
weight, indicating that the prediction is possible without any
knowledge of the environmental conditions in the cultivation
stage. Although the evaluation using the proposed model with
a correlation coefficient score proved successful, a few problems
remain. Figures 5C,E show plots with a steep trend. This suggests
that the model overestimates fresh weights that are somewhat
lower (approximately 40–60 g) and underestimates those that
are higher (approximately 100–120 g). These types of predictions
are commonly observed in machine learning and are a result
of there being an unequal number of data, as can be seen in
the histogram of the fresh weight shown in Figure 5A. To
overcome this issue, up- or down-sampling of the data can be
performed, which is a machine learning process to duplicate the
number of low-frequency observed data or reduce the number
of high-frequency observed data. In addition, combining the
prediction results obtained by multiple types of models, which
is called ensemble learning, can improve the results in an actual
commercial application, although in this work, simple models
such as GBR and SVR were used to focus on both the prediction
and description of the results.

The ability to predict plant growth prior to harvesting
based on the feature values of lettuce seedlings at the nursery
stage would greatly improve production stability in a plant

factory. Moriyuki et al. (2018) investigated a profit model for a
commercial plant factory. In their study, they focused on plant
growth dynamics (the average and standard deviation of the fresh
weight) as well as the shipping type, finding that the yield at
harvest time was highly dependent on the growth dynamics of
the lettuce population. In the present study, the authors devised
a method of predicting the accuracy of the average and standard
deviation of the fresh weight at harvesting by applying advanced
analysis using the feature values of lettuce seedlings and machine
learning, as shown in Figure 5E. Thus, the prediction of the
yield at an early stage by applying an MPI system would lead
to production stability in that the cultivation conditions could
be adjusted once a predication had been made. It is suggested
that the plant factory industry should implement such a means
of prediction, whereby the necessary values are obtained using an
MPI system and machine learning.

The present study displayed the capabilities of OF and normal-
vector analysis when applied to a plant-growth prediction model.
The results obtained from the models show the contribution
of the features derived using OF and normal-vector analyses
to machine learning. The results were obtained using an MPI
system which uses only image data, and thus could easily be
applied commercially.
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