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Abstract

Vaccines created from closely related viruses
are vital for offering protection against newly
emerging strains. For Foot-and-Mouth dis-
ease virus (FMDV), where multiple serotypes
co-circulate, testing large numbers of vac-
cines can be infeasible. Therefore the de-
velopment of an in silico predictor of cross-
protection between strains is important to
help optimise vaccine choice. Here we de-
scribe a novel sparse Bayesian variable selec-
tion model using spike and slab priors which
is able to predict antigenic variability and
identify sites which are important for the neu-
tralisation of the virus. We are able to iden-
tify multiple residues which are known to be
key indicators of antigenic variability. Many
of these were not identified previously us-
ing Frequentist mixed-effects models and still
cannot be found when an `1 penalty is used.
We further explore how the Markov chain
Monte Carlo (MCMC) proposal method for
the inclusion of variables can offer signif-
icant reductions in computational require-
ments, both for spike and slab priors in gen-
eral, and our hierarchical Bayesian model in
particular.

1 INTRODUCTION

With the continual emergence of new virus strains,
the need to produce effective vaccines has become ever
more vital. Predicting where past exposure to a closely
related virus strain can offer protection is an important
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field of research, as testing large numbers of vaccines
can be time consuming and expensive. In particu-
lar for Foot-and-Mouth Disease Virus (FMDV), where
a variety of virus strains co-circulate, understanding
cross-protection is vital for predicting the severity of
an outbreak and understanding how different vaccine
strains will mitigate the spread of the disease. As the
testing of new candidate vaccines is expensive, the de-
velopment of an in silico predictor that can identify
which strains are likely to give the broadest cross-
protection is essential.

Reeve et al. (2010) used mixed-effects models to ac-
count for the variation in virus neutralisation (VN)
titre, an in vitro measure of antigenic variability; the
extent to which one strain confers protection on the
other. They identified a specific residue at which sub-
stitutions had caused a drop in antigenic variability.
Their results have been backed up experimentally in
Grazioli et al. (2006).

To achieve this, the authors corrected for the fact that
viruses with similar evolutionary paths are likely to be
more closely related. They did this by accounting for
the shared evolutionary history of the virus strains.
Through including the branches of the phylogenetic
tree as explanatory variables in the model, they were
able to account for the similarities within individual
topotypes, groups of genetically similar viruses that
have been isolated for long periods, within the tree.

One of the main weaknesses of the models of Reeve
et al. (2010) was their reliance on stepwise regression
techniques. The method used, forward inclusion using
the Holm-Bonferroni correction (Holm 1979), does not
explore all variable configurations and can result in a
non-optimal solution. A potential extension to this
is the Least Absolute Shrinkage and Selection Oper-
ator (LASSO) of Tibshirani (1996), which uses an `1
penalty for simultaneous variable selection. This work
has recently been extended to mixed-effects models by
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Schelldorfer et al. (2011).

A drawback of the classical LASSO, and its close
cousin, the Elastic Net (Zou & Hastie 2005), is the
way regularisation parameters are selected. Informa-
tion criteria, such as the Akaike information criterion
(AIC), corrected AIC (AICc) (Hurvich & Tsai 1989)
and Bayesian information criterion (BIC), are asymp-
totically justified, but can have poor small-sample per-
formance. Alternative methods include hold-out cross-
validation, which reduces the training set size, and k-
fold or leave-one-out cross validation, which are po-
tentially biased (Bengio & Grandvalet 2004, Rao et al.
2008). The sub-optimality of these methods compared
to a Bayesian approach has been reported before (Dal-
ton & Dougherty 2012).

A more serious drawback is the `1 regularisation term
itself, which in a Bayesian context corresponds to a
Laplace prior (Park & Casella 2008). This choice is
computationally efficient, leading to a convex opti-
misation problem for penalised maximum likelihood
or Bayesian maximum a posteriori (MAP) inference.
However, `1 regularisation combines the problems of
insufficient sparsity of selection with increased bias
caused by shrinkage, as discussed in detail in Chap-
ter 13 of Murphy (2012). A preferred alternative,
which improves variable selection and avoids exces-
sive shrinkage, is the spike and slab prior proposed in
Mitchell & Beauchamp (1988), which, however, leads
to a non-convex optimisation problem in a penalised
likelihood context. In the present work, we integrate
the spike and slab prior into the context of hierarchi-
cal Bayesian models, whose advantages have been dis-
cussed on various occasions elsewhere; see e.g. Gelman
et al. (2004). In particular, Bayesian hierarchical mod-
els allow consistent inference of all parameters and hy-
perparameters, and inference borrows strength by the
systematic sharing and combination of information.

The model we propose is designed specifically to deal
with the various aspects of the FMDV data. The un-
derstanding of antigenic variability requires a focus on
selecting variables, while still taking into account the
experimental condition under which the data was gath-
ered. To do this we propose a novel Bayesian hierarchi-
cal model into which we integrate the prior originally
proposed in Mitchell & Beauchamp (1988). In partic-
ular we allow for confounding experimental variation
through the specification of random effects. We also
specify an additional layer in the hierarchical model
in order to allow the mean of the coefficients to vary.
This comes from biological knowledge of the problem,
where we expect a high intercept and a negative im-
pact on the responses from the inclusion of additional
variables.

In this paper we evaluate the advantages of our model
over the use of both the standard and `1 penalised
mixed-effects model. We use simulated data with ran-
dom effects designed to mimic variation in experimen-
tal conditions to objectively assess prediction and vari-
able selection performance. Finally the model is used
on the real life data set of Reeve et al. (2010) in or-
der to assess its capability in identifying surface ex-
posed residues at which substitutions are known to
cause a significant drop in antigenic variability. This
is done by accounting for the evolutionary history of a
strain through including branches of the phylogenetic
tree that divide antigenically distinct groups within
the virus.

2 CLASSICAL METHODS
Before we describe the novel Bayesian model, we re-
view established classical methods, which are more
commonly used within the biological community.

2.1 Classical Mixed-Effects Model

In classical mixed-effects models we define the response
y = (y1, . . . , yN )> and denote the explanatory vari-
ables, X, as a matrix of J + 1 columns and N rows,
where the first column is an intercept. Each column
of explanatory variables, Xj , is then given an associ-
ated regression coefficient, wj , to control its influence
on the response.

We further set Z as the matrix of indicators with
N rows and k ∈ {1, . . . , ||b||} columns. b =
(b>1 , . . . ,b

>
G)> represents a vector of parameters re-

lated to each of the groups g ∈ {1, . . . , G}, where each
bg has length ||bg|| and ||b|| =

∑G
g=1 ||bg||. For more

details on mixed-effects models see Pinheiro & Bates
(2000).

The model is therefore defined as:
y = Xw + Zb + ε (1)

where we assume that ε ∼ N (ε|0,Σε) and b ∼
N (b|0,Σb), where we define Σε = σ2

εI and Σb =
diag(([σ2

b,1]>, . . . , [σ2
b,G]>)>) for notational simplicity

and I is the identity matrix. Integrating over b gives
us the likelihood:

L(w,Σε,Σb|y,X,Z) = N (y|Xw,ZΣbZ> + Σε) (2)

In classical mixed-effects models, model comparison
techniques must be used to choose which variables are
included within the model. To get a sparse model,
Reeve et al. (2010) used forward inclusion, making
an adjustment for multiple testing using the Holm-
Bonferroni correction. They firstly included the vari-
ables correcting for the shared evolutionary paths
using prior biological knowledge, before adding the
residue data.
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2.2 LASSO

A classical alternative to forward variable selection is
the LASSO of Tibshirani (1996, 2011), which allows for
simultaneous variable selection. In the simplest case
of linear regression, this gives the following parameter
estimates:

ŵ = argmin
w

{
(y−Xw)2 + λ

J∑
j=1

|wj |
}
. (3)

This is a convex optimisation problem, for which a va-
riety of fast and effective algorithms exist (e.g. Hastie
et al. (2009)). The effect of eq. 3 is to simultaneously
shrink and prune parameters w, thereby promoting a
sparse model. The degree of sparsity depends on the
regularization parameter λ, which can be optimised
with cross-validation or information criteria, e.g. BIC.

A recent extension of the standard LASSO is the
mixed-effects LASSO proposed by Schelldorfer et al.
(2011), who estimate the regression coefficientsw, ran-
dom effect variance σ2

b and the variance of the noise
σ2
ε as:

(ŵ,σ̂2
b , σ̂

2
ε) = argmin

w,σ2
b>0,σ2

ε>0

{
1
2 log |V|

+ 1
2 (y−Xw)V−1(y−Xw) + λ

J∑
j=1

|wj |
}

(4)

where V = ZΣbZ>+σεI. In the package of Schelldor-
fer et al. (2011), this is minimised using a block coordi-
nate gradient descent scheme. To select the value of λ
we test the use of BIC, as recommended in Schelldorfer
et al. (2011), and AICc (Hurvich & Tsai 1989).

We point out that the mixed effects Lasso of Schelldor-
fer et al. (2011) has only been developed for a single
random effect. To deal with multiple random effects,
the Cartesian product of several random effects has to
be mapped onto a single random effect, which can lead
to excessive model complexity. We also note that to
the best of our knowledge, a mixed-effects model ver-
sion of the Elastic net (Zou & Hastie 2005) has not yet
been developed.

3 NOVEL BAYESIAN METHOD

To perform variable selection within Bayesian statis-
tics, we must firstly define the model that is used. This
is usually done by constructing the posterior distribu-
tion using Bayes’ rule:

p(γ|D,θ′) ∝ p(γ)p(D,θ′|γ). (5)

We then sample the parameters using Markov chain
Monte Carlo (MCMC), where we are interested in γ,

a vector of latent indicators of whether a variable is
included in the regression model. Each parameter is
sampled subject to the data, D, and the other model
parameters, θ′.

3.1 Likelihood

The likelihood for our Bayesian variable selection
model is similar to the classical mixed-effects model
described in Section 2.1. However instead of including
all the variables, X, and their corresponding regression
coefficient, we now only include relevant variables, Xγ ,
and regressors, wγ :

p(y|wγ ,b, σ2
ε) = N (y|Xγwγ + Zb,Σε) (6)

The relevance of variable j is determined by γj ∈
{0, 1}, where feature j is said to be relevant if γj = 1.
This gives γ = (γ0, γ1, . . . , γJ)> ∈ {0, 1}J where
γ0 = 1 is fixed meaning that there is always an inter-
cept in the model. We then defineXγ to be the matrix
of relevant explanatory variables with ||γ|| columns
and N rows, where ||γ|| =

∑J
j=0 γj , the number of

non-zero elements of γ. Similarly wγ is given as the
column vector of regressors, where the inclusion of each
parameter is again dependent on γ.

3.2 Priors

For computational convenience, conjugate priors have
been chosen where possible. In this manner, as in clas-
sical mixed-effects models, we choose each bk,g to have
group dependent Gaussian priors:

bk,g ∼ N (bk,g|µb,g, σ2
b,g). (7)

We define this to have a fixed mean µb,g = 0 and
a common variance parameter for each random effect
group g. Further to this, we put a conjugate Inverse-
Gamma prior on each σ2

b,g:

σ2
b,g ∼ IG(σ2

b,g|αb,g, βb,g) (8)

where αb,g and βb,g are fixed hyper-parameters for each
g. This gives the model the flexibility to learn each σ2

b,g

instead of predefining their values.

The prior for wγ is set in the manner proposed in
Mitchell & Beauchamp (1988) such that it reflects
whether a feature is relevant. In this way we expect
that wj = 0 if γj = 0, i.e. the feature is irrelevant, and
conversely it should be non-zero if the variable is rele-
vant, wj 6= 0 if γi = 1. The variables are then divided
into related groups h ∈ {1, . . . ,H}, in this case two:
the intercept and the covariates. A conjugate prior is
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Figure 1: Compact representation of the complex spike
and slab model as a Directed Acyclic Graph (DAG).
The grey circles refer to data and hyper-parameters
which are fixed, while the white circles refer to param-
eters that are inferred with MCMC.

chosen when the feature is relevant:

p(wj,h|γj,h,µw,h, σ2
w,h)

=

{
δ0(wj,h) if γj = 0
N (wj,h|µw,h, σ2

w,h) if γj = 1.
(9)

where δ0 is the delta function. Here we have a spike
at the mean, µw,h, and as σ2

w,h →∞ the distribution,
p(wj,h|γj = 1), approaches a uniform distribution, a
slab of constant height. For this reason, these models
are often known as spike and slab models. Similar non-
singular versions of this prior are also possible (George
& McCulloch 1993, 1997).

Through giving each group h a separate hyper-
parameter σ2

w,h in eq. 9, we leave the model open to
penalising the groups of variables to different degrees
through the priors:

σ2
w,h ∼ IG(σ2

w,h|αw,h, βw,h). (10)

By choosing the same fixed hyper-parameters, αw,h
and βw,h for each h, we lose information coupling be-
tween the different groups, although this could be re-
gained with an addition layer in the hierarchical model.

In addition to σ2
w,h, we use the hyper-parameters µw,h

to reflect the likely non-zero means of each group h:
µw,h ∼ N (µw,h|µ0,h,Σ0,h) (11)

where the hyper-parameters µ0,h and Σ0,h are fixed.
This specification comes from the expected biologi-
cal values of each regression coefficients wj,h. In the
FMDV data we are likely to observe a comparatively
large intercept with negative regression coefficients for
the variables. This is a result of amino acid changes
decreasing the similarity between virus strains and
therefore reducing the measured VN titre. Similarly,
traversing a significant branch of the phylogenetic tree
is likely to cause differences between the strains.

As with the classical mixed-effects model in Sec-
tion 2.1, we assume the errors are independent and
identically distributed. Again specifying a conjugate
prior gives us an Inverse-Gamma distribution:

σ2
ε ∼ IG(σ2

ε |αε, βε). (12)

where the hyper-parameters αε and βε are fixed.

A prior must also be given for γ1:J , the parameters
which determine the relevance of the variables:

p(γ1:J |π) =

J∏
j=1

Bern(γj |π) (13)

where π is the probability of the individual variable
being relevant.

The value of π can either be set as a fixed hyper-
parameter as in Sabatti & James (2005), where they
argue that it should be determined by underlying
knowledge of the problem. Alternatively it can be
given a conjugate Beta prior:

π ∼ B(π|απ, βπ). (14)

as in this case, where the likely number of relevant
variables cannot be easily specified a priori. This is
a more general model, which subsumes a fixed π as a
limiting case for απβπ/((απ +βπ)2(απ +βπ + 1))→ 0.

3.3 Posterior

Using Bayes’ theorem we can construct the poste-
rior distribution for the inferred parameters θ1 =
(γ,wγ ,b,σb,µw,σw, σ

2
ε , π) given the fixed param-

eters θ2 = (αb,βb,αw,βw,µ0,Σ0, αε, βε, απ, βπ),
where we define θ = (θ1,θ2). This combines the like-
lihood and priors specified, as shown in Figure 1:

p(θ1|y,X,Z,θ2) ∝
N (y|Xγwγ + Zb,Σε)N (b|0,Σb)IG(σ2

ε |αε, βε)

×N (wγ |µw,Σw)

G∏
g=1

{IG(σ2
b,g|αb,g, βb,g)}

×
H∏
h=1

{IG(σ2
w,h|αw,h, βw,h)N (µw,h|µ0,h,Σ0,h)}

×
J∏
i=1

{Bern(γj |π)}B(π|απ, βπ) (15)
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where Σb = diag(([σ2
b,1]>, . . . , [σ2

b,G]>)>) and
each σ2

b,g has length ||σ2
b,g||. We similarly set

Σwγ = diag(([σ2
w,1]>, . . . , [σ2

w,H ]>)>) and µw =

(µ>w,1, . . . ,µ
>
w,H)> where each σ2

w,h and µw,h have
length ||σ2

w,h|| = ||µw,h||.

3.4 Posterior Inference

In order to explore the posterior distribution of the
parameters we use an MCMC algorithm. Having cho-
sen conjugate priors where possible means we can run
a Gibbs sampler for the majority of parameters (Rip-
ley 1979, Geman & Geman 1984). The only excep-
tion is γ, although it is possible to use component-
wise Gibbs sampling with a small adaptation; see Sec-
tion 3.5.1. The conditional distributions for those pa-
rameters amenable to standard Gibbs sampling are:

wγ |θ′ ∼ N (wγ |VwγX
>
γΣ
−1
ε (y− Zb)+

VwγΣ
−1
wγ
µw,Vwγ ) (16)

b|θ′ ∼ N (b|VbZ>Σ−1ε (y−Xγwγ),Vb) (17)

σ2
b,g|θ

′ ∼ IG(σ2
b,g| ||bg||/2 + αb,g, βb,g + 1

2b
>
g bg) (18)

µw,h|θ′ ∼ N (µw,h|
Σ−1µ (Σ−1w wγ,h + Σ−10 µ0,h),Σµ) (19)

σ2
w,h|θ

′ ∼ IG(σ2
w,h| ||wγ,h||/2 + αw,h, βw,h+

1
2 (wγ,h − µγ,h)>(wγ,h − µγ,h)) (20)

σ2
ε |θ
′ ∼ IG(σ2

ε |N/2 + αε, βε + 1
2 (y−Xγwγ

− Zb)>(y−Xγwγ − Zb)) (21)
π|θ′ ∼ B(π|απ + ||γ1:N ||, βπ + J − ||γ1:N ||) (22)

where we sample σ2
b,g, µw,h and σ2

w,h for each g and
h respectively. We also define Vwγ = (X>γΣ

−1
ε Xγ +

Σ−1w )−1,Vb = (Z>Σ−1ε Z+Σ−1b )−1 andΣµ = (Σ−1w,h+

Σ−10,h)−1 for notational simplicity.

Sampling γ is more difficult, as it does not naturally
form a standard distribution. Methods for achieving
this are discussed in more detail in Section 3.5, how-
ever in order to do this we need a conditional distri-
bution:

p(γ|θ′) ∝ p(γ1:J |π)

∫
N (y|Xγwγ + Zb,Σε)

N (wγ |µw,Σw)dwγ (23)

∝ π||γ1:N ||(1− π)J−||γ1:N ||

N (y|Xγµw + Zb,Σε + XγΣwX>γ ) (24)

where there are J variables. Here we have used a col-
lapsing step as in Sabatti & James (2005), integrating
out wγ through the application of standard Gaussian
integrals (Bishop 2006) to reduce the computational
requirements. The normalisation constant is not re-
quired in eq. 24 as it cancels out in all of the methods
discussed in Section 3.5: eq. 26 and eq. 29.

3.5 Sampling the Latent Indicators

Multiple methods have been proposed for sampling the
latent variables, γ. In this paper we look at two of
these in particular; the component-wise Gibbs sam-
pling approach of George & McCulloch (1993) and
through a Metropolis-Hastings step where we can pro-
pose changes to multiple parameters simultaneously
for a computational improvement (Metropolis et al.
1953, Hastings 1970).

3.5.1 Component-wise Gibbs Sampling

Following George & McCulloch (1993) we can use a
component-wise Gibbs sampler to consecutively sam-
ple each γj from γ in a random order. To do this we
first define a conditional distribution for γij , the value
of the ith iteration of γj , from eq. 24:

γij ∼ p(γij |π,b, σ2
ε ,µb,Σw,γ

i
−j) (25)

where γi−j = (γi1, . . . , γ
i
j−1, γ

i−1
j+1, . . . , γ

i−1
J ) in the case

of ordered inclusion parameters. Each distribution can
then be given a Bernoulli distribution with probability:

P (γij = 1|π,b, σ2
ε ,µb,Σw,γ

i
−j) =

a

a+ b
(26)

where we define:

a = p(γij = 1|π,b, σ2
ε ,µb,Σw,γ

i
−j) (27)

b = p(γij = 0|π,b, σ2
ε ,µb,Σw,γ

i
−j). (28)

3.5.2 Metropolis-Hastings Sampling

Unlike with the Gibbs sampling approach, sampling
via a Metropolis-Hastings step leads to some proposals
being rejected. However an advantage can be gained
through proposing multiple variables simultaneously.
We define the acceptance rate for the Metropolis-
Hastings step in this case as:

α(γ∗,γi−1) := min

{
q(γi−1|γ∗)p(γ∗|θ′)
q(γ∗|γi−1)p(γi−1|θ′)

, 1

}
(29)

where q(.) is a proposal density, which we set to be:
q(γ∗|γi−1) = q(γ∗) = Bern(γ∗|π). Proposed moves
for groups of randomly ordered inclusion parameters,
γ∗, are then accepted if α(γ∗,γi−1) is greater than a
random variable u ∼ U [0, 1].

Tuning the number of simultaneous proposals can give
significant computational improvements to the algo-
rithm. Changing only a few variables in γ gives a
high acceptance rate, but takes a long time to cycle
through the variables leading to poor mixing. Con-
versely if we propose too many simultaneously we re-
ject too many proposals to be efficient. In this paper
we investigate how best to tune the proposals and com-
pare this against the component-wise Gibbs sampler.
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4 DATA

4.1 Simulated Data

20 sets of data were simulated to reflect the struc-
ture of the real FMDV data such that there were two
groups of variables. For each response, 20 count vari-
ables were simulated from a Poisson distribution and
then an additional set of 10 binary variables was gen-
erated. These were both simulated such that there
was a basic correlation within the groups in order to
reflect some of the correlations found in the real data.
Additionally 10 data sets were given one group of ran-
dom effects, with the remaining sets given two groups,
in order to mimic random variation in the real exper-
imental data.

Each of the variables was then given a regression pa-
rameter. Half of each group were given small nega-
tive regressors drawn from w1 ∼ N (−0.2, 0.01) and
the other half w2 ∼ N (0, 0.0025). Each response
yi was then generated from the model with each of
the perturbed regressors w̃h,i ∼ N (wh,i, 0.007), where
h ∈ {1, 2}. This was done 200 times with additive
Gaussian noise from N (0, 0.04) given to each response.
Half of the data was used for training and the remain-
ing for testing.

4.2 Real Life Example

The FMDV data analysed in Reeve et al. (2010) comes
from sub-Saharan Africa, where the virus is endemic.
The authors evaluated data on two different serotypes,
but in this paper we only consider the South African
Territories (SAT) type 1 serotype. This contains 246
measures of VN titre, an in vitro measure of whether
the sites that contribute to the neutralization of the
virus remain sufficiently similar to cross-react. The
VN titre measures have been shown to be log-normally
distributed (Reeve et al. 2010), so we take the log of
the data as our response.

The fixed effects used in our model are divided into two
groups. The first contains 137 variables which count
amino acid mutations (substitutions) at each residue
in the proteins that form the virus shell. The second
group consists of 38 variables which indicate whether a
specific branch in the phylogenetic tree was traversed
between the protective and challenge strains, where
the protective strain is the strain the animal has been
vaccinated with and the challenge is the strain it is
tested against. Additionally, the model requires the
inclusion of two groups of random effects. The first is
the challenge strain, used to account for the variability
in reactivity of the viruses. The second accounts for
the sera taken from the individual animals exposed to
a strain.

5 SIMULATIONS
Our code has been implemented in R (R Core Team
2013), using the packages lme4 (Bates et al. 2013) and
lmmlasso (Schelldorfer et al. 2011) for the comparison
with standard and LASSO mixed-effects models. For
the mixed-effects models, as in Reeve et al. (2010), for-
ward inclusion was used adjusting for multiple testing
using the Holm-Bonferroni correction.

For our MCMC chains we sampled 10,000 and 50,000
iterations respectively for the simulated and real data.
The fixed parameters, θ2, were all set to represent
vague priors: αb = βb = αw = βw = 0.001, µ0 = 0,
Σ0 = 100, αε = βε = 0.001, απ = βπ = 1. The only
exception to this is the shape parameter for the vari-
ance of the intercept, which is given as αw,1 = 1.501
to give a finite mean and variance for the prior distri-
bution of σ2

w,1. Although this is not a vague prior, we
have tested a number of other values and found that
this specification has little effect on the results.

To test the convergence of the parameters, 4 chains
were ran for each model and a potential scale reduction
factor (PSRF) (Gelman & Rubin 1992) was computed
from the within-chain and between-chain variances us-
ing the R package coda (Plummer et al. 2006). We
take a PSRF ≤ 1.1 as a threshold for convergence and
terminate the burn-in when this is satisfied for 95% of
the variables.

To analyse the best proposal method we tested the
component-wise Gibbs sampler and several specifi-
cations of the Metropolis-Hastings sampler on the
FMDV data set. For the Metropolis-Hastings sampler,
we proposed the inclusion or exclusion of the variables
in groups of 4, 8, 16, 32 and 64. We analysed conver-
gence by monitoring the percentage of variables with
a PSRF ≤ 1.1 as in Grzegorczyk & Husmeier (2013).

6 RESULTS
Our results compare the accuracy of predicting signifi-
cant variables, as well as out-of-sample predictive per-
formance for all methods on the simulated data. When
calculating the out-of-sample predictive performance,
we defined a 0.5 marginal probability for the selection
criteria of the novel Bayesian model, allowing a small
amount of deviation to account for the variation in
chains due to the finite effective sample size. For the
mixed-effects models, forward inclusion was used with
the Holm-Bonferroni correction at a fixed significance
threshold of 0.05. Both AICc and BIC were used for
selecting the regularisation parameter of the mixed-
effects LASSO. These selection criteria were then used
to compute out-of-sample likelihood. The same pro-
cesses were used to evaluate the model performance on
the FMDV data and compare the convergence speed
of the different proposal methods.
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(a) One Random-Effect Group

(b) Two Random-Effect Groups

Figure 2: ROC curves for classical mixed-effects
(grey), mixed-effects LASSO (black dotted), and the
novel Bayesian (black) models when applied to the
simulated data. The simulated data was generated
with (a) one and (b) two random effect groups; see
section 4.1.

To investigate the accuracy of the selection of signifi-
cant variables we produced receiver operating charac-
teristic (ROC) curves for each of the methods by or-
dering the inclusion of variables. This can be achieved
for the novel Bayesian method by ordering of the vari-
ables using their predicted marginal posterior proba-
bilities. For the standard mixed-effects models this is
done by removing the significance threshold and rank-
ing the edges by order of inclusion. Finally for the
mixed-effects LASSO we predict models for a variety
of different penalty parameters, λ, to create the so-
called LASSO path (Hastie et al. 2009). This defines a
ranking of the variable from which again a ROC curve
can be obtained.

6.1 Simulation Study

Figure 2 shows ROC curves for the classical
mixed-effects, mixed-effects LASSO and novel sparse
Bayesian selection model. ROC curves show model
classification performance under different levels of sen-
sitivity and specificity. This is more general than eval-
uating performance at a specific cut-off point, deter-
mined using model selection criteria. ROC curves also
provide a convenient comparison measure in the form

Figure 3: Convergence diagnostics. The lines show the
proportion of parameters that have converged (PSRF
≤ 1.1) when using component-wise Gibbs sampling
(black) and Metropolis-Hastings sampling proposing
4 (grey), 8 (black dashed), 16 (grey dashed), 32 (black
thick) and 64 (grey thick) inclusion parameters simul-
taneously.

of the area under curve (AUC) value.

For two random effects groups (Figure 2b), the pro-
posed Bayesian model, AUC = 0.93, consistently out-
performs the mixed effects LASSO, AUC = 0.79, and
standard mixed effects model, AUC = 0.79. This is
presumably a consequence of the fact that the mixed-
effects LASSO, as developed by Schelldorfer et al.
(2011), is defined for a single random effect. To deal
with two random effects, we need to map the matrix of
random effect combinations into a vector of substitute
single random effects, which may render the model
over-complex and hence susceptible to over-fitting. For
data with a single random effect (Figure 2a), the novel
Bayesian method still achieves a greater AUC value,
0.89, than the LASSO, 0.83, and standard mixed ef-
fects model, 0.81. Note that realistic data need to be
modeled with more than one random effect, though.
To our knowledge, a mixed effects LASSO for such
data has not been developed.

In addition to the comparison of AUC values, we also
looked at the predictive performance. For the data
with 2 groups of random effects the novel Bayesian
method got a mean out-of-sample log-likelihood of
−113.8, outperforming the mixed effect LASSO with
BIC, −160.8, and AICc, −163.3, and the standard
mixed effect model, −127.7. Similar results were also
achieved for the data with 1 random effect group,
with the models achieving a mean out-of-sample log-
likelihoods of −99.9, −104.2, −105.9 and −112.4, re-
spectively.

6.2 Foot-and-Mouth Disease Virus Data

Figure 3 shows that proposing a larger proportion of
8 or 16 binary selection hyperparameters, γ, simul-
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taneously in a Metropolis-Hastings scheme achieves
faster convergence than component-wise Gibbs sam-
pling, despite the higher rejection probability (recall
that Gibbs sampling has an acceptance probability of
1). This suggests that Gibbs sampling should not al-
ways be the default method of choice, and that further
improvements may be obtained by including posterior
correlations in the proposal moves (see Section 8).

With respect to the evaluation of the prediction, we
need to point out that the proposed novel Bayesian
method is the only one that could be applied in a
fully automatic manner. The forward-variable selec-
tion technique used in Reeve et al. (2010) drew on
biological prior knowledge to design an effective vari-
able selection schedule, and the optimisation algorithm
for the mixed-effects LASSO, as implemented in the
software of Schelldorfer et al. (2011), failed due to ill-
conditioned (i.e. quasi-singular) matrices. To cope
with the latter problem, we applied the mixed-effects
LASSO as follows: in the first instance, we included all
‘relevant’ residues (as informed by the ‘gold-standard’;
see below) and the branches of the phylogenetic tree
as potential explanatory variables. We then iteratively
excluded strongly correlated ‘non-relevant’ variables
until the matrix inversion no longer ran into numerical
problems. We need to point out that this strategy uses
prior knowledge that would usually not be available
and is not required for the proposed Bayesian method.
However for a fair comparison, we used this reduced
set of 107 variable for all methods.

For performance evaluation, we have concentrated on
the prediction of the relevant residues, which indicate
areas of the virus protein that are targeted by the im-
mune system, where mutations potentially allow the
virus to escape the host immune response. For eval-
uation, we used a list of known ‘true positives’ from
Grazioli et al. (2006) - these are residues in exposed re-
gions of the virus protein known to be targeted by the
immune system. We also used a list of ‘true negatives’,
which are areas not found in any study of FMDV an-
tibody targets (see Reeve et al. (2010) and references
therein) - these typically lie in buried regions of the
virus protein that are inaccessible to the immune sys-
tem. The predictions are shown in Figure 4. It can be
seen that the novel Bayesian hierarchical model finds
no ‘false positive’, while also showing an increased
number of ‘true positives’. In combination with the
fully automated inference procedure this can be seen
as a method improvement.

7 CONCLUSION

We have addressed the problem of identifying residues
responsible for changes in antigenic variability within

Figure 4: Bar plot showing ‘true positives’ (white) and
‘false positive’ (black) for the mixed-effects model re-
sults of Reeve et al. (2010), the mixed-effects LASSO
using AICc and BIC (Schelldorfer et al. 2011) and the
novel Bayesian variable selection model.

FMDV. We have proposed a novel sparse Bayesian
variable selection scheme based on spike and slab pri-
ors, which outperforms competing methods (Figure 2
and 4). In the process we have identified three key
residues that are known to be critical to understand-
ing cross-protection between virus.

Further to this we have investigated the sampling of
the latent inclusion variables, γ. We have shown
that proposing multiple moves simultaneously through
Metropolis-Hastings sampling can give a significant
computational improvement over the more widely used
component-wise Gibbs sampler (Figure 3).

8 FURTHER WORK

Further work on this paper comes in several forms.
Firstly, there may be room for improvement by re-
placing the Inverse-Gamma prior for the variances of
the random effects (σ2

b,g in Figure 1) by a half-Cauchy
distribution. As discussed in Gelman (2006), this may
result in a reduced dependence of the results on the
prior as well as an improvement in the convergence of
the MCMC simulations. Secondly, the model can be
extended to include a spike and slab prior for the se-
lection of random effects (i.e. the bk,g’s in Figure 1).
Thirdly, improved proposal distributions that account
for the estimated posterior correlation in the binary in-
clusion hyperparameters, γ, could potentially improve
convergence, in the same way as for the continuous
case (Haario et al. 2006). A method to generate corre-
lated binary variables has been proposed (Leisch et al.
2012). However, to apply this method in the context
of MCMC, a proper proposal distribution has to be
developed, which has to enter the Metropolis-Hastings
ratio. Finally we would like to extend the model to
further serotypes and diseases. In particular combin-
ing all available data for FMDV serotypes would lead
to a larger, more complete data set, which would give
us the best chance of identifying all the key residues
associated with changes in antigenic variability.
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