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ABSTRACT 
In this paper, we have developed an additional method using the Maximum {Supplies, Demands} and combining 

both of them with the minimum cost to find an initial solution which is very close to the optimal or at most it is the 
optimum solution. 

The transportation algorithm follows the exact steps of the simplex method. However, instead of using the regular 
simplex tableau, we take advantage of the special structure of the transportation model to organize the computation in 
a more convenient form  

There are several methods for finding the initial basic feasible solution (BFS) of Transportation Problem (TP). 
But, there is no suitable answer to the question: Which method is the best one 
 
 
1. Definition: 
In general, a transportation problem is specified 
by the following information: 
• A set of 푚 supply points form which a good is 
shipped. Supply point 푖  can supply at most 
푠 	units. 
• A set of 푛 demand points to which the good is 
shipped. Demand point 푗 must receive at least 푑  
units of the shipped good. 
• Each unit produced at supply point 푖  and 
shipped to demand point 푗 incurs a variable cost 
of	푐 	. 
 
2. Formulating Transportation 
Problems: 
Let 푥  = number of units shipped from supply 
point 푖  to demand point 푗  then the general LP 
representation of a transportation problem is 
 
푚푖푛∑ ∑ 푐 		 푥   
푆. 푡.	  
 
∑ 푥 		< 	 푠 	(푖 = 1,2, . . . , 푚)     
푆푢푝푝푙푦	푐표푛푠푡푟푎푖푛푡푠 
∑ 푥 	> 	푑 	(푗 = 1,2, . . . , 푛)	    
퐷푒푚푎푛푑	푐표푛푠푡푟푎푖푛푡푠 
푥 	> 	0  
 

If a problem has the constraints given above 
and is a maximization problem, it is still a 
transportation problem. Finding BFS for 
Transportation Problems for a balanced 
transportation problem, the general LP 
representation may be written as:  
 

푚푖푛	훴푖	
훴푗	
푐푖푗	

푥푖푗	
  

푠. 푡.	  
 
훴푗	
푥푖푗	

= 	푠푖	
(푖 =

1,2, . . . , 푚)	푆푢푝푝푙푦	푐표푛푠푡푟푎푖푛푡푠	  
훴푖	
푥푖푗	

= 	푑푗	
(푗 =

1,2, . . . , 푛)	퐷푒푚푎푛푑	푐표푛푠푡푟푎푖푛푡푠	  
푥푖푗	

> 	0	  
 

To find a BFS to a balanced transportation 
problem, we need to make the following 
important observations:  
If a set of values for the 푥 ′푠	satisfies all but one 
of the constraints of a balanced transportation 
problem, the values for the 푥 ′푠  will 
automatically satisfy the other constraint.  

This observation shows that when we solve a 
balanced transportation, we may omit from 
consideration any one of the problem’s 
constraints and solve a LP having 푚+ 푛 − 1 
constraints. We arbitrarily assume that the first 
supply constraint is omitted from consideration.  

In trying to find a bfs to the remaining 
푚+ 푛 − 1 constraints, you might think that any 
collection of 푚+ 푛 − 1	variables would yield a 
basic solution. But this is not the case:  

If the 푚+ 푛 − 1  variables yield a basic 
solution, the cells corresponding to a set of 
푚+ 푛 − 1 variables contain no loop. 

There are several methods that can be used to 
find a BFS for a balanced transportation 
problem: [5]  
1. Northwest Corner method  
2. Minimum Cost method  
3. Vogel’s method 
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3. Algorithm of Max {Supplies, 
Demands} method: 
Step 1: Choose the maximum supply from the 
sources 푖	 and maximum demand from the 
destination푠	푗. Break ties arbitrarily 
Step 2: Identify the row or column with the 
smallest shipping cost 퐶  (call it 	푥푖푗 ) Then 
assign 푥푖푗	

its largest possible value of supply or 
demand. Break ties arbitrarily  
Step 3: Cross out the row or column with zero 
supply or demand to indicate that no further 
assignment can be made in that row or column. 
If both a row and a column net to zero 
simultaneously, cross out one only, and leave a 
zero supply (demand) in the uncrossed-out row 
(column)  
Step 4:  
 If exactly one row or column with zero 
supply or demand remains uncrossed out, stop.  

 If one row (column) with positive 
supply (demand) remains uncrossed out, 
determine the basic variables in the row 
(column) by allocating the minimum cost. Stop. 
 If all the uncrossed out rows and 
columns have (remaining) zero supply and 
demand, determine the zero basic variable by 
allocating the minimum cost. Stop. Otherwise, 
go to step 1 
 
4. Example 1:  
Three electric power fields with capacities of 70, 
50, and 170 kWh supply electricity to five cities, 
the maximum demands at the five cities are 
estimated at 70,10,80,90, and 40 million kWh. 
The price per million kilo watt per hour (kw/h) 
at the five cities is given in the following table 
(1.a). 

 
Table (1.a) - Example 1 

 City 1 City 2 City 3 City 4 City 5 Supplies 

Field 1 10 30 40 20 10 70 

Field 2 12 25 30 10 60 50 

Field 3 15 20 10 25 30 170 

Demands 70 10 80 90 40 290 

  
푀푎푥	{푠푢푝푝푙푖푒푠, 푑푒푚푎푛푑푠} 	= 170  
푀푖푛 퐶 = 10	푎푡	푡ℎ푒	푐푒푙푙	푥 	표푟	푎푡	푡ℎ푒	푠ℎ푖푝푚푒푛푡	푓푟표푚	푓푖푒푙푑	3	푡표	푐푖푡푦	3  
	푇ℎ푒	푟푒푞푢푖푟푒푑	푑푒푚푎푛푑	푓푟표푚	푡ℎ푒	푓푖푒푙푑	3	푡표	푐푖푡푦	3 = 	80  
After allocating the required supplies and demands we change the values of the supplies and the 
demands accordingly. 
 
Table (1.b) - Example 1 

 
 City 1 City 2 City 3 City 4 City 5 Supplies 

Field 1 10 30 40 20 10 70 

Field 2 12 25 30 10 60 50 

Field 3 15 20 
10 
80 

25 30 90 

Demands 70 10 0 90 40 210 

 
푀푎푥	{푠푢푝푝푙푖푒푠, 푑푒푚푎푛푑푠} = 	90.						퐵푟푒푎푘	푡ℎ푒	푡푖푒	푎푟푏푖푡푒푟푖푙푦	  
푀푖푛 퐶 = 10		푎푡	푡ℎ푒	푐푒푙푙	푥 	표푟	푎푡	푡ℎ푒	푠ℎ푖푝푚푒푛푡	푓푟표푚	푓푖푒푙푑	2	푡표	푐푖푡푦	4  
	푇ℎ푒	푟푒푞푢푖푟푒푑	푑푒푚푎푛푑	푓푟표푚	푡ℎ푒	푓푖푒푙푑	2	푡표	푐푖푡푦	4 = 	50  
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Table (1.c) - Example 1 
 

 City 1 City 2 City 3 City 4 City 5 Supplies 

Field 1 10 30 40 20 10 70 

Field 2 12 25 30 
10 
50 

60 0 

Field 3 15 20 
10 
80 

25 30 90 

Demands 70 10 0 40 40 160 

 
푀푎푥	{푠푢푝푝푙푖푒푠, 푑푒푚푎푛푑푠} = 90.							  
푀푖푛 퐶 = 15	푎푡	푡ℎ푒	푐푒푙푙	푥 	표푟	푎푡	푡ℎ푒	푠ℎ푖푝푚푒푛푡	푓푟표푚	푓푖푒푙푑	3	푡표	푐푖푡푦	1  
	푇ℎ푒	푟푒푞푢푖푟푒푑	푑푒푚푎푛푑	푓푟표푚	푡ℎ푒	푓푖푒푙푑	3	푡표	푐푖푡푦	1 = 	70  
 
Table (1.d) - Example 1 

 City 1 City 2 City 3 City 4 City 5 Supplies 

Field 1 10 30 40 20 10 70 

Field 2 12 25 30 
10 
50 

60 0 

Field 3 
15 
70 

20 
10 
80 

25 30 20 

Demands 0 10 0 40 40 90 

 
푀푎푥	{푠푢푝푝푙푖푒푠, 푑푒푚푎푛푑푠} = 70.							
푀푖푛 퐶 = 10	푎푡	푡ℎ푒	푐푒푙푙	푥 	표푟	푎푡	푡ℎ푒	푠ℎ푖푝푚푒푛푡	푓푟표푚	푓푖푒푙푑	1	푡표	푐푖푡푦	5  
	푇ℎ푒	푟푒푞푢푖푟푒푑	푑푒푚푎푛푑	푓푟표푚	푡ℎ푒	푓푖푒푙푑	1	푡표	푐푖푡푦	5 = 	40  
 
Table (1.e) - Example 1 

 City 1 City 2 City 3 City 4 City 5 Supplies 
Field 1 10 30 40 20 10 

40 
30 

Field 2  12 25 30 10 
50 

60 0 

Field 3 15 
70 

20 10 
80 

25 30 20 

Demands 0 10 0 40 0 50 
 
푀푎푥	{푠푢푝푝푙푖푒푠, 푑푒푚푎푛푑푠} = 40.					  
푀푖푛 퐶 = 20	푎푡	푡ℎ푒	푐푒푙푙	푥 	표푟	푎푡	푡ℎ푒	푠ℎ푖푝푚푒푛푡	푓푟표푚	푓푖푒푙푑	1	푡표	푐푖푡푦	4  
푇ℎ푒	푟푒푞푢푖푟푒푑	푑푒푚푎푛푑	푓푟표푚	푡ℎ푒	푓푖푒푙푑	1	푡표	푐푖푡푦	4 = 	30  
 
Table (1.f) - Example 1 

 City 1 City 2 City 3 City 4 City 5 Supplies 
Field 1 10 30 40 20 

30 
10 

40 
0 

Field 2  12 25 30 10 
50 

60 0 

Field 3 15 
70 

20 10 
80 

25 30 20 

Demands 0 10 0 10 0 20 
Since we have left with one row which is field3, the supply will cover the demands for city 2 and city 
4 accordingly, and this will complete the required demands. 
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Table (1.g) - Example 1 
 City 1 City 2 City 3 City 4 City 5 Supplies 
Field 1 10 30 40 20 

30 
10 

40 
0 

Field 2  12 25 30 10 
50 

60 0 

Field 3 15 
70 

20 
10 

10 
80 

25 
10 

30 0 

Demands 0 0 0 0 0 0 
 
퐻푒푛푐푒	푡ℎ푒	푖푛푖푡푖푎푙	푏푎푠푖푐	푓푒푎푠푖푏푙푒	푠표푙푢푡푖표푛	푢푠푖푛푔	푡ℎ푒	푀푎푥푖푚푢푚	{푆푢푝푝푙푖푒푠, 퐷푒푚푎푛푑푠}	푚푒푡ℎ표푑	푖푠	 
Table (1.h) - Example 1 

 City 1 City 2 City 3 City 4 City 5 Supplies 
Field 1 10 30 40 20 

30 
10 

40 
70 

Field 2  12 25 30 10 
50 

60 50 

Field  15 
70 

20 
10 

10 
80 

25 
10 

30 170 

Demands 70 10 80 90 40 290 
 

Cost = 
30*20+40*10+50*10+70*15+10*20+80*10+10
*25 = 3,800 
If we test the optimality of this initial basic 
feasible solution problem using the Stepping 
Stone Method [1], we will see that this solution 
is an optimal solution.  
 
CONCLUSION 

Our method does not depend only on the 
allocation as in the North West Corner Rule 
Method (NWCR), also it does not depend on the 
Least cost as in Least Cost Method (LCM) and 
Vogel’s Approximation Method (VAM) but it 
takes into account the maximum supplies and the 
maximum demands and bound them together 
with the related minimum available cost from 
the sources and the demands respectively to 
reach an initial solution which is more closer to 

the optimal solution if it is not the  optimal  
solution by itself as we have shown in our above 
example. 
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  الملخص
وربطهما مع الكلفة الأقل } التجهيزات ، الطلبات{ة باستخدام أعلى في هذا البحث ، تم استحداث طريقة جديدة إضافي

   . لإيجاد الحل الإبتدائي والذي سيكون قريبا جدا من الحل الامثل أو على الأغلب سيكون هو الحل الأمثل
ية فاننا ومع ذلك بدلا من استخدام جداول الطريقة السمبلكس. خوارزمية النقل تتبع نفس خطوات الطريقة السمبلكسية 

  .سنستفيد من الطرق الخاصة لحل مسائل النقل بالطرق المناسبة والملائمة
توجد عدة طرق لايجاد الحل الابتدائي المنظور لمسألة النقل ولكن لا يوجد جواب مناسب  للتساؤل حول أي طريقة من هذه 

  .الطرق هي الافضل
  


}{




           

        

  


