ON S_P-CONNECTED SPACES

ALIAS BARAKAT KHALAF * and Hardi ALI Shareef **

^{*}Dept. of Mathematics, College of Science, University of Duhok, Kurdistan-Region, Iraq ^{**}Dept. of Mathematics, Faculty of Science and Science Education, University of Sulaimani, Kurdistan-Region, Iraq

(Accepted for publication: June 9, 2013)

ABSTRACT

In this paper we introduce a new concept of connectedness namely S_p -connected space. This class of spaces is strictly between semi-connectedness and connectedness. Several properties and characterizations of this concept are found.

Keyword: semi-open sets, preclosed sets, semi-connected spaces, S_p-connected spaces.

1. INTRODUCTION

A semi-open set was defined by Levine in [Levine, 1963] while Pipitone and Russo in [Pipitone et. al., 1975] used this set to introduced s-connectedness or semiconnectedness. By using the concept of preopen sets which introduced in [Mashhour et al, 1982], Popa defined the p-connected or preconnected [Popa, 1987]. Shareef in [Shareef, 2007] defined a new type of open sets called S_p -open sets.

Throughout this paper X and Y will always denote topological spaces on which no separation axioms are assumed unless explicitly stated. If U is a subset of X, then the closure of U and interior of U are denoted by cl(U) and int(U)respectively. The symbol $f: X \rightarrow Y$ represent a function from a space X into a space Y. Semiclosure of a set in any space was introduced by Crossley, and Hildebrand in [Crossley et. Al., 1971] which is the intersection of all semi-closed sets containing this set and denoted by *scl*, on the other hand S_p-closure in [Shareef, 2007] is defined by the intersection of all S_p-closed sets which contain it and denoted by S_pcl.

2. Preliminaries

In this section, we give definitions and results which are used in the next section.

Definition 2.1:

A subset *A* of a space *X* is said to be semiopen [Levine, 1963] (resp. preopen [Mashhour et. al., 1982], regular open, regular closed [Steen, 1970], β -open [Abd-El-Monsef, 1983], α -open [Njastad, 1965], δ -semiopen [Ekici, 2008] and γ -open [El-Atik, 1997] (equiv. spopen [Dontchev, 1998] or b-open [Andrijevic, 1996])) set if $A \subseteq cl(int(A))$ (resp. $A \subseteq$ int(cl(A)), A = int(cl(A)), A = cl(int(A)), $A \subseteq cl(int(cl(A)))$, $A \subseteq int(cl(int(A)))$, $A \subseteq cl(int_{\delta}(A))$ and $A \subseteq cl(int(A)) \cup$ int(cl(A))). A semi-open set A of a space X is said to be S_p -open set if for each $x \in A$, there exists a preclosed set F such that $x \in F \subseteq A$ [Mohammed, 2005].

The complement of semi-open (resp. preopen, β -open, α -open, δ -semiopen and γ -open (equiv. sp-open or b-open)) set in *X* is called semi-closed (resp. preclosed, β -closed, α -closed, δ semiclosed, γ -closed (equiv. sp-closed or bclosed). The complement of S_p-open set is called S_p-closed sets and their families are denoted by S_pO(*X*) and S_pC(*X*) while the families of semiopen, preopen, α -open, β -open, γ -open, and δ semiopen sets are denoted by SO(*X*), PO(*X*), α O(*X*), β O(*X*), γ O(*X*) and δ SO(*X*).

Lemma 2.2:Let Y be an open subspace of X. If F is a preclosed subset in a space X, then $F \cap Y$ is preclosed in Y.

Proof: Obvious.

Lemma 2.3: [Donchev, 1998] Let X be any space. If A is semi-open set in X and B is preopen set in X, then $A \cap B$ is semi-open set in B.

Lemma 2.4: [Shareef, 2007] Let *Y* be a regular closed subspace of the space *X*. If *A* is an S_p -open subset of *Y*, then *A* is S_p -open set in *X*.

Proposition 2.5: [Shareef, 2007] Let *A*, *B* be two subsets of a space *X*, then:

1. $S_p cl(A)$ is the smallest S_p -closed set which contains *A*.

2. *A* is S_p -closed if and only if S_p cl(*A*) = *A*.

3.
$$\operatorname{scl}(A) \subseteq \operatorname{Spcl}(A)$$

4. If $A \subseteq B$, then $S_p cl(A) \subseteq S_p cl(B)$.

Definition 2.6: [Sarker, 1985] Two non-empty subsets *A* and *B* of a space *X* are said to be semi-separated sets if $A \cap \operatorname{scl}(B) = \emptyset$ and $\operatorname{scl}(A) \cap B = \emptyset$.

Remark 2.7: [Pipione, 1975] If *B* is the closure of an open set in a space *X*, then *B* and $X \setminus B$ are both semi-open sets in *X*.

Lemma 2.8: [Shareef, 2007] If *A* is a semi-open set in a space *X*, then cl(A) is S_p -open subset of *X*.

Definition 2.9: [Dontchev, 1998] A space *X* is said to be locally indiscrete if every open subset of *X* is closed.

Theorem 2.10: [Dontchev, 1998] For a space *X* the following conditions are equivalent:

- 1. X is locally indiscrete.
- 2. Every subset of *X* is preopen.
- 3. Every singleton in *X* is preopen.
- 4. Every closed subset of *X* is preopen.

Definition 2.11: [Sharma, 2011] A space X is said to be T_1 -space if for each two distinct points x and y in X there exists two open sets U and V in X containing x and y, respectively, such that $y \notin U$ and $x \notin V$.

Proposition 2.12: If a space *X* is T_1 -space, then $S_pO(X) = SO(X)$.

Proof: Obvious.

Theorem 2.13: [Khalaf, 2012] A space *X* is S_p - T_2 if and only if for each pair of distinct points $x, y \in X$, there exists a set *U* which is both S_p -open and S_p -closed containing one of them but not the other.

Lemma 2.14: [Pipitone, 1975] Let *A* be a subset of a space *X*, then *A* is semi-open set if and only if there exists an open set $G \subseteq A$ such that cl(A) = cl(G).

Definition 2.15: A space X is said to be semiconnected [Sarker, 1985], if it cannot be expressed as the union of two semi-separated sets.

Equivalently, X is said to be semi-connected [Pipitone, 1975], if it cannot be written as a union of two non-empty disjoint semi-open sets. Otherwise we say that X is semi-disconnected.

Definition 2.16: A space X is said to be β connected [Jafari, 2003] (resp., γ -connected [Duszynski, 2011], preconnected [Jafari, 2003], connected [Sharma, 2011] and δ -semiconnected [Ekici, 2008]) if X cannot be expressed as the union of two non-empty disjoint β -open (resp., γ -open, preopen, open and δ -semiopen) sets of X.

Lemma 2.17: [Ekici, 2008] For a space *X*, the following properties are equivalent:

- cl(V) = X for every nonempty open set V of X,
- 2. $U \cap V \neq \emptyset$ for any nonempty semi-open sets U and V of X,
- 3. X is semi-connected,
- 4. *X* is δ -semiconnected.

Definition 2.18: [Noiri, 1980] A space X is said to be extremally disconnected space if the closure of each open set in X is open.

Corollary 2.19: [Shareef, 2007] If a space X is extremally disconnected, then every S_p -open subset of X is preopen subsets of X.

Definition 2.20: [Jafari, 2003] A space X is said to be *PS*-space if every preopen set in X is semi-open in X.

Corollary 2.21: [Jafari, 2003] If X is extremally disconnected *PS*-space, then β -connectedness, preconnectedness, semi-connectedness and connectedness are all equivalent.

Theorem 2.22: [Sharma, 2011] A space X is disconnected if and only if X is the union of two non-empty disjoint open sets.

Theorem 2.23: [Sharma, 2011] A space X is disconnected if and only if there exists a non-empty proper subset of X which is both open and closed.

The following definitions and results are from [Duszynski, 2011].

Lemma 2.24: If a space *X* is γ -connected, then it is β -connected.

A space X is said to be **B-SP-connected** (resp., **P-SP-connected**) if X cannot be written as a union of two non-empty disjoint sets S_1 , S_2 of X such that $S_1 \in BO(X)$, $S_2 \in \beta O(X)$ (resp., $S_1 \in PO(X)$, $S_2 \in \beta O(X)$). A space X is said to **a-B-connected** (resp., **a** -**SPconnected**, **a** -**S-connected**) if X cannot be expressed as a union of two non-empty disjoint sets S_1 ; $S_2 \subset X$ such that $S_1 \in \alpha O(X)$ and $S_2 \in BO(X)$ (resp., $S_2 \in \beta O(X)$, $S_2 \in SO(X)$).

Theorem 2.25: For every space *X* the following are equivalent:

- 1. *X* is β -connected space.
- 2. X is B-SP-connected space.
- 3. X is P-SP-connected space.

Theorem 2.26: For every space *X* the following are equivalent:

- 1. *X* is semi-connected space.
- 2. *X* is α -*S*-connected space.
- 3. *X* is α -*SP*-connected space.
- 4. *X* is α -*B*-connected space.

Corollary 2.27: [Duszynski, 2006] Connectedness and α -*P*-connectedness are equivalent notion for every space *X*.

Definition 2.28: A function $f: X \rightarrow Y$ is said to be S_p-continuous [Shareef, 2007] (resp. continuous [Sharma, 2011], irresolute [Crossley, 1972], s-continuous or (strongly semicontinuous) [Muhammed, 2005]) if the inverse image of every open (resp. open, semi-open, semi-open) set in Y is S_p -open (resp. open, semiopen, open) set in X.

Theorem 2.29: [Shareef, 2007] The following statements are equivalents for the function $f: X \rightarrow Y$:

- (1) $f: X \to Y$ is S_p-continuous.
- (2) The inverse image of every closed set in Y is S_p -closed set in X.

Theorem 2.30: [Sharma, 2011] A function $f: X \rightarrow Y$ is continuous if and only if the inverse image of every closed set in *Y* is closed in *X*.

3. S_p-Connected Space

Definition 3.1: Two non-empty subsets *A* and *B* of *X* are said to be S_p -separated sets if $S_pcl(A) \cap B = \emptyset$ and $A \cap S_pcl(B) = \emptyset$.

Example 3.2: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Then $\{a\}$ and $\{b\}$ are S_p -separated sets in X because $S_pcl(\{a\}) \cap \{b\} = \{a\} \cap \{b\} = \emptyset$ and $\{a\} \cap S_pcl(\{b\}) = \{a\} \cap \{b\} = \emptyset$.

Proposition 3.3: Let *Y* be an open subspace of a space *X* and $A \in S_pO(X)$. Then $A \cap Y \in S_pO(Y)$. **Proof:** Let *Y* be an open subspace of a space *X* and $A \in S_pO(X)$. Then $A \in SO(X)$ and $A = \bigcup_{\alpha \in I} F_{\alpha}$, where $F_{\alpha} \in PC(X)$ for each $\alpha \in I$. Now since *Y* is preopen set in *X* and *A* is semi-open set in *X* so by [Lemma 2.3] $A \cap Y \in SO(Y)$ and $A \cap Y = (\bigcup_{\alpha \in I} F_{\alpha}) \cap Y = \bigcup_{\alpha \in I} (F_{\alpha} \cap Y)$, but by [Lemma 2.2] $F_{\alpha} \cap Y \in PC(Y)$ for each $\alpha \in I$; therefore $A \cap Y \in S_pO(Y)$.

Lemma 3.4: Let *Y* be an open subspace of a space *X* and $A \subseteq Y$, then $S_pcl_Y(A) \subseteq S_pcl(A)$ where S_pcl_Y denote the S_p -closure relative to the subspace *Y*.

Proof: Let $x \notin S_pcl(A)$ implies that there exists an S_p -open set U containing x such that $U \cap A = \emptyset$. Then $U \cap Y \cap A = \emptyset$, let $G = U \cap Y$. Since $U \in S_pO(X)$ and Y is open in X so by [Lemma 3.3] $G = U \cap Y \in S_pO(Y)$; therefore $G \cap A = \emptyset$ implies that $x \notin S_pcl_Y(A)$, hence $S_pcl_Y(A) \subseteq$ $S_pcl(A)$.

Lemma 3.5: Let *Y* be a regular closed subspace of a space *X* and $A \subseteq Y$. Then $S_pcl(A) \subseteq S_pcl_Y(A)$.

Proof: Let $x \notin S_p cl_Y(A)$ implies that there exists an S_p -open set U in Y containing x such that $U \cap A = \emptyset$. Since Y is regular closed set in Xthen by **[Lemma 2.4]** U is S_p -open set in Ximplies that $x \notin S_p cl(A)$, so $S_p cl(A) \subseteq S_p cl_Y(A)$.

Theorem 3.6: Let (Y, τ_Y) be an open subspace of a space (X, τ) and let $A, B \subseteq Y$. If A and B are S_p -separated sets in X, then A and B are τ_Y - S_p separated sets. **Proof:** Let *A* and *B* be two τ -S_p-separated sets implies that S_pcl(*A*) \cap *B* = Ø and *A* \cap S_pcl(*B*) = Ø. But since *Y* is open subspace of *X* so by **[Lemma 3.4]**, S_pcl_{*Y*}(*A*) \subseteq S_pcl(*A*) and S_pcl_{*Y*}(*B*) \subseteq S_pcl(*B*) implies that S_pcl_{*Y*}(*A*) \cap *B* = Ø and *A* \cap S_pcl_{*Y*}(*B*) = Ø. Thus *A* and *B* are τ_Y -S_pseparated sets in *Y*.

Theorem 3.7: Let *Y* be a regular closed subset of a space (X, τ) and $A, B \subseteq Y$. If *A* and *B* are τ_Y -S_p-separated sets in *Y*, then they are τ -S_p-separated sets in *X*.

Proof: Let *A* and *B* be τ_Y -S_p-separated sets in *Y*. Then S_pcl_{*Y*}(*A*) \cap *B* = Ø and *A* \cap S_pcl_{*Y*}(*B*) = Ø. Since *Y* is regular closed subspace of *X*, so by **[Lemma 3.5]**, S_pcl(*A*) \subseteq S_pcl_{*Y*}(*A*) and S_pcl(*B*) \subseteq S_pcl_{*Y*}(*B*) this implies that S_pcl(*A*) \cap *B* = Ø and *A* \cap S_pcl(*B*) = Ø. Thus *A* and *B* are τ -S_p-separated sets in *X*.

Proposition 3.8: Two S_p -closed (S_p -open) subsets of a space *X* are S_p -separated if and only if they are disjoint.

Proof: Necessity. Let *A* and *B* be two disjoint S_p -closed sets in *X*. Then $A \cap B = \emptyset$ and since they are S_p -closed sets in *X* so by [**Proposition** 2.5], $S_pcl(A) = A$ also $S_pcl(B) = B$ this implies that $S_pcl(A) \cap B = \emptyset$ and $A \cap S_pcl(B) = \emptyset$. Thus *A* and *B* are S_p -separated sets.

Sufficiency: Obvious.

Definition 3.9: A space *X* is said to be S_{p} connected space if it cannot be expressed as a
union of two non-empty proper S_{p} -separated sets
of *X*.

Proposition 3.10: Every semi-connected space is S_p -connected.

Proof: Let X be semi-connected space. Then X cannot be expressed as a union of two semi-separated sets, to show X is S_p -connected possible suppose that X is not space if S_p -connected, then there exists two S_p -separated sets A and B such that $X = A \cup B$. Now $S_p cl(A) \cap B = \emptyset$ and $A \cap S_p cl(B) = \emptyset$, then by [Proposition 2.5], $scl(A) \cap B = \emptyset$ and $A \cap scl(B) = \emptyset$ this implies that by [Definition 2.15], A and B are semi-separated sets. Therefore, X can be written as a union of semiseparated sets this implies that X is semiconnected which is a contradiction. Thus X is S_p-connected space.

The converse of [**Proposition 3.10**] is not true in general as it is shown in the following example:

Example 3.11: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, [a, b\}\}$. Then X is S_p-connected space but it is not semi-connected since

 $X = \{a\} \cup \{b, c\}$, where $\{a\}$ and $\{b, c\}$ are semiseparated sets.

Corollary 3.12: Every β -connected space is S_p-connected.

Proof: Follows from **[Definition 2.16]** and **[Proposition 3.10]**.

Theorem 3.13: A space *X* is S_p -connected if and only if there is no non-empty proper subset of *X* which is both S_p -open and S_p -closed.

Proof: Let *X* be S_p -connected space and there exists a non-empty proper subset *A* of *X* which is both S_p -open and S_p -closed. Then $B = X \setminus A$ is also non-empty S_p -open and S_p -closed, but $S_pcl(A) \cap B = A \cap B = \emptyset$ and $A \cap S_pcl(B) = A \cap B = \emptyset$ this implies that *A* and *B* are S_p -separated set and $X = A \cup B$, then *X* is not S_p -connected space which is a contradiction. Thus there is no non-empty proper subset of *X* which is both S_p -open and S_p -closed.

Conversely: Let the hypothesis be satisfied, to show *X* is S_p -connected space. If possible suppose that *X* is not S_p -connected space, then there exists S_p -separated sets *A* and *B* such that $X = A \cup B$. Since $S_pcl(A) \cap B = \emptyset$ implies that $A \cap B = \emptyset$, then $A = X \setminus B$ and now $S_pcl(A) \subseteq$ $X \setminus B = A$ so *A* is S_p -closed set, and since $S_pcl(B) \cap A = \emptyset$ then $S_pcl(B) \subseteq X \setminus A = B$ this implies that *B* is S_p -closed set. Now $X \setminus B$ is S_p -open set, but $A = X \setminus B$; therefore *A* is a non-empty proper subset of *X* which is both S_p open and S_p -closed that is a contradiction. Hence *X* must be S_p -connected space.

Corollary 3.14: A space X is S_p -connected if and only if the only subsets of X which are both S_p -open and S_p -closed sets are \emptyset and X.

Proof: Follows from [Theorem 3.13].

Proposition 3.15: A space X is S_p -connected if and only if X cannot be expressed as the union of two non-empty disjoint S_p -open sets.

Proof: Let *X* be S_p -connected space and if possible suppose that *X* there exists two disjoint non-empty S_p -open sets *A* and *B* such that $X = A \cup B$. Then by [**Proposition 3.8**], *A* and *B* are S_p -separated sets this implies that *X* is not S_p -connected space which is a contradiction. Thus *X* cannot be expressed as the union of two non-empty disjoint S_p -open sets.

Conversely: Let the hypothesis be satisfied and if possible suppose that X is not S_{p} connected. Then there exist two S_{p} -separated sets A and B such that $X = A \cup B$, now since $S_{p}cl(A) \cap B = \emptyset$ implies that $A \cap B = \emptyset$, but $S_{p}cl(A) \subseteq X \setminus B = A$ this implies that A is S_{p} - closed set and by the same way *B* is also S_p closed set, and then *A* and *B* are also S_p -open sets implies that *A* and *B* are disjoint non-empty S_p open sets such that $X = A \cup B$ which is a contradiction. Thus *X* must be S_p -connected space.

Corollary 3.16: If a space X is S_p -connected T_1 -space, then it is semi-connected.

Proof: Let *X* be an S_p -connected T_1 -space, then by **[Theorem 3.15]**, *X* cannot expressed as the union of two non-empty disjoint S_p -open sets and since *X* is T_1 -space, so by **[Proposition 2.12]** *X* cannot expressed as the union of two non-empty disjoint semi-open sets. This implies that *X* is a semi-connected space.

Remark 3.17: A space X is S_p -connected if and only if it cannot be written as a union of two non-empty disjoint S_p -closed sets.

The property of S_p -connectedness is not hereditary as shown by the following example:

Example 3.18:- Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$. Then $S_pO(X) = \{\emptyset, X\}$, so the only non-empty subset of X which is both S_p -open and S_p -closed is X itself, therefore by **[Corollary 3.14]**, X is S_p -connected space. Now let $Y = \{b, c\}$, then $\tau_Y = \{\emptyset, Y, \{b\}, \{c\}\}$ and $S_pO(Y) = \tau_Y$ implies that Y can be expressed as the union of two non-empty disjoint S_p -open sets in Y. Thus Y is not S_p -connected subspace.

Theorem 3.19: Let *A* be S_p -connected set in *X* and *C*, *D* be S_p -separated sets of *X* such that $A \subseteq C \cup D$. Then either $A \subseteq C$ or $A \subseteq D$.

Proof: Let *A* be S_p -connected set in *X* and *C*, *D* be S_p -separated sets of *X* such that $A \subseteq C \cup D$ and let $A \nsubseteq C$ and $A \nsubseteq D$. Now Suppose that $A \cap C \neq \emptyset$ and $A \cap D \neq \emptyset$, since $A \cap (C \cup D) =$ *A* implies that $A = (A \cap C) \cup (A \cap D)$. But since *C* and *D* are S_p -separated sets so $S_pcl(C) \cap D =$ \emptyset and $C \cap S_pcl(D) = \emptyset$. Now $(A \cap C) \cap S_pcl(A \cap D)$ $D) \subseteq (A \cap C) \cap S_pcl(D) = A \cap (C \cap S_pcl(D)) =$ \emptyset this implies that $(A \cap C) \cap S_pcl(A \cap D) = \emptyset$. By the same way we can get $S_pcl(A \cap D) = \emptyset$. By the same way we can get $S_pcl(A \cap C) \cap (A \cap D) = \emptyset$, so $A \cap C$ and $A \cap D$ are S_p separated sets such that $A = (A \cap C) \cup (A \cap D)$ this implies that *A* is not S_p -connected set which is a contradiction. Thus either $A \subseteq C$ or $A \subseteq D$.

Theorem 3.20: Let *X* be a space such that any two elements *x* and *y* in *X* are contained in an S_p -connected subspace of *X*, then *X* is S_p -connected.

Proof: Suppose that *X* is not S_p -connected space, then *X* is the union of two non-empty S_p -separated sets *A* and *B*. Now since *A* and *B* are

non-empty sets, so there exists $a \in A$ and $b \in B$ this implies that by hypothesis a and b are contained in some S_p-connected subspace *Y* of *X*, but $X = A \cup B$ implies that $Y \subseteq A \cup B$ and then by [**Theorem 3.19**], either $Y \subseteq A$ or $Y \subseteq B$ this implies that either a, b are both in *A* or are both in *B* which is a contradiction. Hence *X* must be S_p-connected space.

Proposition 3.21: If *U* is an S_p -connected set in a space *X*, then $S_pcl(U)$ is also S_p -connected set in *X*.

Proof: Let U be S_p -connected set in a space X and $S_p cl(U)$ not S_p -connected in X. Then there exists two S_p -separated sets A and B in X such that $S_p cl(U) = A \cup B$, but $U \subseteq S_p cl(U)$ implies that $U \subseteq A \cup B$ and since U is S_p-connected set in X so by [Theorem 3.19] either $U \subseteq A$ or $U \subseteq B$. Now if $U \subseteq A$, then by **[Proposition 2.5]** $S_p cl(U) \subseteq S_p cl(A)$ and since $S_p cl(A) \cap B = \emptyset$ implies that $S_p cl(U) \cap B = B = \emptyset$ which is a And if $U \subseteq B$, contradiction. then by **[Proposition 2.5]** $S_p cl(U) \subseteq S_p cl(B)$ and $A \cap S_p cl(B) = \emptyset$ implies that $A \cap S_p cl(U) = A =$ \emptyset which is a contradiction. Then in both cases we get a contradiction. Hence $S_p cl(U)$ is an S_p connected set in X.

Theorem 3.22: Let *U* and *V* be two subsets of a space *X*. If *U* is S_p -connected in *X* such that $U \subseteq V \subseteq S_pcl(U)$, then *V* is also S_p -connected set in *X*.

Proof: Let *V* be not S_p -connected set in *X*. Then there exists two S_p -separated sets *A* and *B* such that $V = A \cup B$, since $U \subseteq V$ this implies that $U \subseteq A \cup B$ and since *U* is S_p -connected set in *X* so by [**Theorem 3.19**] either $U \subseteq A$ or $U \subseteq B$. If $U \subseteq A$, then by [**Proposition 2.5**] $S_pcl(U) \subseteq$ $S_pcl(A)$ and since *A* and *B* are S_p -separated sets so $S_pcl(U) \cap B = \emptyset$, but $A \cup B = V \subseteq S_pcl(U)$ this implies that $V \cap B = B = \emptyset$ which is a contradiction. By the same way if $U \subseteq B$ we get a contradiction. Thus *V* must be S_p -connected set in *X*.

Proposition 3.23: If for every non-empty S_p -open subset *U* of a space *X*, $S_pcl(U) = X$, then *X* is S_p -connected.

Proof: Suppose that *X* is not S_p -connected space. Then by [**Proposition 3.15**] there exists two non-empty disjoint S_p -open sets *U* and *V* such that $X = U \cup V$, now since $U \cap V = \emptyset$ this implies that $U = X \setminus V$ and $V = X \setminus U$ and then they are also non-empty S_p -closed sets in *X*; therefore by [**Proposition 2.5**] S_p cl $(U) = U \neq X$ and S_p cl $(V) = V \neq X$ which is a contradiction to the hypothesis. Thus *X* is S_p -connected.

Remark 3.24: Let X be a δ -semi-connected space, then by **[Lemma 2.17]**, X is semi-connected space and by **[Proposition 3.10]**, X is S_p-connected space.

Proposition 3.25: If a space X is extremally disconnected (or locally indiscrete) preconnected space, then X is S_p -connected.

Proof: Suppose that *X* is not S_p -connected space this implies that by [**Proposition 3.15**], there exist two non-empty disjoint S_p -open sets *U* and *V* such that $X = U \cup V$. Since *X* is extremally disconnected (locally indiscrete) space so by [**Corollary 2.19**] or([**Theorem 2.10**]), *U* and *V* are preopen sets in *X* this implies that by [**Definition 2.16**], *X* is not preconnected which is a contradiction. Thus *X* must be S_p -connected space.

Corollary 3.26: Let X be extremally disconnected *PS*-space. If X is preconnected (resp. connected) space, then X is S_p-connected.

Proof: Follows from [**Proposition 3.25**] and [**Corollary 2.21**].

Theorem 3.27: If a space *X* is disconnected, then *X* is not S_p -connected space.

Proof: Let *X* be disconnected space. Then by **[Theorem 2.23]** there exists a non-empty proper subset *U* of *X* which is both open and closed, and then $X \setminus U$ is open and closed set in *X*. But every clopen set is S_p -open set and $X = U \cup (X \setminus U)$ this implies that *X* is written as the union of two non-empty disjoint S_p -open sets so by **[Proposition 3.15]**, *X* is not S_p -connected space.

From the above theorem we get the following result.

Corollary 3.28: Every S_p-connected space is connected.

Lemma 3.29: Any S_p - T_2 space which contains at least two distinct points is not S_p -connected space.

Proof: Let *X* be S_p - T_2 space contains at least two distinct points. Then by **[Theorem 2.13]** there exists an S_p -clopen set *U* containing one of them but not the other this implies that *X* contains a non-empty proper set which is both S_p -open and S_p -closed set; therefore by **[Theorem 3.13]** *X* is not S_p -connected space.

Theorem 3.30: For a locally indiscrete space *X* the following statements are equivalent:

- 1. X is S_p -connected space.
- 2. $S_p cl(U) = X$, for every non-empty S_p -open set U in X.
- 3. $U \cap V \neq \emptyset$, for any two non-empty S_p-open subsets *U* and *V* of *X*.

Proof: $(1) \rightarrow (2)$

Let X be S_p -connected space and let there exists an non-empty S_p -open set U in X such that $S_p cl(U) \neq X$. Then there exists $y \in X$ such that $y \notin S_p cl(U)$ this implies that there exists an S_p open set V containing y such that $U \cap V \neq \emptyset$, and since U is semi-open set so by [Lemma **2.14**] there exists an open set $G \subseteq U$ in X such that cl(G) = cl(U) and $G \subseteq U$ so by [**Remark 2.7**] cl(U) and $X \setminus cl(U)$ are semi-open sets in X. Now by [Lemma 2.8] cl(U) is S_p -open set also by [Theorem 2.10] cl(U) is preopen set this implies that $X \setminus cl(U) \neq \emptyset$ is semi-open and preclosed set in X; therefore $X \setminus cl(U)$ is S_p -open set. But $X = cl(U) \cup (X \setminus cl(U))$ and $cl(U) \cap$ $(X \setminus cl(U)) = \emptyset$ this implies that X is the union of two non-empty disjoint S_p-open sets, then by **[Proposition 3.15]** X is not S_p -connected which is a contradiction. Thus the condition (2) must be satisfied.

 $(2) \rightarrow (1)$

Follows from [**Proposition 3.23**].

 $(2) \rightarrow (3)$

Suppose that there exists two non-empty S_p open sets U and V in X such that $U \cap V = \emptyset$. Since $U \neq \emptyset$ and $V \neq \emptyset$ so $S_p cl(U) \neq X$ this contradicts condition (2). Thus $U \cap V \neq \emptyset$, for any two non-empty S_p -open subsets U and V of X.

 $(3) \rightarrow (2)$

Suppose that there exists a non-empty S_p open set U such that $S_pcl(U) \neq X$. Then there exists $y \in X$ such that $y \notin S_pcl(U)$, so there exists an S_p -open set V containing y such that $U \cap V = \emptyset$ which contradicts condition (3). Hence the proof is complete.

Corollary 3.31: Every γ - connected space is S_p-connected.

Proof: Follows from **[Lemma 2.24]** and **[Corollary 3.12]**.

Corollary 3.32: Every *B-SP*-connected (resp. *P*-*SP*-connected) space is S_p -connected.

Proof: Follows from **[Theorem 2.25]** and **[Corollary 3.12]**.

Corollary 3.33: Every α -S-connected (resp. α -SP-connected, α -B-connected) space is S_p-connected space.

Proof: Follows from **[Theorem 2.26]** and **[Proposition 3.10]**.

Corollary 3.34: Every S_p -connected space is α -*P*-connected.

Proof: Let X be S_p -connected space. Then by **[Corollary 3.28]** X is connected and by **[Corollary 2.27]** X is α -*P*-connected.

Proposition 3.35: If *Y* is a regular closed subspace of a locally indiscrete S_p -connected space *X*, then *Y* is S_p -connected subspace.

Proof: Let *Y* be a regular closed subspace of a locally indiscrete S_p -connected space. To show *Y* is S_p -connected subspace, let *U* be a non-empty S_p -open set in *Y*, since *Y* is regular closed in *X* then by [Lemma 2.4], *U* is S_p -open in *X* and since *X* is locally indiscrete S_p -connected space so by [Theorem 3.30], $S_pcl(U) = X$. But *Y* is regular closed in *X*, then by [Lemma 3.5], $S_pcl_Y(U) = X$ this implies that by [Theorem 3.30] *Y* is S_p -connected subspace.

Theorem 3.36: A space X is S_p -connected if there exists a locally indiscrete S_p -connected subspace such that Y is open and $S_pcl(Y) = X$

Proof: Let *Y* be a locally indiscrete S_p -connected subspace of a space *X* such that $S_pcl(Y) = X$ and *Y* be open in *X*. Now let *A* and *B* be two nonempty S_p -open sets in *X*, since $S_pcl(Y) = X$ and *Y* is open set in *X*, so by [**Proposition 3.3**], $A \cap Y$ and $B \cap Y$ are S_p -open sets in *Y* and they are non-empty also. But since *Y* is locally indiscrete S_p -connected subspace, so by [**Theorem 3.30**], $\emptyset \neq (A \cap Y) \cap (B \cap Y) \subseteq A \cap$ *B* this implies that by [**Theorem 3.30**], *X* is S_p connected space.

Theorem 3.37: Let *X* be a space and let $\{C_{\alpha} : \alpha \in \Delta\}$ be a collection of S_p-connected sets in *X* such that $\bigcap_{\alpha \in \Delta} C_{\alpha} \neq \emptyset$. Then $\bigcup_{\alpha \in \Delta} C_{\alpha}$ is S_p-connected set in *X*.

Proof: Suppose that $\bigcup_{\alpha \in \Delta} C_{\alpha}$ be not S_{p} connected in *X*, then $\bigcup_{\alpha \in \Delta} C_{\alpha}$ can be expressed as the union of two S_{p} -separated sets *A* and *B* this implies that $\bigcup_{\alpha \in \Delta} C_{\alpha} = A \cup B$. Now since for all $\alpha \in \Delta$, $C_{\alpha} \subseteq \bigcup_{\alpha \in \Delta} C_{\alpha}$ implies that $C_{\alpha} \subseteq A \cup B$ and since C_{α} is S_{p} -connected set in *X* for each $\alpha \in \Delta$, then by [**Theorem 3.19**] either $C_{\alpha} \subseteq A$ or $C_{\alpha} \subseteq B$ for all $\alpha \in \Delta$. If $C_{\alpha} \subseteq A$ for all $\alpha \in \Delta$, then $\bigcup_{\alpha \in \Delta} C_{\alpha} \subseteq A$ which is a contradiction of the assumption that *A* and *B* are S_{p} -separated of $\bigcup_{\alpha \in \Delta} C_{\alpha}$. By the same way if $C_{\alpha} \subseteq B$ we get a contradiction. Thus $\bigcup_{\alpha \in \Delta} C_{\alpha}$ must be S_{p} -connected set in *X*.

Proposition 3.38: A space *X* is S_p -connected if and only if each S_p -continuous function from *X* into a discrete two point space {*a*. *b*} is constant.

Proof: Let X be S_p-connected space and $f: X \to \{a, b\}$ be S_p-continuous function, where Y is a discrete space of at least two points. Now since f is S_p-continuous so by [**Theorem 2.29**] for each $y \in f(X) \subseteq \{a, b\}, f^{-1}(\{y\})$ is S_p-open, S_p-closed and non-empty set in X. But since X is S_p-connected space, so by [**Corollary 3.14**],

 $f^{-1}(\{y\}) = X$ this implies that f(x) = y for all $x \in X$, then f is a constant function.

Conversely: Let the hypothesis be satisfied and suppose that X is not S_p -connected. Then by [Theorem 3.13], there exists a proper subset A of X which is both S_p -open and S_p -closed in X. This implies that $X \setminus A$ is also non-empty proper subset of X which is both S_p -open and S_p -closed in X. Now define a function $f: X \to \{a, b\}$ by setting f(x) = a if $a \in A$ and f(x) = b if $x \in X \setminus A$, since $\{a, b\}$ is discrete and $A \cap$ $(X \setminus A) = \emptyset$, then the definition of f shows that $f^{-1}(\emptyset) = \emptyset, f^{-1}(\{a, b\}) = X$. Also $f^{-1}(\{a\}) =$ A and $f^{-1}(\{b\}) = X \setminus A$. Thus we have shown that the inverse image of every open set in $\{a, b\}$ is S_p -open in X, then by [Definition 2.28], f is S_p -continuous function, but f is not constant which is a contradiction. Hence X must be S_{p} connected space.

Theorem 3.39: Let $f: X \to Y$ be a surjective S_p -continuous function. If X is an S_p -connected space, then Y is connected.

Proof: Let *X* be S_p -connected and suppose that *Y* is disconnected, then by **[Theorem 2.22]**, *Y* is the union of two non-empty disjoint open sets *U* and *V* of *Y*. Since *f* is S_p -continuous function so by **[Definition 2.28]** $f^{-1}(U)$ and $f^{-1}(V)$ are non-empty disjoint S_p -open sets in *X*, but $f(X) = Y = U \cup V$ this implies that $X = f^{-1}(U) \cup f^{-1}(V)$, and then *X* is the union of two non-empty disjoint S_p -open sets which implies that *X* is not S_p -connected this is a contradiction. Thus *Y* is connected.

Theorem 3.40: Let $f: X \to Y$ be a surjective irresolute function. If X is an semi-connected space, then Y is S_p-connected.

Proof: Let X be s-connected and Y is not an S_p connected space. Then by [Proposition 3.15], there exist two disjoint non-empty S_p -open sets U and V such that $Y = U \cup V$, and since f is irresolute and U, V are semi-open in Y sets, so by **[Definition 2.28],** $f^{-1}(U)$ and $f^{-1}(V)$ are also non-empty disjoint semi-open sets in X. Now $f(X) = Y = U \cup V$ this implies that X = $f^{-1}(U) \cup f^{-1}(V)$; therefore X is the union of two non-empty disjoint semi-open sets, and then by [Definition 2.15], X is not semi-connected space which is a contradiction. Thus Y must be S_p-connected space.

Theorem 3.41: Let $f: X \to Y$ be a surjective open continuous function. If X is S_p-connected space, then Y is also S_p-connected.

Proof: Let *Y* be not S_p -connected space. Then by [**Proposition 3.15**], *Y* can be expressed as the

union of two non-empty disjoint S_p -open sets Uand V in Y, but since f is continuous and open function so by [**Proposition 2.30**], $f^{-1}(U)$ and $f^{-1}(V)$ are non-empty disjoint S_p -open sets in X. And since $f(X) = Y = U \cup V$ implies that $X = f^{-1}(U) \cup f^{-1}(V)$, then by [**Proposition 3.15**], X is not S_p -connected which is a contradiction. Thus Y must be S_p -connected space.

Theorem 3.42: Let $f: X \to Y$ be a surjective scontinuous function. If X is connected space, then Y is S_p-connected space.

Proof: Let *Y* be not S_p -connected space. Then by [**Proposition 3.15**], there exists two disjoint non-empty S_p -open sets *U* and *V* in *Y* such that $Y = U \cup V$. Since *f* is s-continuous and *U*, *V* are semi-open sets in *Y*, so from [**Definition 2.28**] we have $f^{-1}(U)$ and $f^{-1}(V)$ are non-empty disjoint open sets in *X*, but $f(X) = Y = U \cup V$ implies that $X = f^{-1}(U) \cup f^{-1}(V)$ and then by [**Theorem 2.22**] *X* is disconnected which is a contradiction. Thus *Y* must be S_p -connected space.

REFERENCES

- Abd-El-Monsef M. E., El-Deeb S. N. and Mahmoud R. A., (1983), "β-open sets and β-continuous mappings", *Bull. Fac. Assint*, Vol. 12, pp. 77-90.
- Andrijevic D., (1996), "on b-open sets", *Mat. Vesnik*, Vol. 48, pp. 59-64.
- Crossley S. G., and Hildebrand S. K., (1971), "Semiclosure", *Texas J. Sci.*, Vol. 22, pp. 99-112.
- Crossley S. G. and Hildebrand S. K., (1972), "Semitopological properties", *Fundamenta Mathematicae*, Vol. 74, pp. 233-254.
- Dontchev J., (1998), "Survey on preopen sets", *ArXiv: Math.*, Vol. 1, pp. 1-18.
- Duszynski Z., (2006), "On some concepts of weak connectedness of topological spaces", Acta Math. Hungar., Vol. 110, pp. 81-90.
- Duszynski Z., (2011), "β-connectedness and Sconnectedness of topological spaces", *Matematiqki Vesnik*, Vol. 63, No. 2, pp. 115-126.
- Ekici E., and Noiri T., (2008), "A note on almost δ-semicontinuous functions", *Bol. Soc. Paran. Mat.*, Vol. 26, pp. 65-70.
- El-Atik A. A., (1997), "A Study of some Types of Mappings on Topological Spaces", M. Sc. thesis, Tanta Univ. Egypt.
- Jafari S., and Noiri T., (2003), "Properties of β-connected spaces", *Acta Math. Hungar.*, Vol. 101 (3), pp. 227-236.
- Khalaf A. B., Shareef H. A., (2012), "S_p-separation axioms", International Journal of Scientific & Engineering Research, Vol. 3, pp. 1-6.

- Levine N., (**1963**), "Semi-open sets and semi-continuity in topological spaces", *Amer. Math. Monthly*, Vol. 70, pp. 36-41.
- Mashhour A. S., and Abd-El-Monsef M. E. and El-Deeb S. N., (1982), "On pre-continuous and weak precontinuous mappings", *Proc. Math. Phys. Soc. Egypt*, Vol. 53, pp. 47-53.
- Muhammed B. A., (2005), "On a Special Type of Semiopen Sets in Topological Spaces", M. Sc. Thesis, University of Duhok, Iraq.
- Njastad O., (1965), "On some classes of nearly open sets", *Pacific J. Math.*, Vol. 15 (3), pp. 961-970.
- Noiri T., (1980), "A note on extremally disconnected spaces", *Proc. Amer. Math. Soc.*, Vol. 79, No. 2, pp. 327-330.

- Pipitone V., and Russo G., (1975), "Spazi semiconnessi e spazi semiaperti", *Rend. Circ. Mat. Palermo*, Vol. 24 (2), pp. 273-285.
- Sarker J. P., and Dasgupta H., (1985), "Locally semiconnectedness in topological spaces", *Indian J. Pure Appl. Math.*, Vol. 16 (12), pp. 1488-1494
- Shareef H. A., (2007), "S_p-open Sets, S_p-continuity and S_p-compactness in Topological Spaces", M. Sc. Thesis, University of Sulaimani, Iraq.
- Sharma J. N., and Chauhan J. P., (**2011**), "*Topology* (*General and Algebraic*)", Krishna Prakashsan Media, Indai.
- Steen L. A. and Seebach J. A., (1970), "Counterexamples in Topology", Hollt, Rinehart and Winston, Inc., New York.

$\mathbf{S}_{\mathbf{p}}$ حول الفضاءات المتصلة من النمط

الملخص

في هذا البحث ادخلنا مفهوما جديدا للفضاءات المتصلة سميت بالفضاءات المتصلة من النمط Sp . هذا الصنف من الفضاءات يقع بين الفضاءات الشبه متصلة والفضاءات المتصلة. الكثير من خواص وصفات هذا المفهوم وجدت.

\mathbf{S}_{p} ل دۆر ڤالاھىێن پىكڤە ژ جورى

كورتى

دفى فەكولينيدا مە جورەكى نوى ژ قالاھيين پيكفە دا نياسين بنافى قالاھيين پيكفە ژ جورى S_p . ئەف جورە د كەفتە دناف بەرا فالاھيين شتى- بيكفە و فالاھيين پيكفە. گەلك ساخلەتين وسيفاتين فى جورى ھاتينە ديتن.