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ABSTRACT

In this paper we introduce a new concept of connectedness namely Sp-connected space. This class of spaces is
strictly between semi-connectedness and connectedness. Several properties and characterizations of this concept are

found.
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1. INTRODUCTION
semi-open set was defined by Levine in
[Levine, 1963] while Pipitone and Russo
in [Pipitone et. al., 1975] used this set to
introduced s-connectedness or semi-
connectedness. By using the concept of preopen
sets which introduced in [Mashhour et al, 1982],
Popa defined the p-connected or preconnected
[Popa, 1987]. Shareef in [Shareef, 2007] defined
a new type of open sets called S,-open sets .
Throughout this paper X and Y will always
denote topological spaces on which no separation
axioms are assumed unless explicitly stated. If U
is a subset of X, then the closure of U and
interior of U are denoted by cl(U) and int(U)
respectively. The symbol f:X — Y represent a
function from a space X into a space Y. Semi-
closure of a set in any space was introduced by
Crossley, and Hildebrand in [Crossley et. Al.,
1971] which is the intersection of all semi-closed
sets containing this set and denoted by scl, on
the other hand Sy-closure in [Shareef, 2007] is
defined by the intersection of all Sy-closed sets
which contain it and denoted by S,cl.

2. Preliminaries

In this section, we give definitions and results
which are used in the next section.
Definition 2.1:

A subset A of a space X is said to be semi-
open [Levine, 1963] (resp. preopen [Mashhour
et. al., 1982 ], regular open, regular closed
[Steen, 1970], p-open [Abd-El-Monsef, 1983],
a-open [Njastad, 1965], &-semiopen [EKici,
2008] and y-open [El-Atik, 1997] (equiv. sp-
open [Dontchev, 1998] or b-open [Andrijevic,
1996])) set if A < cl(int(4)) (resp. ACS
int(cl(4)), A =int(cl(4)), A = cl(int(4)),
A < cl(int(cl(4))), A < int(cl(int(4))),
A C cl(int5(A4)) and A C cl(int(4)) U

int(cl(A4))). A semi-open set A of a space X is
said to be Sy-open set if for each x € A, there
exists a preclosed set F such that xe FC A
[Mohammed, 2005].

The complement of semi-open (resp. preopen,
B-open, a-open, §-semiopen and y-open (equiv.
sp-open or b-open)) set in X is called semi-closed
(resp. preclosed, p-closed, «a-closed, &-
semiclosed, y-closed (equiv. sp-closed or b-
closed). The complement of Sy-open set is called
Sy-closed sets and their families are denoted by
S,0(X) and S,C(X) while the families of semi-
open, preopen, a-open, B-open, y-open, and &-
semiopen sets are denoted by SO(X), PO(X),
a0(X), BO(X), yO(X) and 6SO(X).

Lemma 2.2:Let Y be an open subspace of X. If
F is a preclosed subset in a space X, then
FNYispreclosedinY.

Proof: Obvious.

Lemma 2.3: [Donchev, 1998] Let X be any
space. If A is semi-open set in X and B is
preopen set in X, then A N B is semi-open set in
B.

Lemma 2.4: [Shareef, 2007] Let Y be a regular
closed subspace of the space X. If A is an S,-
open subset of Y, then A is Sy-open set in X.
Proposition 2.5: [Shareef, 2007] Let A, B be two
subsets of a space X, then:

1. Sycl(4) is the smallest Sy-closed set which
contains A.

2. Ais Sy-closed if and only if Sycl(4) = A.

3. scl(A4) € Sicl(4).

4. If A € B, then Scl(4) € Sycl (B).
Definition 2.6: [Sarker, 1985] Two non-empty
subsets A and B of a space X are said to be semi-
separated sets if Anscl(B) =@ and scl(4A) N
B =0.

Remark 2.7: [Pipione, 1975] If B is the closure
of an open set in a space X, then B and X\B are
both semi-open sets in X.
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Lemma 2.8: [Shareef, 2007] If A is a semi-open

set in a space X, then cl(A) is Sy-open subset of

X.

Definition 2.9: [Dontchev, 1998] A space X is

said to be locally indiscrete if every open subset

of X is closed.

Theorem 2.10: [Dontchev, 1998] For a space X

the following conditions are equivalent:

1. Xislocally indiscrete.

2. Every subset of X is preopen.

3. Every singleton in X is preopen.

4. Every closed subset of X is preopen.

Definition 2.11: [Sharma, 2011] A space X is

said to be T;-space if for each two distinct points

x and y in X there exists two open sets U and V

in X containing x and y, respectively, such that

yeUand x¢gV.

Proposition 2.12: If a space X is T;-space, then

S,0(X) =SO(X).

Proof: Obvious.

Theorem 2.13: [Khalaf, 2012] A space X is Sy-

T, if and only if for each pair of distinct points

x,y € X, there exists a set U which is both S;-

open and Sy-closed containing one of them but

not the other.

Lemma 2.14: [Pipitone, 1975] Let A be a subset

of a space X, then A is semi-open set if and only

if there exists an open set G € A such that

cl(4) = cl(G).

Definition 2.15: A space X is said to be semi-

connected [Sarker, 1985], if it cannot be

expressed as the union of two semi-separated

sets.

Equivalently, X is said to be semi-connected

[Pipitone, 1975], if it cannot be written as a

union of two non-empty disjoint semi-open sets.

Otherwise we say that X is semi-disconnected.

Definition 2.16: A space X is said to be -

connected [Jafari, 2003] (resp., y-connected

[Duszynski, 2011], preconnected [Jafari, 2003],

connected [Sharma, 2011] and §-semiconnected

[Ekici, 2008]) if X cannot be expressed as the

union of two non-empty disjoint S-open (resp.,

y-open, preopen, open and §-semiopen) sets of

X.

Lemma 2.17: [EKici, 2008] For a space X, the

following properties are equivalent:

1. cl(V) = X for every nonempty open set V of
X,

2. UnYV =+ @ for any nonempty semi-open sets
U and V of X,

3. X is semi-connected,

4. X is §-semiconnected.
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Definition 2.18: [Noiri, 1980] A space X is said
to be extremally disconnected space if the
closure of each open set in X is open.
Corollary 2.19: [Shareef, 2007] If a space X is
extremally disconnected, then every Sg-open
subset of X is preopen subsets of X.
Definition 2.20: [Jafari, 2003] A space X is said
to be PS-space if every preopen set in X is semi-
openinX.
Corollary 2.21: [Jafari, 2003] If X is extremally
disconnected PS-space, then [S-connectedness,
preconnectedness,  semi-connectedness  and
connectedness are all equivalent.
Theorem 2.22: [Sharma, 2011] A space X is
disconnected if and only if X is the union of two
non-empty disjoint open sets.
Theorem 2.23: [Sharma, 2011] A space X is
disconnected if and only if there exists a non-
empty proper subset of X which is both open and
closed.

The following definitions and results are
from [Duszynski, 2011].
Lemma 2.24: If a space X is y-connected, then it
is B-connected.

A space X is said to be B-SP-connected
(resp., P-SP-connected) if X cannot be written
as a union of two non-empty disjoint sets S; = S,
of X suchthat S; € BO (X), S; € B O (X)
(resp., S; € PO (X), S;e B O (X)) . A space X
is said to a-B-connected (resp., a -SP-
connected, a -S-connected ) if X cannot be
expressed as a union of two non-empty disjoint
sets S;; S, « X such that S; € aO(X) and S,
eBO (X) (resp., S; € B O (X), S; € SO (X)).
Theorem 2.25: For every space X the following
are equivalent:

1. X is B-connected space.

2. X is B-SP-connected space.

3. X is P-SP-connected space.

Theorem 2.26: For every space X the following
are equivalent:

1. X is semi-connected space.

2. X is a-S-connected space.

3. X is a-SP-connected space.

4. X is a-B-connected space.

Corollary 2.27: [Duszynski, 2006]
Connectedness and a-P-connectedness are
equivalent notion for every space X.

Definition 2.28: A function f: X — Y is said to
be Sy-continuous  [Shareef, 2007] (resp.
continuous [Sharma, 2011], irresolute [Crossley,
1972], s-continuous or  (strongly  semi-
continuous) [Muhammed, 2005]) if the inverse
image of every open (resp. open, semi-open,
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semi-open) set in Y is Sy-open (resp. open, semi-

open, open) setin X.

Theorem 2.29: [Shareef, 2007] The following

statements are equivalents for the function

f:X-Y:

(1) f:X - Y is Sp-continuous.

(2) The inverse image of every closed set in Y
is Sp-closed set in X.

Theorem 2.30: [Sharma, 2011] A function

f:X — Y is continuous if and only if the inverse

image of every closed set in Y is closed in X.

3. Sp-Connected Space

Definition 3.1: Two non-empty subsets A and B
of X are said to be Sy-separated sets if S,cl(4) N
B = ¢ and A nSycl(B) = 0.

Example 3.2: Let X ={a,b,c} and 7=
{0,X,{a},{b},{a,b}}. Then {a} and {b} are S,-
separated sets in X because S,cl({a}) n{b} =
{a}n{b}=0 and {a}nS,ccl({b}) ={a}n
{b}=0.

Proposition 3.3: Let Y be an open subspace of a
space X and A € S,0(X). ThenANnY € S,0(Y).
Proof: Let Y be an open subspace of a space X
and A €S,0(X). Then A€ SO(X) and A=
Uger Fx, Where F, € PC(X) for each a € I. Now
since Y is preopen set in X and A is semi-open
set in X so by [Lemma 2.3] AnY € SO(Y) and
ANY = Uger F) NY = Uger(F, NY), but by
[Lemma 2.2] F,nY € PC(Y) for each a € I;
therefore AnY € S,0(Y).

Lemma 3.4: Let Y be an open subspace of a
space X and A €Y, then S,cly(4) S S,cl(4)
where Sycly denote the Sy-closure relative to the
subspace Y.

Proof: Let x €S,cl(A) implies that there exists
an Sp-open set U containing x such that U N 4 =
@. Then UNYNA=0, let G=UNY. Since
U € S,0(X) and Y is open in X so by [Lemma
33] G=UnNY € S,0(Y); therefore GNA =0
implies that x & Sycly(4), hence Syclv(4) €
Secl(4).

Lemma 3.5: Let Y be a regular closed subspace
of a space X and ACSY. Then Sy cl(4) €
Seclv(4).

Proof: Let x & Sycly(4) implies that there exists
an Sy-open set U in Y containing x such that
UNnA=@. Since Y is regular closed set in X
then by [Lemma 2.4] U is Sj,-open set in X
implies that x & Sycl(4), so Spcl(4) € Sycly(4).

Theorem 3.6: Let (Y,7y) be an open subspace
of aspace (X,t)andlet A,B S Y.If Aand B are
Sp-separated sets in X, then A and B are ty-Sp-
separated sets.

Proof: Let A and B be two 7-Sj-separated sets
implies that Sycl(4) N B = @ and A NSycl(B) =
@. But since Y is open subspace of X so by
[Lemma 3.4], Sechv(4) € Spel(4) and
Spcly(B) < Sycl(B) implies that Sycly(4A) N B =
@ and A NSycly(B) = @. Thus A and B are ty-Sy-
separated sets in Y.

Theorem 3.7: Let Y be a regular closed subset
of a space (X,7) and A,BC Y. If Aand B are
Ty-Sp-separated sets in Y, then they are t-Sp-
separated sets in X.

Proof: Let A and B be Ty-S,-separated sets in Y.
Then Sch(A)NB =0 and ANS,ch(B) = 0.
Since Y is regular closed subspace of X, so by
[Lemma  3.5], Spcl(4) €S,chv(4) and
Spcl(B) €Sicly(B) this implies that Sycl(4) n
B=¢ and An Sycl(B) =@. Thus A and B are
7-Sp-separated sets in X.

Proposition 3.8: Two Sy-closed (Sy-open)
subsets of a space X are Sy-separated if and only
if they are disjoint.

Proof: Necessity. Let A and B be two disjoint
Sp-closed sets in X. Then An B =@ and since
they are Sy-closed sets in X so by [Proposition
2.5], Spcl(A) = A also Sycl(B) = B this implies
that Sycl(4) N B = @ and A NS,cl(B) = @. Thus
A and B are Sy-separated sets.

Sufficiency: Obvious.

Definition 3.9: A space X is said to be S,-
connected space if it cannot be expressed as a
union of two non-empty proper S,-separated sets
of X.

Proposition 3.10: Every semi-connected space is
Sp-connected.

Proof: Let X be semi-connected space. Then X
cannot be expressed as a union of two
semi-separated sets, to show X is Sp,-connected
space if possible suppose that X is not
Sp-connected, then there exists two Sp-separated
sets A and B such that X =AUB. Now
S,cl(A) NB =@ and ANScl(B) = @, then by
[Proposition  2.5], scl(A)nB=¢@ and
A nscl(B) = @ this implies that by [Definition
2.15], A and B are semi-separated sets.
Therefore, X can be written as a union of semi-
separated sets this implies that X is semi-
connected which is a contradiction. Thus X is
Sp-connected space.

The converse of [Proposition 3.10] is not
true in general as it is shown in the following
example:

Example 3.11: Let X ={a,b,c} and t=
{0,X,{a},{b},[a,b}}. Then X is S,-connected
space but it is not semi-connected since
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X = {a} U {b,c}, where {a} and {b, c} are semi-
separated sets.

Corollary 3.12: Every B-connected space is Sy-
connected.

Proof: Follows from [Definition 2.16] and
[Proposition 3.10].

Theorem 3.13: A space X is S,-connected if and
only if there is no non-empty proper subset of X
which is both S,-open and Sp-closed.

Proof: Let X be Sy-connected space and there
exists a non-empty proper subset A of X which is
both S,-open and S,-closed. Then B = X\A is
also non-empty S,-open and Sy-closed, but
SclA)NB=AnB=0¢ and ANSycl(B)=
ANnB = ¢ this implies that A and B are Sy-
separated set and X = AU B, then X is not S;-
connected space which is a contradiction. Thus
there is no non-empty proper subset of X
which is both Sy-open and Sp-closed.

Conversely: Let the hypothesis be satisfied, to
show X is Sy-connected space. If possible
suppose that X is not S,-connected space, then
there exists Sy-separated sets A and B such that
X = AUB. Since Sycl(4A) N B = @ implies that
ANB =0, then A =X\B and now S,cl(4) €
X\B=A4 so A is Sy-closed set, and since
S,cl(B) N A =@ then Sicl(B) € X\A =B this
implies that B is Sp-closed set. Now
X\B is Sp-open set, but A = X\B; therefore A is
a non-empty proper subset of X which is both S,-
open and Sp-closed that is a contradiction. Hence
X must be Sp-connected space.

Corollary 3.14: A space X is Sy-connected if
and only if the only subsets of X which are both
Sp-open and Sy-closed sets are @ and X.

Proof: Follows from [Theorem 3.13].
Proposition 3.15: A space X is Sy-connected if
and only if X cannot be expressed as the union of
two non-empty disjoint S,-open sets.
Proof: Let X be Sy-connected space and if
possible suppose that X there exists two disjoint
non-empty S,-open sets A and B such that
X = AU B. Then by [Proposition 3.8], A and B
are Sp-separated sets this implies that
X is not Sy-connected space which is a
contradiction. Thus X cannot be expressed as the
union of two non-empty disjoint Sy-open sets.
Conversely: Let the hypothesis be satisfied
and if possible suppose that X is not Sp-
connected. Then there exist two Sy-separated sets
A and B such that X =AUB, now since
Scl(A) nB =@ implies that AnB =@, but
S,cl(4) € X\B = A this implies that A is Sp-
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closed set and by the same way B is also S,-
closed set, and then A and B are also Sy-open sets
implies that A and B are disjoint non-empty S,-
open sets such that X =AUB which is a
contradiction. Thus X must be Sp-connected
space.

Corollary 3.16: If a space X is Sp-connected T;-
space, then it is semi-connected.

Proof: Let X be an Sy-connected T;-space, then
by [Theorem 3.15], X cannot expressed as the
union of two non-empty disjoint S,-open sets and
since X is Ty-space, so by [Proposition 2.12] X
cannot expressed as the union of two non-empty
disjoint semi-open sets. This implies that X is a
semi-connected space.

Remark 3.17: A space X is S,-connected if and
only if it cannot be written as a union of two
non-empty disjoint Sy-closed sets.

The property of Sp-connectedness is not
hereditary as shown by the following example:
Example 3.18:- Let X ={a,b,c,d} and
T ={0,X,{a},{a,b},{a,c},{a b,c}} Then
S,0(X) = {@, X}, so the only non-empty subset
of X which is both Sp-open and S,-closed is X
itself, therefore by [Corollary 3.14], X is S,-
connected space. Now let Y ={b,c}, then
7y ={0,Y,{b},{c}} and S,0(Y) =1y, implies
that Y can be expressed as the union of two non-
empty disjoint S,-open sets in Y. Thus Y is not
Sp-connected subspace.

Theorem 3.19: Let A be S,-connected set in X
and C,D be Sy-separated sets of X such that
AcS CuUD.TheneitherA<S CorA < D.

Proof: Let A be S,-connected set in X and C,D
be Sy-separated sets of X such that A€ CuUD
and let AZ C and A € D. Now Suppose that
AnC+#@andAnD #@,sinceAN(CUD) =
A impliesthat A = (AN C) U (AN D). But since
C and D are Sy-separated sets so S,cl(C) N D =
@ and C NSycl(D) = @. Now (AN C) N Scl(An
D)YS (AnC)n Scl(D) = An (C NSycl(D)) =
@ this implies that (AN C) N Scl(AND) = 9.
By the same way we can get S,cl(ANC)n
(AnD)=0, so AnC and AnD are S,
separated sets such that A= (ANC)U (AND)
this implies that A is not Sy-connected set which
is a contradiction. Thus either A€ C or A € D.
Theorem 3.20: Let X be a space such that any
two elements x and y in X are contained in an
Sp,-connected subspace of X, then X is Sp-
connected.

Proof: Suppose that X is not S,-connected space,
then X is the union of two non-empty S,-
separated sets A and B. Now since A and B are
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non-empty sets, so there existsa € Aand b € B
this implies that by hypothesis a and b are
contained in some S,-connected subspace Y of X,
but X = AU B implies that Y € A U B and then
by [Theorem 3.19], either Y € A or Y < B this
implies that either a, b are both in A or are both
in B which is a contradiction. Hence X must be
Sp-connected space.

Proposition 3.21: If U is an Sp-connected set in
a space X, then Sycl(U) is also S,-connected set
in X.

Proof: Let U be Sy-connected set in a space X
and Scl(U) not S,-connected in X. Then there
exists two Sp-separated sets A and B in X such
that Spcl(U) = AU B, but U € S,cl(U) implies
that U € AU B and since U is Sp,-connected set
in X so by [Theorem 3.19] either U S A or
U < B. Now if U € A, then by [Proposition 2.5]
S,cl(U) € Sicl(A) and since Scl(A)NB =0
implies that S,cl(U)NB =B =@ which is a
contradiction. And if UZSB, then by
[Proposition 2.5] Sgcl(U) & Spcl(B) and
ANS,cl(B) = @ implies that AN S,cl(U) = A =
@ which is a contradiction. Then in both cases
we get a contradiction. Hence Spcl(U) is an S,-
connected set in X.

Theorem 3.22: Let U and V be two subsets of a
space X. If U is Sy-connected in X such that
UcVc Scl(U), then V is also Sy-connected
setin X.

Proof: Let VV be not S,-connected set in X. Then
there exists two Sp-separated sets A and B such
that V. =AUB, since U €V this implies that
U € AU B and since U is Sy-connected set in X
so by [Theorem 3.19] either U € Aor U € B. If
U c A, then by [Proposition 2.5] Sycl(U) €
Secl(4) and since A and B are S,-separated sets
so Scl(U)NB =0, but AUB =V < S,cl(U)
this implies that VN B =B =@ which is a
contradiction. By the same way if U € B we get
a contradiction. Thus ¥V must be Sp-connected set
inX.

Proposition 3.23: If for every non-empty S,-
open subset U of a space X, Sycl(U) = X, then X
is Sp-connected .

Proof: Suppose that X is not Sy-connected
space. Then by [Proposition 3.15] there exists
two non-empty disjoint S,-open sets U and V
such that X = U UV, now since U NV = @ this
implies that U = X\V and V = X\U and then
they are also non-empty S,-closed sets in X;
therefore by [Proposition 2.5] Scl(U) = U # X
and S,cl(V) =V # X which is a contradiction to
the hypothesis. Thus X is Sy-connected .

Remark 3.24: Let X be a &-semi-connected
space, then by [Lemma 2.17], X is semi-
connected space and by [Proposition 3.10], X is
Sp-connected space.
Proposition 3.25: If a space X is extremally
disconnected (or locally indiscrete)
preconnected space, then X is Sy-connected.
Proof: Suppose that X is not Sy-connected space
this implies that by [Proposition 3.15], there
exist two non-empty disjoint S,-open sets U and
V such that X = U U V. Since X is extremally
disconnected (locally indiscrete) space so by
[Corollary 2.19] or([Theorem 2.10]), U and V
are preopen sets in X this implies that by
[Definition 2.16], X is not preconnected which is
a contradiction. Thus X must be S,-connected
space.
Corollary 3.26: Let X be extremally
disconnected PS-space. If X is preconnected
(resp. connected) space, then X is S,-connected.
Proof: Follows from [Proposition 3.25] and
[Corollary 2.21].
Theorem 3.27: If a space X is disconnected, then
X is not Sp-connected space.
Proof: Let X be disconnected space. Then by
[Theorem 2.23] there exists a non-empty proper
subset U of X which is both open and closed, and
then X\U is open and closed set in X. But every
clopen set is Sp-open set and X = U U (X\U)
this implies that X is written as the union of two
non-empty disjoint Sp-open sets so by
[Proposition 3.15], X is not Sp-connected space.
From the above theorem we get the following
result.
Corollary 3.28: Every Sp-connected space is
connected.
Lemma 3.29: Any S,-T, space which contains at
least two distinct points is not S,-connected
space.
Proof: Let X be S,-T, space contains at least two
distinct points. Then by [Theorem 2.13] there
exists an Sy-clopen set U containing one of them
but not the other this implies that X contains a
non-empty proper set which is both Sy-open and
Sp-closed set; therefore by [Theorem 3.13] X is
not Sy-connected space.
Theorem 3.30: For a locally indiscrete space X
the following statements are equivalent:
1. X is S,-connected space.
2. Spcl(U) = X, for every non-empty S,-open
set UinX.
3. UnV # @, for any two non-empty Sp-open
subsets U and V of X.
Proof: (1) = (2)
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Let X be Sp-connected space and let there
exists an non-empty Sp-open set U in X such that
Secl(U) # X. Then there exists y € X such that
y & Sycl(U) this implies that there exists an S-
open set V containing y such that UNV # @,
and since U is semi-open set so by [Lemma
2.14] there exists an open set G € U in X such
that cl(G) = cl(U) and G € U so by [Remark
2.7] cl(U) and X\cl(U) are semi-open sets in X.
Now by [Lemma 2.8] cl(U) is Sp-open set also
by [Theorem 2.10] cl(U) is preopen set this
implies that X\cl(U) # @ is semi-open and
preclosed set in X; therefore X\cl(U) is S,-open
set. But X = cl(U) U (X\cl(U)) and cl(U) N
(X\cl(1)) = @ this implies that X is the union of
two non-empty disjoint Sp-open sets, then by
[Proposition 3.15] X is not Sy-connected which
is a contradiction. Thus the condition (2) must be
satisfied.

(2 -(@1)

Follows from [Proposition 3.23].
(2)-Q)

Suppose that there exists two non-empty Sp-
open sets U and V in X such that UNnV = @.
Since U#@ and V # @ so S,cl(U) # X this
contradicts condition (2). Thus U NV # @, for
any two non-empty S,-open subsets U and V of
X.
3)-0©)

Suppose that there exists a non-empty Sp-
open set U such that S,cl(U) # X. Then there
exists y € X such that y & S,cl(U) , so there
exists an Sy-open set V containing y such that
UNnV =@ which contradicts condition (3).
Hence the proof is complete.

Corollary 3.31: Every y- connected space is Sy-
connected.

Proof: Follows from [Lemma 2.24] and
[Corollary 3.12].

Corollary 3.32: Every B-SP-connected (resp. P-
SP-connected) space is Sp-connected.

Proof: Follows from [Theorem 2.25] and
[Corollary 3.12].

Corollary 3.33: Every a-S-connected (resp. a-
SP-connected,  a-B-connected) space s
Sp-connected space.

Proof: Follows from [Theorem 2.26] and
[Proposition 3.10].

Corollary 3.34: Every Sp-connected space is a-
P-connected.

Proof: Let X be Sp-connected space. Then by
[Corollary 3.28] X is connected and by
[Corollary 2.27] X is a-P-connected.
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Proposition 3.35: If Y is a regular closed
subspace of a locally indiscrete S,-connected
space X, then Y is Sp-connected subspace.

Proof: Let Y be a regular closed subspace of a
locally indiscrete Sy-connected space. To show Y
is Sg-connected subspace, let U be a non-empty
Sp-open set in Y, since Y is regular closed in X
then by [Lemma 2.4], U is Sy-open in X and
since X is locally indiscrete S,-connected space
so by [Theorem 3.30], S.cl(U) =X. ButY is
regular closed in X, then by [Lemma 3.5],
S,cly(U) = X this implies that by [Theorem
3.30] Y is Sy-connected subspace.

Theorem 3.36: A space X is Sy-connected if
there exists a locally indiscrete S,-connected
subspace such that Y is open and S,cl(Y) = X
Proof: Let Y be a locally indiscrete S,-connected
subspace of a space X such that Sycl(Y) = X and
Y be open in X. Now let A and B be two non-
empty Sp-open sets in X, since Sycl(Y) = X and
Y is open set in X , so by [Proposition 3.3],
ANnY and BNY are S,-open sets in Y and they
are non-empty also. But since Y is locally
indiscrete  Sp-connected  subspace, so by
[Theorem 3.30], @ = (ANnY)N(BNY)S AN
B this implies that by [Theorem 3.30], X is S,-
connected space.

Theorem 3.37: Let X be a space and let {C,: « €
A} be a collection of S,-connected sets in X such
that Ngep Cq # @. Then Ugea Cy is Sp-connected
setin X.

Proof: Suppose that UgeaC, be not Sp-
connected in X, then Ugea C, Can be expressed
as the union of two Sj-separated sets A and B
this implies that Ugep Cq = AU B. Now since
for all a€A, C,<S UgenC, implies that
C, € AU B and since C, is Sp-connected set in
X for each a € A, then by [Theorem 3.19] either
Co€AorCycBforallaeA . If C, € A for
all  a €A, then UgerCqy S A which is a
contradiction of the assumption that A and B are
Sp-separated of Ugep C. By the same way if
C, S B we get a contradiction. Thus Ugea Cy
must be S,-connected set in X.

Proposition 3.38: A space X is Sy-connected if
and only if each Sy-continuous function from X
into a discrete two point space {a. b} is constant.
Proof: Let X be S,-connected space and
f:X — {a, b} be S,-continuous function, where Y
is a discrete space of at least two points. Now
since f is Sp-continuous so by [Theorem 2.29]
foreach y € f(X) < {a, b}, f*({y}) is Sy-open,
Sy-closed and non-empty set in X. But since X is
Sp-connected space, so by [Corollary 3.14],
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F7X({y}) = X this implies that f(x) = y for all
x € X, then f is a constant function.

Conversely: Let the hypothesis be satisfied
and suppose that X is not S,-connected. Then by
[Theorem 3.13], there exists a proper subset A
of X which is both Sy-open and S,-closed in X.
This implies that X\A is also non-empty proper
subset of X which is both Sy-open and S,-closed
in X. Now define a function f:X — {a,b} by
setting f(x) =a if a€A and f(x)=0b if
x € X\A, since {a,b} is discrete and AN
(X\A) = 9, then the definition of f shows that
f1@ =0, f{ab}) =X Also f*({a}) =
A and f71({b}) = X\A. Thus we have shown
that the inverse image of every open set in {a, b}
is Sp-open in X, then by [Definition 2.28], f is
Sp-continuous function, but f is not constant
which is a contradiction. Hence X must be S-
connected space.

Theorem 3.39: Let f: X — Y be a surjective S,-
continuous function. If X is an Sp-connected
space, then Y is connected.

Proof: Let X be S,-connected and suppose that Y
is disconnected, then by [Theorem 2.22], Y is
the union of two non-empty disjoint open sets U
and V of Y. Since f is S,-continuous function so
by [Definition 2.28] f~1(U) and f~1(V) are
non-empty disjoint S,-open sets in X, but
fX)=Y=UuUV this implies that X =
Y (W)u f~YV), and then X is the union of
two non-empty disjoint S,-open sets which
implies that X is not Sj,-connected this is a
contradiction. Thus Y is connected.

Theorem 3.40: Let f:X - Y be a surjective
irresolute function. If X is an semi-connected
space, then Y is Sy-connected.

Proof: Let X be s-connected and Y is not an S-
connected space. Then by [Proposition 3.15],
there exist two disjoint non-empty Sy-open sets U
and V such that Y =UUV, and since f is
irresolute and U, V are semi-open in Y sets, so by
[Definition 2.28], f~1(U) and f~1(V) are also
non-empty disjoint semi-open sets in X. Now
f(X)=Y=UuVthis implies that X=
Y U) u f~Y(V); therefore X is the union of
two non-empty disjoint semi-open sets, and then
by [Definition 2.15], X is not semi-connected
space which is a contradiction. Thus Y must be
Sp-connected space.

Theorem 3.41: Let f:X - Y be a surjective
open continuous function. If X is Sj,-connected
space, then Y is also S,-connected.

Proof: Let Y be not Sy-connected space. Then by
[Proposition 3.15], Y can be expressed as the

union of two non-empty disjoint Sy-open sets U
and V in Y, but since f is continuous and open
function so by [Proposition 2.30], f~1(U) and
f~1(V) are non-empty disjoint S,-open sets in X.
And since f(X)=Y =UUV implies that
X =f"YU)uf V), then by [Proposition
3.15], X is not Sp-connected which is a
contradiction. Thus Y must be Sp-connected
space.

Theorem 3.42: Let f: X — Y be a surjective s-
continuous function. If X is connected space,
then Y is S,-connected space.

Proof: Let Y be not S,-connected space. Then by
[Proposition 3.15], there exists two disjoint
non-empty Sp-open sets U and V in Y such that
Y = U UV.Since f is s-continuous and U, V are
semi-open sets in Y, so from [Definition 2.28]
we have f~1(U) and f~1(V) are non-empty
disjoint open sets in X, but f(X) =Y =UUV
implies that X = f~1(U) U f~1(V) and then by
[Theorem 2.22] X is disconnected which is a
contradiction. Thus Y must be Sp-connected
space.
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