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ABSTRACT
The loss of temperate forests of Mexico has continued in recent decades despite
wide recognition of their importance to maintaining biodiversity. This study analyzes
land use/land cover change scenarios, using satellite images from the Landsat sensor.
Images corresponded to the years 1990, 2005 and 2017. The scenarios were applied for
the temperate forests with the aim of getting a better understanding of the patterns
in land use/land cover changes. The Support Vector Machine (SVM) multispectral
classification technique served to determine the land use/land cover types, which were
validated through the Kappa Index. For the simulation of land use/land cover dynamics,
amodel developed inDinamica-EGOwas used, which uses stochasticmodels ofMarkov
Chains, Cellular Automata and Weight of Evidences. For the study, a stationary, an
optimistic and a pessimistic scenario were proposed. The projections based on the
three scenarios were simulated for the year 2050. Five types of land use/land cover
were identified and evaluated. They were primary forest, secondary forest, human
settlements, areas without vegetation and water bodies. Results from the land use/land
cover change analysis show a substantial gain for the secondary forest. The surface area
of the primary forest was reduced from 55.8% in 1990 to 37.7% in 2017. Moreover, the
three projected scenarios estimate further losses of the surface are for the primary forest,
especially under the stationary and pessimistic scenarios. This highlights the importance
and probably urgent implementation of conservation and protection measures to
preserve these ecosystems and their services. Based on the accuracy obtained and on
the models generated, results from these methodologies can serve as a decision tool to
contribute to the sustainable management of the natural resources of a region.

Subjects Ecology, Natural Resource Management, Forestry, Spatial and Geographic Information
Science
Keywords Markov chains, Scenarios, Cellular automata, Pessimistic scenario, Temperate forests,
Dinamica-EGO, Weights of evidence, Land use/land cover change, Remote sensing

INTRODUCTION
Forest ecosystems are important because they provide a wide variety of products
and services for the human well being (Hall et al., 2006; Fischer & Lindenmayer, 2007;
Weiskittel, Crookston & Radtke, 2011) harvested products (Houghton & Nassikas, 2017),
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carbon sequestration (Hawkes et al., 2017), soil retention (Borrelli et al., 2017), water
supply (Sun et al., 2006) and are the habitat of many species of plants and animals.
However, antrophongenic activities are the main cause of degradation of almost half of the
world surface in the last three centuries. That has caused the loss of lots of our precious
natural resources. Twenty-five nations have practically degraded 100% of their forests,
and another 29 nations have degraded 10% of their forest areas (Millennium Ecosystem
Assessment, 2005).

Temperate forests represent a key element in the carbon cycle (Pan et al., 2011). They
are important carbon dioxide sinks (Ma, Jia & Zhang, 2017), offsetting the emissions
produced by the world population (FAO, 2018). Temperate forests store 14% of the planet’s
carbon (Pan et al., 2011). However, projections of global environmental change show that
temperate forests show high vulnerability (Gonzalez et al., 2010). This vulnerability can
change the productivity of forests by modifying net carbon sequestration rates (Peters
et al., 2013).

Temperate forests of Mexico occupy 17% of the national territory, represented by 32
millions hectares. In this region, the greatest association of pine and oak forests in the world
occurs (González, 2012). Around 23 different species of pines and close to 200 species of
oaks live in the ecoregion of Sierra Madre Occidental (Navar, 2009). However, 40 thousand
hectares of forests get on average lost annually. This region has the highest deforestation
rate in the world (Velázquez et al., 2002; Mas et al., 2004).

The study of the land use/land cover changes (LULCC) has become a fundamental
research topic, since the change in land use/land cover (LULC) affects forest ecosystems
and their biodiversity (Gharun et al., 2017). The LULCC, produced by anthropogenic
activities have significantly altered the ecosystems biodiversity and services (Butler &
Laurance, 2008; Miles & Kapos, 2008; Miranda-Aragón et al., 2012). The dynamics of
LULCC directly affect the landscape patterns, the biogeochemical cycles, the ecosysistems
structure and function (Scheffer et al., 2001). Recently, the analysis of the spatio-temporal
patterns has been the objective of several research studies (Huang, Zhang & Wu, 2009;
Manjarrez-Dominguez et al., 2015; Vázquez-Quintero et al., 2016). The models of LULCC
commonly employed, quantify deforested surfaces, measuring the degree of change in the
ecosystem (Lapola et al., 2011). Regression methods suchs as the logistic regression have
been employed to generate models of LULCC. These models suppose that the relationship
between the LULCC and the variables that produce it is a logistic function; however, it
has been demonstrated that this relationship is too general (Mas et al., 2010; Mas et al.,
2014). The dynamics and complexity of the ecosystem requires a more complete evaluation
of LULCC. The spatial modeling is a technique contemplating alternative scenarios of
LULCC, which could contribute to better explain the key processes influencing LULCC
(Pijanowski et al., 2002; Eastman, Solorzano & Van Fossen, 2005; Torrens, 2006; Pérez-Vega,
Mas & Ligmann-Zielinska, 2012). Thus, one of the main functions of the LULCC models is
the establishment of scenarios, with the aim of changing policies and inadequate practices
for the sustainable management of natural resources (DeFries et al., 2007; Berberoğlu, Akin
& Clarke, 2016).
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Several approaches to establish LULCC scenarios have been developed and tested to
generate scenarios of LULCC. Ferreira et al. (2012) generated deforestation scenarios to
2050 in the central Brazilian savanna biome finding the possible increase of 13.5% in
deforested areas. Kamusoko et al. (2011) evaluated three scenarios (optimistic, pessimistic
and business-as-usual) in the Luangprabang province, Lao People’s Democratic Republic,
finding decreases in forest areas in the pessimistic and business-as-usual scenarios and
an increase in forest areas in the optimistic scenario under a strict regulatory policy.
Gago-Silva, Ray & Lehmann (2017) used a combination of Bayesian methods and Weights
of Evidence to model the probability of change in a western part of Switzerland. Galford
et al. (2015) used Bayesian Weights of Evidence for policiy scenarios from 2010 a 2050
evaluating plans for agriculture and forest in Democratic Republic of Congo.

The models to establish reference scenarios of changes in LULCC are based on: systems
of equations, statistic models, experts, evolutionary and cellular models, even though there
have been efforts to combine plataforms in a multiagent system (Mas et al., 2014; Stan &
Sanchez-Azofeifa, 2017). The statistical models employ spatial statistics and regression, in
comparison with the expert models, which allow the expert knowledge to lead the model
path (Parker et al., 2003; Soares-Filho, Rodrigues & Follador, 2013). The evolutionary or
cellular models are very competent to determine the ecologycal alteration; however, they
just provide information about the causality or the decision-making (Parker et al., 2003).

The generation of LULCC scenarios for the forest region of the state of Chihuahua,
Mexico is necessary because of the higher temperate forest deforestation rates in the country.
The generation of the LULCC scenario shows two important aspects: expert knowledge
and knowledge based on data. Expert knowledge is useful to establish methodological
processes according to the needs of the user (Gounaridis, Chorianopoulos & Koukoulas,
2018). Knowledge based on data, helps to understand the general behavior between the
factors of change of land use in a spatial way (Olmedo et al., 2018). Most studies are based
on knowledge of the data (Paegelow & Olmedo, 2005; Kityuttachai et al., 2013), however,
few allow the inclusion of both (Soares-Filho et al., 2006; Olmedo et al., 2018).

The Dinamica Environment for Geoprocessing Objects (Dinamica-EGO) is a flexible
open platform, which allows analyzing distribution, abundance and spatio-temporal
dynamic of the landscape (Soares-Filho, Cerqueira & Pennachin, 2002; Lima et al., 2013).
The model incorporated to Dinamica-EGO employs cellular automata to simulate the
changes happening in a grid, estimating the transition probability, as well as the direction
of changes based in stocastic processes (Rutherford et al., 2008; Arsanjani et al., 2013).
Dinamica-EGO allows users to incorporate expert knowledge into the overall statistical
analysis based on the spatial data set (Mas et al., 2014). In addition, Dinamica-EGO
incorporates the possibility of modifying landscape metrics in the calibration procedure to
generate the simulation (Mas, Pérez-Vega & Clarke, 2012). In a comparative evaluation
of approaches to modeling LULCC, two key advantages over Dinamica-EGO were
emphasized: (1) incorporation of the Patcher and Expander functions. The first function
generates new patches in the landscape and the second expands the previously formed
patches, (2) Dinamica-EGO allows the incorporation of multiresolution validation by
means of the Fuzzy Similarity Index.
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The aim of the present study was (a) to evaluate the change dynamics in the period from
1990 to 2017; (b) to simulate the changes of LULCC for the year 2050 and (c) to elaborate
a discussion about the impacts of different scenarios, which could happen in the future in
a forest region of the state of Chihuahua, Mexico. Specifically, there are three scenarios,
pessimistic, optimistic and stationary state. The model will identify where the different
types fo LULCC could hapen. This will allow that future studies could determine changes
in carbon sequestration in both, on the surface extension and quantity.

MATERIALS & METHODS
Study area
The study area is located in the western part of the state of Chihuahua, Mexico. It is part of
the ‘Sierra Tarahumara’ and have a surface area of 497,159 ha. Its extreme coordinates are
108◦00′W, 29◦00′N and 107◦10′W, 27◦30′N (Fig. 1). It is one of the regions of temperate
forests, which has experimented the greatest disturbances in the past years in the state of
Chihuahua (Herrera, 2002). It belongs to the most extensive forest areas in North America.
It is immersed within a complex orography composed of large canyons and deep canyons,
which results in a mixture of temperate and tropical ecosystems. It is characterized by its
high biodiversity and number of endemic species, estimating the presence of around 4,000
species of plants. Also, it is recognized by the International Union for the Conservation of
Nature as one of the megacenters of plant diversity (Felger & Wilson, 1995). The main land
uses in the area include: pine forests, oak forests, pine-oak and oak-pine forest associations,
agriculture and grassland communities. The economic activities in the region are forestry,
extensive livestock and rainfed agriculture (INEGI, 2003).

Data source
For the analysis of the LULCC, three scenes of the Landsat sensor (Path 33, Row 41), with a
spatial resolution of 30 m, were used. The scenes corresponded to the years 1990, 2005 and
2017 and they were acquired from clear sky days and each of them taken during the same
month to reduce the temporal variation. The scenes were downloaded from the United
States Geological Survey (USGS, 2018). The characteristics of each scene can be seen in
Table 1.

The scenes were radiometrically corrected. The radiometric correction was carried out
with the QGis software v.2.8 through the SemiAutomatic Classification plugin (Congedo,
2017).

Integration and composition of bands
Once the scenes were corrected, they were integrated into a layer stack. False color
composites for the Landsat TM5 were then generated, with a combination of the bands
5, 4 and 3. Band 5 corresponds to the infrared channel (1.55–1.75 µm), band 4 to the
near infrared (0.76–0.90 µm) and the band 3 to the red channel (0.63–0.69 µm). This
combination was applied to the scenes of 1990 and 2005. Regarding the scene of 2017,
the combination for Landsat OLI8 was applied and corresponded to the bands 6, 5 and
4, where band 6 corresponds to the medium infrared channel (1.55–1.65 µm), band 5 to
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Figure 1 Location and elevations of the study area.
Full-size DOI: 10.7717/peerj.6617/fig-1

Table 1 Scenes characteristics.

Sensor Date Characteristics

Landsat TM 5 1990 7 spectral bands, 30 m resolution
Landsat TM 5 2005 7 spectral bands, 30 m resolution
Landsat OLI 8 2017 8 spectral bands, 30 m resolution; 1 panchromatic band

15 m resolution

Notes.
TM, Thematic Mapper; OLI, Operational Land Imager.

the near infrared channel (0.85–0.88 µm) and band 4 to the red channel (0.64–0.67 mn)
(Lillesand & Kiefer, 2000).

Land use and land cover classification
The Suport Vector Machine (SVM) classification was applied to the 1990, 2005 and 2017
images through the software R (R Core Team, 2016) with the R package ‘‘caret’’ (Kuhn,
Wing & Weston, 2015) to obtain LULC information. The SVM classifier is a supervised
technique of nonparametric statistical methods (Mountrakis, Im & Ogole, 2011). The SVM
classification has been used in several research studies in the past (Kavzoglu & Colkesen,
2009; Otukei & Blaschke, 2010; Shao & Lunetta, 2012). For the supervised classification,
five classes of land use were defined; (1) primary forest, (2) secondary forest, (3) human
settlements, (4) areas without vegetation and (5) water bodies (Table 2).
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Table 2 Land use/land cover types determined through the supervised classification method.

Land use and land cover Acronym Description

Primary forest PF Forest fully covered with canopy
Secondary forest SF Forest partially covered with canopy
Human settlements HS Residential areas
Areas without vegetation AWV Areas without vegetation, agriculture areas or induced

grasslands
Water bodies WB Water bodies

Modeling and spatial simulation with Dinamica-EGO
The LULCC scenarios were made based on the historical trends of change in forest
cover during 1990–2017 of the supervised classifications using Dinamica-EGO (Soares-
Filho, Cerqueira & Pennachin, 2002). The historical trends of LULCC is based on the
transition matrix (Monteiro Junior, Silva E De Amorim Reis & Mesquita Souza Santos,
2018). Dinamica-EGO uses the algorithm of cellular automata, and the method Weights
of Evidence (Olmedo et al., 2018). For the simulation of deforestation, the following steps
were undertaken: (1) selection of change drivers as well as transitions, (2) exploratory
analysis of the drivers of deforestation, (3) simulation and (4) validation. These four steps
are described in the following sections.

Selection of variables and transitions
The selection of the set of exploratory variables to simulate the LULCC is essential for the
modeling success (Miranda-Aragón et al., 2012; Pérez-Vega, Rocha Álvarez & Regil García,
2016). In this study, 19 variables were used; 17 static and two dynamic variables. Static
variables remain constant during model execution. Dynamic variables change during the
execution of the model and they are continuously updated in each iteration (Olmedo et al.,
2018). The set of variables used is shown in Table 3.

The transition refers to the total amount of LULCC that occurred in the simulation
period. In this study, the transitions of interest were: (a) primary forest to secondary forest,
(b) primary forest to areas without apparent vegetation, (c) primary forest to urban areas
and (d) secondary forest to areas without apparent vegetation (Table 4).

Exploratory analysis of the data
When we modeled LULCC dynamics, Weights of Evidence (WoE) were applied to project
transition probabilities. Regarding deforestation, degradation or any other type of change,
we previously know about the location of favorable conditions for LULCC. The influence
of static and dynamic variables and the elaboration of the LULC maps was performed with
WoE in the Dinamica-EGO software (Soares-Filho et al., 2010).

The positive values of WoE represent an attraction between a transition of land use and
a specific variable. The greater the value of W+, the greater the probability of transition.
Negative values of W− indicate low probabilities of transition instead (Maeda et al., 2010a;
Maeda et al., 2010b). By using the WoE values of the variables used in the analysis of
LULCC, the Dinamica-EGO model calculates the transition probability of each pixel to
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Table 3 Variables feeding the deforestation model.

No Variable type Name Unit Acronym

1 Density of main roads m2/Km2 Denmr
2 Density of secondary roads m2/Km2 Densr
3 Density of main streams m2/Km2 Denms
4 Density of secondary streams m2/Km2 Denss
5

Density

Density of rural settlements m2/Km2 Denrs
6 Distance to sawmills m Diss
7 Distance to water bodies m Diswb
8 Distance to main roads m Dismr
9 Distance to secondary roads m Dissr
10 Distance to main streams m Disms
11 Distance to secondary streams m Disss
12 Distance to rural settlements m Disrs
13 Distance to urban settlements m Disus
14 Distance to mines m Dism
15

Proximity

Distance to areas without apparent vegetation m Disawav
17 Altitude m Alt
18 Slope ◦ Slop
19

Topographic

Topographic position index Dimensionless TPI

Table 4 Transitions of land use/land cover.

To

PF SF HS AWV WB

PF X X X

SF X

HS
AWV

From

WB

change. Thus, the pixels are assigned with a probability value for a given transition and
probability maps are generated for the transitions of interest (Soares-Filho, Rodrigues &
Costa, 2009; Soares-Filho et al., 2010;Mas & Flamenco, 2011).

Given that the basic hypothesis of the WoE technique is that the driving variables must
be independent, for this study the correlation between the variables was tested through the
Cramer Coefficient (V ), represented by Eq. (1).

V =

√
χ2

0...M
(1)

Where: χ2
= is the chi-square statistic of the contingency between two variables, 0 =

denotes the sum of the values of contingency, M = is the minimum of n−1 or m−1,
where n denotes the number of rows andm the number of columns. Bonham-Carter (1994)
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mentioned that values lower than 0.5 for the Cramer Coefficient (V ) suggest independence,
while values higher than 0.5 involve a greater association (Almeida et al., 2003; Teixeira
et al., 2009).

Simulation of land use and land cover changes
Three types of scenarios were used for 2050; they were called pessimistic, optimistic and
stationary. For the three scenarios, the modeling base was the period 1990–2017. The
transition matrix of 1990 and 2017 were used to estimate the possible change in forestry
coverage in the future, taking 2017 as the beginning year and 2050 as the final year.
In the pessimistic scenario, the transition probability matrix and the change function
(patcher and expander) were modified, increasing the deforestation and fragmentation
rates between 1990 and 2017. This was done based on the hypothesis that the development
of road infrastructure, urban expansion, fires, uncontrolled exploitation, among others,
will produce strong spatial changes of land use. For the optimistic scenario, the state and
national forest development plans were considered. Such plans promote the protection and
conservation of forest resources (CONAFOR, 2001). For this scenario, the conservation
and promotion of strategies to protect forests were represented by reducing the transition
matrix value, as well as the patcher and expander change functions. Regarding the stationary
scenario, transitions or change functions were not modified. In this case, it is assumed that
the trend will be the same as the one between 1990 and 2017.

Validation
To evaluate the model performance, we used a Fuzzy Similarity Index (FSI), where the
representation of a pixel is influenced by itself and its neighborhood (Ximenes et al., 2011;
Yanai et al., 2012; Chadid et al., 2015). The FSI employed in this study was developed by
Hagen (2003), modified by Soares-Filho et al. (2017) and implemented in Dinamica-EGO.
The FSI verifies the agreement between the observed and the simulated land use and land
cover datasets by obtaining the number of coincident cells within increasing window sizes
of a neighborhood (Costanza, 1989; Soares-Filho et al., 2017). The validation process was
carried out by comparing a simulated map and a reference map. The simulation of the
2017 LULCCmap was generated. To generate the simulation of 2017, the transition matrix
was used between 1990 and 2005. The comparison through the FSI allowed to evaluate the
areas of coincidence of change and no change between the real and simulated map of 2017.
Finally, the general procedure used in this study is outlined in the flowchart depicted in
Fig. 2.

RESULTS
Detection of land use/land cover changes
Results from the analysis of LULCC show a considerable gain for secondary forest. The
forest cover of the primary forest was reduced from 55.8% of the study area in 1990 to
37.7% in 2017. The areas without vegetation increased their area from 4.11% to 4.87%
during 1990–2017 (Table 5). Regarding human settlements and water bodies, they showed
a positive trend with an increase from 0.03% and 0.01 in 1990 to 0.1% and 0.03 in 2017,
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Figure 2 Flowchart of the methodological procedure followed to produce the proposed scenarios. Ab-
breviations: TM, Tematic Mapper; OLI, Operational Land Imager; WoE,Weights of Evidence; LUCC,
Land use and cover change.

Full-size DOI: 10.7717/peerj.6617/fig-2

Table 5 Area occupied for five types of land uses during 1990, 2005 and 2017, and rate of change for
the periods 1990–2005 and 2005–2017.

Occupied area (Ha) Occupied area (%) Rate of changeLand
Use 1990 2005 2017 1990 2005 2017 1990–2005 2005–2017

AWV 20444.18 23828.59 24101.92 4.11 4.79 4.85 8.33 8.43
SF 199121.38 223948.16 286922.04 40.05 45.05 57.72 8.03 10.68
HS 154.60 272.35 521.65 0.03 0.05 0.10 12.58 15.96
WB 26.9712 103.76 153.91 0.01 0.02 0.03 27.48 12.36
PF 277380.46 248973.97 185427.79 55.80 50.08 37.30 6.41 6.21

Notes.
AWV, areas without vegetation; SF, secondary forest; HS, human settlements; WB, water bodies; PF, primary forest.

respectively. In general, the primary forest was the land use that experimented a negative
trend. The rest of the land uses showed surface gains. The rate of change obtained indicate
that the secondary forest, the human settlements and the water bodies were the land uses
with the greatest transformation rates, with 8.03, 12.58 and 27.48, respectively, for the
period of 1990–2017 and with 10.68, 15.96 and 12.3, respectively, from 2005 to 2017.
Figure 3 shows the area occupied by the land uses studied. Likewise, it shows the rate
of change of these land use/land cover for the periods 1990–2005 and 2005–2017. The
calculated global precision, based on the Kappa Index, presented values of 80%, 85% and
84% for 1990, 2005 and 2017, respectively.
Table 6 shows the land use/land cover change dynamics. The primary forest lost the

greatest surface area (28,406 ha) during 1990–2005, increasing the surface lost to 63,546
ha during 2005–2017. In contrast, the secondary forest showed the largest increases in area
with 87,800 ha in the period 1990–2017.

Prieto-Amparán et al. (2019), PeerJ, DOI 10.7717/peerj.6617 9/25

https://peerj.com
https://doi.org/10.7717/peerj.6617/fig-2
http://dx.doi.org/10.7717/peerj.6617


Figure 3 Land use/land cover of 1990 (A), 2005 (B), 2017 (C), changes during 1990–2005 (D) and
changes during 2005–2017. Abbreviations: AWV, areas without vegetation; SF, secondary forest; WB,
water bodies; HS, human settlements and PF, primary forest.

Full-size DOI: 10.7717/peerj.6617/fig-3

Transition matrix
The transition probabilities of LULCC for the periods 1990–2005 and 2005–2017 are
shown in Table 7. The diagonal of the matrix represents the permanence probability,
i.e., the probability of a LULC type to remain unchanged. The areas without vegetation
showed a 90% probability of transition from 1990 to 2005, lowering it to 62% from 2005
to 2017. The areas of primary forest presented a negative trend with a 71% probability of
permanence in the period 1990 to 2005, and changing it to 61% for the period 2005–2017.
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Table 6 Land use/land cover change dynamics.

Land use Difference
1990–2005 (ha)

Difference
2005–2017(ha)

Overall
Difference (ha)

Type of change 1990–2005 (ha) 2005–2017 (ha)

AWV 3384.40 273.34 3657.74 Deforestation 3120.40 7283.95
SF 24826.78 62973.88 87800.66 Degradation 54455.78 73904.27
HS 117.74 249.31 367.05 Other 76.22 219.41
WB 76.79 50.15 126.94 Recovery 27128.71 20204.13
PF −28406.49 −63546.18 −91952.66 – – –

Notes.
AWV, areas without vegetation; SF, secondary forest; HS, human settlements; WB, water bodies; PF, primary forest.

Table 7 Transition matrix of probability for land use/land cover change (1990–2005, 2005–2017,
1990–2017).

Periodo AWV PF HS WB PF

1990–2005 0.9000 0.0250 0.0250 0.0250 0.0250
2005–2017 0.6250 0.3504 0.0108 0.0029 0.0109AWV

1990–2017 0.6615 0.3124 0.0120 0.0035 0.0106
1990-2005 0.0222 0.7516 0.0008 0.0005 0.2248
2005–2017 0.0557 0.8116 0.0004 0.0000 0.1323SF

1990–2017 0.0654 0.7945 0.0012 0.0006 0.1384
1990-2005 0.0452 0.0645 0.8806 0.0000 0.0097
2005–2017 0.0557 0.2479 0.6959 0.0000 0.0004HS

1990–2017 0.0651 0.0774 0.8575 0.0000 0.0000
1990–2005 0.0000 0.1254 0.0000 0.8553 0.0193
2005–2017 0.0095 0.1684 0.0000 0.8030 0.0191WB

1990–2017 0.0000 0.1868 0.0000 0.7957 0.0175
1990–2005 0.0020 0.2865 0.0000 0.0000 0.7115
2005–2017 0.0056 0.3798 0.0003 0.0000 0.6144PF

1990–2017 0.0071 0.4419 0.0002 0.0000 0.5508

Notes.
AWV, areas without vegetation; SF, secondary forest; HS, human settlements; WB, water bodies; PF, primary forest.

Weights of evidence (WoE) analysis
The WoE of the 19 variables were analyzed to eliminate those values that were above 0.5,
based on the Cramer Coefficient (V ). The distance to urban locations showed positive
values of WoE from 1,000 to 9,000 m distance and from 42,000 to 47,000 m indicating
an influence for cover change from secondary forest to area without vegetation. The
distance to rural localities showed positive values of WoE in distances from 0 to 700 m. The
topographic position index showed positive values in the ranges of−150 to−60 and 120 to
240. The distance to sawmills indicates that deforestation appears from 0 to 16,000 m with
respect to the process of change between secondary forest to areas without vegetation. The
transition from primary forest to area without vegetation is likely to occur in distances to
the main roads between 13,000 and 21,000 m. The density of main streams such as rivers
and creeks had an influence in densities from 0.039 to 0.079 m2/km2.
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Figure 4 Variation of the FSI as a function of different distance.
Full-size DOI: 10.7717/peerj.6617/fig-4

In the transition from primary forest to secondary forest, the variable altitude showed
positive values of WoE in the range of 1,200–1,300 m, suggesting that most of the changes
occur in this range. The slope showed that the process of change between primary forest
and secondary forest is located on slopes of 45–60 and 60–75 degrees. The transition from
primary forest to human settlements was influenced by the distance to secondary streams
from 500 to 1,000 m. The distance to sawmills presented an influence from 0 to 6,000 m.
The distance to mines showed that the attraction to change occurs between 2,000 and
10,000 m.

Model validation
The model validation was carried with the simulated and the true land use classification
of 2017. The FSI was applied for neighborhoods from 1 ×1 to 7 ×7 pixels. The minimum
value reported for FSI was 49% in 1×1 pixels, while in 7×7 pixels the value of FSI was
91%. These results indicate that the real and simulated land use changes agree from 49%
to 91%. Simulation starts with 49% and adjusts to 91%, reaching a similarity adjustment
value at a distance of 210 m. These results agree with that obtained by Ximenes et al. (2011).
According to Soares-Filho et al. (2017), and similar studies (Carlson et al., 2012;De Rezende
et al., 2015; Elz et al., 2015), for the resolution and the number of transitions considered
in the model, the values obtained for the FSI suggest that the models are good and can be
used in the simulation of LULCC scenarios. Figure 4 represents the FSI in relation to the
size of the window.

Scenarios
The LULCC based on the transitions between 1990 and 2017 for the stationary, optimistic
and pessimistic scenarios are presented in Table 8.

Figure 5 shows the LULC classification of 2017 and the stationary, optimistic and
pessimistic scenarios for 2050, after the model calibration.
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Figure 5 (A) Land use/land cover of 2017 and simulated land use/land cover projected for the year
2050 as a result of the (B) Stationary, (C) Pessimistic and (D) Optimistic scenarios. Abbreviations:
AWV, areas without vegetation; SF, secondary forest; WB, water bodies.

Full-size DOI: 10.7717/peerj.6617/fig-5

Table 8 Percentage of surface area occupied by five land use/land cover types and rate of change for
2017–2050 based on three scenarios.

Occupied surface area (%) Change rateLand
use 2017 2050s 2050o 2050p 2017–2050s 2017–2050o 2017–2050p

AWV 4.848 5.275 5.017 7.695 3.40 3.23 4.96
SF 57.716 73.721 61.863 83.628 3.99 3.35 4.53
HS 0.105 0.105 0.105 0.105 3.13 3.13 3.13
WB 0.031 0.031 0.031 0.031 3.12 3.13 3.12
PF 37.300 20.868 32.983 8.541 1.75 2.76 0.72

Notes.
AWV, areas without vegetation; SF, secondary forest; HS, human settlements; WB, water bodies; PF, primary forest; S,
stationary; O, optimistic; P, pessimistic.
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Table 9 Land use/land cover change dynamics (ha) under three proyected scenario.

Land use 2017–2050s 2017–2050o 2017–2050p
AWV 2121.97 840.44 14150.28
SF 79565.57 20617.02 128818.00
HS 0.87 1.25 1.05
WB 0.46 0.32 0.10
PF −81688.00 −21459.04 −142969.31

Notes.
AWV, areas without vegetation; SF, secondary forest; HS, human settlements; WB, water bodies; PF, primary forest; S,
stationary; O, optimistic; P, pessimistic.

In the stationary scenario the area without vegetation would increase from 4.8% in 2017
to 5.27%. Likewise, the secondary forest would increase from 57.7% (2017) to 73%. For
this scenario, the changes in human settlement and water bodies would not increase or
reduce their area. Conversely, the rate of change of primary forest and secondary forest
were the greatest between 2017 and 2050. Regarding the optimistic scenario, it showed
reductions in areas of primary forest; however, in lower magnitudes than for the stationary
and pessimistic scenarios. For the pessimistic scenario, the Markov matrix was modified
considering a greater pressure on the forest ecosystem. The area without vegetation showed
a positive trend, with 4.8% in 2017 and an increase to almost 8% in 2050. The secondary
forest would go from 57.7% to 85.6% in 2050. Finally, the primary forest would reduce its
area to a 8% and isolated forest areas would appear. The rate of change for this scenario
were the ones that showed the highest values. The LULCC dynamics projected for 2050 for
the three scenarios (stationary, optimistic, pessimistic) is presented in Table 9.

DISCUSSION
In this study, scenarios of LULCC for 2017 and 2050 were generated for a temperate forest
region of Chihuahua Mexico. The scenarios were developed in Dinamica-EGO. Results
were consistent with the results described by Maeda et al. (2011). For the generation of
transitions and simulation of scenarios, LULC of 1990, 2005 and 2017 were determined.
In general, proximity to sources with anthropogenic activity as well as topography were
important factors influencing the change in forest cover. The exchange between primary
forest and secondary forest represented the main transition between 1990 and 2017.
This transition produced the greatest impact, in agreement with the results reported by
Pérez-Vega, Rocha Álvarez & Regil García (2016). Such transition was influenced by the
altitude, slope, and density of water streams, in agreement with the results of Armenteras
et al. (2006) and Chadid et al. (2015). The transition from primary to secondary forest
could be attributed to the reduction in pine vegetation, where shrubs would become
dominant. A consequence of the reduction of primary forest is the migration of fauna,
which deals with the dispersal of the seeds of large-crowned trees (Lehouck et al., 2009).
Other consequences include the change of lands to livestock production systems (Maeda
et al., 2010a; Maeda et al., 2010b) and the presence of areas with high solar incidence
and low coverage, which are prone to fires deRezendeetal2015. Another reason for the
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reduction of primary forest is the proximity to urban rural localities and roads, which is in
agreement with the results reported by Aguiar, Câmara & Escada (2007) and Osorio et al.
(2015). The proximity to urban and rural communities indicates the possible extraction of
wood for export and also facilitates the expansion of the agricultural or grazing frontier
(Chadid et al., 2015). This can be verified by the number of sawmills in the study area. The
process of deforestation/degradation is strongly related to this cause. In the forested areas
of Chihuahua, the rural localities are in a high degree of marginalization (González, 2012)
where there exist agricultural incentives PEF 2025 (CONAFOR, 2001), causing the possible
increase of the areas without vegetation. Another reason for the degradation may be the
distance to the main roads and the topographic position.

The results obtained for the different scenarios showed differences among the surfaces
of land use. The stationary scenario resulted in a considerable change in the primary
forest, mainly. This scenario considers that the transition values among land use coverages
will continue. The long-term impacts of the deforestation/degradation process include
increased reservoir sedimentation and decreased flows in the dry season (Gingrich, 1993).
Although the optimistic scenario showed increases in non-forested areas, this scenario
was the one that showed the greatest resistance fo the transitions from primary forest to
any other LULC. This scenario considers the strict application of the regulation of forest
resources, in agreement with the general trend in the protection of forest ecosystems to
degradation (UN, 2015) and the projections of the PEF 2025 (CONAFOR, 2001). The
pessimistic scenario showed the greatest losses in the coverage of the primary forest. In
addition, the increase in areas without vegetation, which is mainly associated to cropping
and the proximity to water currents, is one of the main outputs of the pessimistic scenario,
which agrees with the study by Elz et al. (2015). The increase in agricultural areas resulting
from this scenariomay benefit the inhabitants economically; however, the expansion of this
type of land use/land cover could lead to a greater demand of water for irrigation purposes,
which could potentially impact water resources (Maeda et al., 2010a; Maeda et al., 2010b).

Population growth (Barni, Fearnside & de Alencastro Graça, 2015), the market demand
and the lack of technification for wood processing cause the opening of land and the
extraction of wood for self-consumption. Taking these aspects into account, the simulation
of changes in forest cover indicates pressure on forest resources, which is consistent with
that found by Kamusoko et al. (2011). As a consequence, forest degradation could lead to
soil loss (Quan et al., 2011), loss in biodiversity (Falcucci, Maiorano & Boitani, 2007) and
landscape connectivity (Tambosi et al., 2014), habitat fragmentation (Nagendra, Munroe
& Southworth, 2004), the presence of invasive species (Mas, Pérez-Vega & Clarke, 2012),
among others.

The LULCC model of this study incorporated the Markov chains, Cellular Automata
andWoEmethods. Several transitions were simulated as in the studies by Soares-Filho et al.
(2010), Ferreira et al. (2013) and Elz et al. (2015). The validation was carried out based on
the FSI, as it was also performed in previous research (Ximenes et al., 2011). The result of this
analysis, where the three aforementioned methods are combined, highlighted the variables
driving the process of degradation/deforestation, as well as the manipulation based on the
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knowledge of the transition probabilities, being more suitable for the simulation of LULCC
(Mas & Flamenco, 2011). The transition probability matrices revealed that the primary
forest has a negative trend in its occupied area, suggesting that degradation will continue
over this land use, this area of primary forest changed to secondary forest. Although the
other transitions did not produce important changes in the spatial configuration of the
landscape, but their cumulative long-term effect could negatively impact the functioning
of the ecosystems and their biodiversity (Pompa, 2008).

In this study, we focused on hypothetical scenarios where the pressure of forest resources
was controlled by changing the transition probability. However, it is necessary to study
scenarios where market demand (Merry et al., 2009) or illegal timber extraction (Chadid
et al., 2015) is considered. The wood clandestinage corresponds to 30% in the some forest
management units of Chihuahua (Silva, 2009).

The scenarios are not exact projections of the future state of the environment (Feng
& Liu, 2012). However, it is an alternative means of supporting forest managers, which
can serve as a valuable tool for studying political decisions (Kolb & Galicia, 2018). That
would lead to a better knowledge of forest exploitation and protection. Managers can take
into account the proposed scenarios and take decisions based on the one with the most
promising results.

Due to the distribution of economic information (municipality based) and the lack
of information from georeferenced illicit extractions, we believe an approach such as
agent-based models would help to improve the study and address these issues. Finally,
the model did not consider climatic variations such as precipitation and temperature,
which can affect patterns and dynamics in recovery zones. That should be implemented in
future studies.

CONCLUSIONS
The use of scenarios as amethodology to study LULCChas been studied in depth at different
scales and in different areas. However, several improvements can be implemented. This
study presents an approach that integrates expert knowledge, and geospatial technologies
such as geographic information systems and spatial simulation. The developed scenarios
were based on the application of the forestry law (non-spatially) as well as the state of the
landscape, and not only on the extrapolation of past trends. In addition, the scenarios are
spatially explicit, which allow identifying the spatial pattern of change and the possible
critical areas of change in forest cover. Finally, this study contributes to the understanding
of the future fragmentation of the forest cover. Therefore, the current decisions in the field
of forest management and land use/land cover influence the future of our forests and can
probably be represented in one of the three proposed scenarios.
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