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ABSTRACT
Photoperiodic flowering aligns plant reproduction to favourable seasons of the year to
maximise successful production of seeds and grains. However understanding of this
process in the temperate legumes of the Fabaceae family, which are important both
agriculturally and ecologically, is incomplete. Previous work in the reference legume
Medicago truncatula has shown that the FT-like geneMtFTa1 is a potent floral activator.
While MtFTa1 is upregulated by long-day photoperiods (LD) and vernalisation, the
molecular basis of this is unknown as functional homologues of key regulatory genes
present in other species, notably CONSTANS in A. thaliana, have not been identified.
In LD MtFTa1 maintains a near constant diurnal pattern of expression unlike its
homologue FT in A. thaliana, which has a notable peak in expression at dusk. This
suggests a different manner of regulation. Furthermore, M. truncatula possesses other
FT-like genes such as two LD inducedMtFTb genes whichmay also act in the regulation
of flowering time. MtFTb genes have a diurnal pattern of expression with peaks at
both four and sixteen hours after dawn. This study utilises RNA-Seq to analyse the
transcriptome of M. truncatula leaves to identify genes which may regulate or be co-
expressed with these FT-like genes following a shift from short-day photoperiods to
inductive long-days. Specifically this study focuses on the first four hours of the day in
the young leaves, which coincides with the first diurnal peak of the FTb genes. Following
differential expression analysis at each timepoint, genes which alter their pattern of
expression are distinguished from those which just alter their magnitude of expression
(and those that do neither). It goes on to categorise these genes into groups with similar
patterns of expression using c-means clustering and identifies a number of potential
candidate photoperiod flowering time genes for future studies to consider.

Subjects Bioinformatics, Genomics, Molecular Biology, Plant Science
Keywords Medicago truncatula, Transcriptomics, Photoperiod, FT, Long day, Short day,
Flowering time, Floral induction, Legume, RNA-Seq

INTRODUCTION
The regulation of flowering controls the important developmental shift between the
vegetative and reproductive growth phases of the plant, aligning plant sexual reproduction
with favourable seasonal environmental variation. This facilitates successful pollination
and themaximizing of crop productivity and yield. Inmany temperate climate species, such
as the winter annual varieties of the well-studied Brassicaceae species Arabidopsis thaliana
(L.) Heynh., the primary determinants of flowering time are long-day (LD) photoperiod
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(daylength) conditions and vernalisation (prolonged exposure to cold temperatures) for
which the molecular pathways underlying these responses are well understood (Andrés &
Coupland, 2012).

In A. thaliana, LD conditions are perceived in the leaves and culminates in the activation
of the floral integrator gene FLOWERING LOCUS T (FT ) (Turck, Fornara & Coupland,
2008). Specifically, FT is activated by circadian and light signals aligningwhich facilitates the
formation of the GIGANTEA-FLAVIN-BINDING KELCH REPEAT, F-BOX 1 (GI-FKF1)
complex. This complex degrades CYCLING DOF FACTOR (CDF) transcription factors
which otherwise form a complex with a TOPLESS (TPL) protein to repress the expression of
the transcription factor CONSTANS (CO). This gene encodes a B-box class protein with a
CCT domain (Putterill et al., 1995;Goralogia et al., 2017). The stabilisation of COprotein in
the late afternoon of LD results in it acting as a subunit of a NUCLEAR FACTOR-Y (NF-Y)
pioneer transcription factor complex which directly activates FT (Andrés & Coupland,
2012; Gnesutta et al., 2017). CDF proteins are also able to repress FT directly (Song et al.,
2015). FT protein is the principal mobile floral signal (florigen) which is transported to the
shoot apical meristem via the phloem to induce flowering via activation of a second floral
integrator gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and the
floral meristem identity gene APETALA1. This results in a state of floral commitment and
the development of flowers (Turck, Fornara & Coupland, 2008).

Beyond A. thaliana, the presence of FT orthologues integrating environmental signals
and regulating flowering appears to be widely conserved (Ballerini & Kramer, 2011;
Wickland & Hanzawa, 2015; Putterill & Varkonyi-Gasic, 2016). However the conservation
of other elements of the pathway is not as strong. Recent work by Simon et al. (2015)
suggest that the central role CO plays in the photoperiod pathway in A. thaliana evolved
within the Brassicaceae following a gene duplication. Thus CO-like (COL) genes regulating
FT homologues is not universal and their activity in some other species (e.g., Oryza sativa
L.; rice; Hayama et al., 2003) are the result of convergent evolution. Examples of species
in which COL genes do not appear to regulate flowering time include Japanese morning
glory (Ipomoea nil (L.) Roth) and temperate Fabaceae family (legume) species such as pea
(Pisum sativum L.) andMedicago truncatula Gaertn. Notably, a recent survey of COL genes
in M. truncatula found no evidence of them acting as a photoperiodic switch (Wong et al.,
2014) and the gene expression of the closest COL homologue in pea, was not altered in
photoperiodic flowering time mutants. These include the recessive late bloomer1 (late1)
mutant which disrupts the orthologue of GI (Hecht et al., 2007; Liew et al., 2009) and a
dominant late floweringmutant late2which has beenmapped to aCDF gene PsCDFc (Ridge
et al., 2016). This Pscdfc mutant encodes a protein which has lost the ability to interact with
the FKF1 and exhibits reduced expression of FT-like genes (Ridge et al., 2016). Whether
the regulation of the PsFT-like genes by PsCDFc is direct or not remains unknown.

Nevertheless, in many species the regulation of FT orthologues exhibit significant
commonalities such as genes containing CCT and/or B-box domains integrating the
photoperiod and vernalisation signals. For instance, in the Pooid grasses such as wheat
(Triticum spp.) prior to vernalisation the repression of the FT-like gene is maintained
by a pair of ZCCT proteins, which contain both CCT and B-box domains, in complex
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with NF-Y subunits (Song et al., 2015; Li et al., 2011). Then in inductive LD conditions
upregulation of the FT orthologue requires the PHOTOPERIOD 1 (PPD1) gene, which
encodes a CCT domain (Shaw et al., 2013; Pearce et al., 2017). In addition genes encoding
CCT and B-Box domains are important in the cultivated varieties of the LD responsive
sugar beet (Beta vulgaris L.) (Pin et al., 2012; Dally et al., 2014).

The lack of a direct upstream regulator of FT-like genes in temperate legumes means
that, despite good progress, the understanding of how flowering time in this family is
incomplete (Putterill et al., 2013; Weller & Ortega, 2015). Legumes are an ecologically
diverse plant family (The Legume Phylogeny Working Group, 2013) and include a number
of dietary staple crops. In an agricultural context these crops reduce the need for fertilizer
use via nitrogen fixation (Vance, 2001). Like A. thaliana, many temperate legume species,
including M. truncatula, accelerate their flowering in response to vernalisation and LD
conditions (Highkin, 1956; Summerfield et al., 1985; Roberts, Hadley & Summerfield, 1985;
Laurie et al., 2011; Weller & Ortega, 2015; Ridge et al., 2017). Classically pea has been most
intensively studied to analyse photoperiodic flowering in temperate legumes but has
recently been complemented by the study of other species, such asM. truncatula for which
considerable genetic and genomic resources exist (Tadege et al., 2008; Young et al., 2011;
Tang et al., 2014).

Analysis of flowering time mutants in pea has demonstrated that some members of
the photoperiod pathway, such as the photoreceptors and components of the circadian
clock, are largely conserved with A. thaliana (Weller & Ortega, 2015). In addition, FT-like
homologues have been characterised in several legume species with most having multiple
copies which fall into three sub-clades (Laurie et al., 2011; Hecht et al., 2011). In pea
and M. truncatula the FT-like gene FTa1 is a potent floral inducer whose expression is
elevated in LD (Laurie et al., 2011; Hecht et al., 2011). However unlike FT in A. thaliana,
MtFTa1 (Medtr7g084970) does not possess a diurnal pattern and instead exhibits a near
constant level of expression once induced in LD (Laurie et al., 2011) suggesting that the
mechanisms of regulation between FT and FTa1 likely differ significantly. Moreover
grafting experiments in pea between flowering time mutants suggest that additional floral
stimuli exist (Hecht et al., 2011).

Good candidates for secondary floral stimuli are the FTb genes that, like FTa1, are
upregulated in LD and capable of complementing an A. thaliana ft-1mutant (justMtFTb1
in M. truncatula, Laurie et al., 2011; Hecht et al., 2011). Distinctively, MtFTb genes have a
diurnal pattern of expression in LD and peak twice, at ZT4 and ZT16 (ZT is zeitgeber time
where ZT0 is subjective dawn at lights on). This pattern of expression is similar to that
of FT in A. thaliana under ‘‘natural’’ LD conditions (Song et al., 2018). Another legume
FT-like gene which may play a role in flowering time is FTa2 which in M. truncatula
it is mostly expressed in short-day (SD) photoperiod conditions consistent with a floral
repressor (Laurie et al., 2011). However whether any FT-like genes other than FTa1 regulate
flowering time in either pea orM. truncatula remains to be demonstrated.

Downstream of FT-like genes the regulation of flowering in temperate legumes is
similar overall to that of A. thaliana, albeit complicated by several genes being present in
multiple copies with potential functional redundancies. For example, three MtSOC1-like
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genes depend on MtFTa1 for the extent and timing of their expression, although Mtsoc1a
mutants do show delayed flowering (Fudge et al., 2018; Jaudal et al., 2018). The genes
involved in inflorescence development are similar to that ofA. thaliana (Cheng et al., 2018).

Overall, while some components of the A. thaliana photoperiodic flowering model
appear to be conserved in temperate legumes, other aspects differ. Specifically, what
factors act immediately upstream of FT-like genes in the photoperiodic flowering of
temperate legumes remain unknown. In light of the gap in understanding, we take a
transcriptomic approach to identify additional candidate regulators of photoperiodic
flowering in M. truncatula. In two experiments we target genes expressed in a similar,
or opposite, manner to LD induced FT-like genes with the aim of identifying candidate
regulators. Plants were shifted from SD (8 h light/16 h dark) to LD (16 h light/8 h dark)
conditions and gene expression changes analysed in the first four hours of the diurnal cycle;
at dawn (ZT0), two hours after dawn (ZT2) and four hours after dawn (ZT4) during which
time the LD induced FT-like genes are expressed. These timepoints capture the constant
induction of MtFTa1 in LD and target the first diurnal peak of MtFTb1 and MtFTb2 at
ZT4 also in LD (Laurie et al., 2011).

MATERIALS AND METHODS
Growth of plants and tissue sampling
M. truncatula cv ‘Jester’ (Hill, 2000) seeds were scarified by softly scraping them between
two pieces of sand paper (grade P160). The seeds were then germinated at 15 ◦C in
gently shaking tubes of water and dark conditions for 24 h. Germinated seeds were then
vernalised by being transferred to damp petri dishes and incubated at 4 ◦C for a further
25 days. The seedlings were subsequently planted in seed raising mix (Daltons Ltd., NZ)
in individual cell pots and grown in growth cabinets at 22 ◦C under 240 µMm−2sec−1

cool white fluorescent light. This was in accordance with Institutional Biological Safety
Committee approval GMO08-UA006. Soil was kept moist with a complete liquid nutrient
media (without Na2SiO3; Gibeaut et al., 1997). In the two experiments plants were grown
in SD conditions (8 h light/16 h dark) until they were 10 days old and were then shifted at
ZT8 into LD conditions (16 h light/8 h dark) for 3 days in experiment 1 (harvest at ZT0 and
ZT2) or 5 days in experiment 2 (harvests at ZT4). Three biological replicates were taken
each consisting of two pooled trifoliate leaves from different non-adjacent plants giving a
total of 18 samples. Only the first trifoliate leaf to unfurl was sampled from a given plant.
Samples were immediately frozen in liquid nitrogen.

RNA extraction and sequencing
The 18 frozen leaf samples were ground using five 3 mm sterilised ball bearings
per sample and a Geno/Grinder

R©
2010 (SPEX

R©
SamplePrep, USA). Total RNA was

then extracted from the ground samples using the RNeasy Plant Mini Kit (Qiagen,
Hilden, Germany) following the manufacturer’s instructions and the quantities and
qualities of the extracted RNA were then measured using a Bioanalyzer 2100 (Agilent
Technologies, Santa Clara, CA, USA). Samples were then sent to the Otago Genomics
Facility (www.otago.ac.nz/genomics/index.html) and RNA-Seq libraries were prepared.

Thomson et al. (2019), PeerJ, DOI 10.7717/peerj.6626 4/33

https://peerj.com
www.otago.ac.nz/genomics/index.html
http://dx.doi.org/10.7717/peerj.6626


The first experiment (ZT0 and ZT2 samples) used the ScriptSeq Complete Kit (Plant)
(100 bp reads; Illumina Inc., USA) while the second experiment (ZT4 samples) used
TruSeq Stranded mRNA libraries (120 bp reads; Illumina Inc., USA). Each experiment was
sequenced on a single lane of a HiSeq2000 (Illumina Inc., USA).

Complementary DNA synthesis and RT-qPCR analysis
Following RNA extraction, 8 µg of RNA was treated with the TURBO DNA-free Kit
(Invitrogen, Foster City, CA, USA) . First-strand complementary DNA (cDNA) was then
synthesised using 1 µg of DNase treated RNA using SuperScript IV Reverse Transcriptase
(Invitrogen, USA) using an oligo dT primer following the manufacturers instructions.
At this point a control reaction where the reverse transcriptase is omitted was run, one
reaction per set of replicate samples. When tested alongside synthesised cDNA these
reactions control for the presence of genomic DNA contamination.

Measurement of relative abundances of cDNA, as a measure of gene expression, was
done using Real time quantitative PCR (RT-qPCR). In this assay 10 µl reactions using
Power SYBRGreen PCRMasterMix and 2µl of diluted cDNA (cDNAwas diluted 20x prior
to RT-qPCR). Control reactions using water, as well as the cDNA reactions which lacked
reverse transcriptase, were run simultaneously. RT-qPCR experiments were assembled on
384-well plates and run on an Applied Biosystems 7900HT Sequence Detection System.

Analysis of the RT-qPCR data was done using the 2−11Ct algorithm (Livak &
Schmittgen, 2001). This utilised eitherMedtr7g089120 aTUBULIN BETA-1 CHAIN gene or
Medtr6g084690 a SERINE/THREONINE PROTEIN PHOSPHATASE 2A REGULATORY
SUBUNIT (PP2A; previously known as PROTODERMAL FACTOR 2) as reference
genes (Kakar et al., 2008). Primers used are available in Table S2.

RNA-Seq analysis
Read trimming of the the FASTQ files was then performed using BBDuk tool in the
BBTools suite (v37.54; Bushnell, 2018). This removed the sequencing adapters and low
quality sequence (Phred = 20) and retained only reads which were at least 36 bases in
length. Furthermore read pairs lacking one of the pair were discarded. Transcripts were
then quantified using Salmon (v0.8.2; Patro et al., 2017) which uses quasi-mappings tomap
the reads to the annotated genes of the Mt4.0v2 transcriptome (Young et al., 2011; Tang et
al., 2014). The resulting count tables were then imported into R (R Core Team, 2018) using
the tximport package (v1.4.0; Soneson, Love & Robinson, 2015) and principal component
analysis (PCA) and DE analysis at the gene level was performed using DESeq2 (v1.16.1;
Love, Huber & Anders, 2014). DESeq2 normalizes the data by fitting a negative binomial
GLMwith a gene-specific dispersion parameter. Clustering was performed using theMfuzz
package (v2.36; Kumar & Futschik, 2007) using minimum centroid distances as a heuristic
measure of appropriate cluster number. Briefly this consisted of compromising between
cluster size and number by ascertaining when additional clusters only marginally increased
the resolution.
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Data processing and visualisation
All computation and analysis was done on a Macbook Pro (2012; Intel

R©
CoreTM i7-3520M

upgraded to 16 Gb RAM) from Apple Inc. (Cupertino, CA, USA) running Antergos Linux
(v17.12; 4.14.11-1-ARCH kernal). Data processing and visualisation was done in R (R Core
Team, 2018) using the Tidyverse suite of packages (v1.2.10;Wickham, 2017) with additional
visualisation using the UpsetR package (v1.4; Conway, Lex & Gehlenborg, 2017) and the
Superheat package (v0.1; Barter, 2018). Analysis and graphs can be reproduced from the
accompanying collection of scripts and files in an accompanying figshare repository (see
Thomson, 2018).

RESULTS
It has previously been demonstrated that shifting vernalised M. truncatula plants from SD
to LD induces flowering and is accompanied by the induction of the expression of FT-like
genes MtFTa1, MtFTb1 and MtFTb2. It was found that three days in LD was sufficient to
promote the transition to flowering in M. truncatula (but one was insufficient; Laurie et
al., 2011). We thus utilised at least three days in LD in our experiments. Here two similar
experiments are analysed where plants were grown in SD conditions until they were 10
days old and were then shifted at ZT8 into LD conditions to describe the transcriptomic
changes which occur in theM. truncatula leaves following such shifts, alongside the FT-like
genes.

In the first experiment sampling of leaves occurred at ZT0 (subjective dawn) and ZT2
when the plants had experienced three days of LD conditions. In the second experiment the
plants had experienced five days of LD conditions and sampling occurred at ZT4. With the
aim of identifying candidate regulators of FT-like genes these samples capture the constant
LD induction of MtFTa1 and both precede and include the first diurnal peak of MtFTb1
and MtFTb2 at ZT4 in LD (Laurie et al., 2011). These samples (in triplicate) were used to
construct RNA-Seq libraries which were subsequently sequenced.

The sequenced RNA-Seq libraries all generated 40-50 million reads with mean quality
scores greater than 35. The quantification of gene abundances reported an averagemapping
rate of 89.86% to the Mt4.0v2 transcriptome (see Table S1 for full table of abundances in
Transcripts per Million; TPM). Thus the data generated are of a high quality and indicates
that the Mt4.0v2 transcriptome is reasonably complete.

Differential expression at each time point
Analysis of this data initially considered pairwise comparisons of gene expression between
LD and SD at each timepoint. The significance of any differences observed was assessed
using Wald significance tests and since there are three sets of tests, the significance levels
of these were adjusted for together using the false discovery rate method.

It was observed that 28,151–29,011 genes had read counts >1 (out of the 50,444 in
the Mt4.0v2 transcriptome). Of these 6,824 genes at ZT0 (24% of expressed genes) had
statistically different expression (α= 0.05). There were 5,523 genes (19%) at ZT2 and 7,743
genes (25%) at ZT4 (Table S3). When these lists were filtered for those which had >2-fold
differences and had >10 mean normalised reads then 2,436, 1,309 and 2,661 genes were
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Figure 1 Pairwise comparisons of photoperiod induced changes in expression between LD and SD of
a selection of candidate photoperiod pathway genes.Graphs show the mean transcript abundance (in
TPM) of (A) MtFTa1, (B) MtFTb1, (C) MtFTb2, (D) MtPHYA, (E) MtELF3a, (F) MtGI, (G) the NF-YC-
like gene (Medtr1g082660) and (H) MtSOC1a across the three timepoints. Points are the individual repli-
cate libraries. Statistically significant differences (α = 0.05) are indicated by the bracket with those differ-
ences which show at least a 2-fold change in transcript abundance annotated.

Full-size DOI: 10.7717/peerj.6626/fig-1

judged to be DE at ZT0, ZT2 and ZT4 respectively. These numbers are similar to what was
observed in an A. thaliana microarray experiment after a SD to LD shift where 2000 genes
were DE (Wigge et al., 2005).

The transcript abundances of the LD induced FT-like genes and five other candidate
photoperiod pathway genes were assessed (Fig. 1). While absent in SD, large increases in
MtFTa1 transcript abundance were observed in LD at ZT0, ZT2 and ZT4. In addition,
appreciable expression of MtFTb1 and MtFTb2 was only seen in LD at ZT4, with minimal
to no expression at ZT0 and ZT2 in either SD or LD.

The differences in expression exhibited by the FT-like genes in Figs. 1A to 1C qualitatively
agree with previously reported RT-qPCR time course data where in LD MtFTa1 has an
approximately constant level of expression across the day (Laurie et al., 2011). MtFTb1
and MtFTb2 have been observed to diurnally peak at ZT4 and ZT16 (Laurie et al., 2011),
consistent with the DE observed here at ZT4 (Figs. 1B and 1C). This indicates that despite
originating from different experiments, these datasets could be analysed together as a
ZT0-to-ZT4 time series to observe the pattern of gene expression change following a SD to
LD shift.

To further demonstrate that these datasets could be analysed together we considered
the diurnal expression of four other genes measured by RT-qPCR in an independent
ZT0-ZT20 time series experiment and compared them to our RNA-Seq data (Fig. 2). Here
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Figure 2 Comparing RT-qPCR and RNA-Seq results from independent experiments to validate com-
bining the RNA-Seq datasets. (A–D) are the diurnal patterns of expression ofMtFKF1 (Medtr8g105590),
MtCDF1 (Medtr2g059540),MtCDF2 (Medtr5g041420 andMtCDF4 (Medtr6g012450) respectively mea-
sured over a diurnal time course using RT-qPCR. The first four hours which overlap with the RNA-Seq
data are shaded in grey. Error bars are standard errors of two biological replicates. Samples consist of two
fully expanded trifoliate leaves with two biological replicates per time point. ForMtFKF1 these samples
were pooled and error bars are standard errors of technical replicates (usingMedtr7g089120 as a refer-
ence gene) while forMtCDF1,MtCDF2 andMtCDF4 these are standard errors of biological replicates
(using PP2A as a reference gene). (E–H) are the corresponding transcript abundances from the RNA-
Seq datasets. The points represent TPM values of the individual replicate libraries plotted with a LOESS
smoothed line of best fit for both SD (blue and dotted) and LD (orange and line) samples.

Full-size DOI: 10.7717/peerj.6626/fig-2

it was observed that in MtFKF1 (Medtr8g105590) and MtCDF1 (Medtr2g059540) from a
low point at ZT0 in SD gene expression increases and peaks at ZT8 (Figs. 2A and 2B). This
is also seen in the gene abundances of the RNA-Seq datasets where a large increase in SD
at ZT4 is observed. Similar minimal LD expression at these timepoints between the two
datasets is also in evidence (Figs. 2E and 2F). Conversely, in the RT-qPCR time course
MtCDF2 (Medtr5g041420) and MtCDF4 (Medtr6g012450) have their greatest expression
at ZT0 and which in SD sharply decreases at ZT4 (Figs. 2C and 2D) which is also observed
in the RNA-Seq transcript abundances (Figs. 2G and 2H).

Overview of the time series analysis
The similarity between the patterns of expression observed in this data with previously
reported RT-qPCR results for three genes (Figs. 1A to 1C), as well as independently
collected RT-qPCR results for an additional four genes (Fig. 2) indicates that there is no
significant batch effect which would bias the interpretation of this data as a time series. We
then analysed the data in such a manner.

Across the three timepoints 31,363 genes (out of the 50,444) had a read count >1 at
at least one timepoint (see Fig. S1 for dispersion plot and MA-plot) and were included
in the analysis. To take an overarching view of the variation between samples, principal
component analysis (PCA) was employed with the first two principal components plotted
in Fig. 3. Biological replicates clustered together and 64% of the observed variation is
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Figure 3 Reduced-space plot of the first two components of a PCA of individual RNA-Seq libraries.
This plot gives an overarching perspective on the variation within the dataset with the first two compo-
nents explaining 64% of the variation. PC1 strongly aligns with the time of sampling and PC2 the pho-
toperiod condition. The plot was constructed using log2 normalised counts of genes with non-zero read
counts.

Full-size DOI: 10.7717/peerj.6626/fig-3

explained by the first two principal components which strongly align with the time of
sampling (PC1) and the photoperiod condition (PC2).

Typically in a pairwise comparison, differences in transcript abundances can be filtered
based on fold-change and levels of expression to focus on genesmore likely to be biologically
consequential. This is difficult in a time series as it is unknown in this instance which
timepoint is most relevant to the regulation of FT-like genes. Reflecting on the gene
abundances plotted in Fig. 1 it was observed that the genes with differing expression
between LD and SD could be broadly grouped into two classes, those which altered their
pattern of expression in response to the photoperiodic shift and those which altered the
magnitude of their expression. Specifically, in Fig. 1, the majority of genes (six) change
their pattern of expression over time between conditions (MtFTb1, MtFTb2, MtPHYA,
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MtGI, MtELF3a and MtSOC1a), while two genes maintain a similar pattern, but vary in
magnitude of expression between conditions (MtFTa1 and the NF-YC-like gene). It was
into these two classes that we decided to segment the time series data followed by clustering.

To classify the genes into these two classes we fit two models to the data. The first model
included an interaction term between growth condition (SD or LD) and time of sampling
(ZT0, ZT2 and ZT4). This was to identify genes which respond in a condition-specific
manner over time such that any changes in the pattern of gene expression brought about
by the photoperiodic shift are determined (e.g.,MtFTb1 in Fig. 1B). Secondly, we repeated
the analysis with a model which lacked this interaction term to test for just the effect of
condition (LD vs SD) on the magnitude of gene expression (e.g., the NF-YC-like gene in
Fig. 1G). This dual approach facilitated the identification of genes which alter their pattern
of expression or only the magnitude of their expression respectively.

Alongside this analysis, an a priori list of 146 candidate genes was also assembled
consisting of genes shown to, or are suspected of, participating in flowering time regulation
via the photoperiod pathway (Tables 1 and 2). In addition to the FT-like genes, the
list incorporates photoreceptors, components of the circadian clock and classes of
transcription factor which could potentially regulate the FT-like genes chosen based
on their role in A. thaliana. These include candidates from the CDF, TPL and NF-Y
families as well as additional transcription factors from families with members known to
bind the promoter of FT in A. thaliana compiled by Ridge et al. (2016). These include the
genes containing CCT-domain and B-box domains as well as the CIB/BEE-like (CBL),
CRYPTOCHROME-INTERACTING BASIC-helix-loop-helix (CIB), PHYTOCHROME
INTERACTING FACTOR (PIF), and APETALA2 (AP2) families.

Photoperiod induced changes in the pattern of gene expression
To identify changes in the pattern of gene expression over time, a generalised linear
model was fit using the growth condition and time of sampling as predictors along with
an interaction term. A likelihood ratio test was then used to test for genes where this
interaction term is significant relative to a reduced model lacking the interaction term. A
significant result indicates that the expression of the gene responds in a condition-specific
manner over time (i.e., a low p-value indicates a change in expression pattern not solely
magnitude). This is illustrated in Fig. 1 where MtPHYA, MtELF3a, MtGI, MtFTb1 and
MtSOC1a have distinctly different patterns of expression over time in LD compared to
SD. On the other hand MtFTa1 and the NF-YC-like gene Medtr1g082660 show a similar
pattern in both LD and SD but at differing magnitudes so in this context are not considered
to alter their pattern of expression. While MtFTb2 also appears to alter it’s pattern over
time, it was not significant in the likelihood ratio test.

This approach resulted in 9,516 genes with altered expression (α= 0.05; full results in
Table S4) or 30.34% of those tested with >1 read. To aid interpretation of these changes
and quickly identify the timepoint(s) at which individual genes differed in LD relative to
SD, Wald significance tests were used to contrast the difference in expression between
the two conditions at each of the three timepoints. The significance levels of these genes
were adjusted for all three contrasts together using the false discovery rate method. This
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Table 1 Photoperiod induced changes in the pattern of gene expression over time in candidate flowering time loci.

ZT0 ZT2 ZT4

Interaction Mean Log2 Log2 adj. Mean Log2 Log2 adj. Meam Log2 Log2 adj.
Gene identifier Name Description (Mt4.0

annotation)
adj. p-value read counts fold-change s.e p-value read counts fold-change s.e p-value read counts fold-change s.e p-value Cluster Membership

Medtr1g085160 MtPHYA phytochrome protein A 3.20×10−24 1100 −0.13 0.10 2.30×10−01 1000 −0.71 0.10 5.80×10−12 1900 −1.60 0.10 6.90×10−60 11 0.41

Medtr2g034040 MtPHYB phytochrome protein B 2.70×10−08 790 −0.38 0.08 7.60×10−06 800 0.06 0.08 5.50×10−01 590 0.34 0.08 1.50×10−04 18 0.74

Medtr2g049520 MtPHYE phytochrome protein – – – – – – – – – – – – – – –

Medtr5g063920 MtCRY1 cryptochrome protein 1.70×10−13 5500 −0.85 0.07 1.40×10−29 3600 −0.04 0.07 6.30×10−01 4700 −0.26 0.07 1.00×10−03 10 0.53

Medtr1g076190 MtCrRY2A cryptochrome 2B
apoprotein

3.60×10−21 2500 −0.68 0.08 1.40×10−16 1200 0.35 0.08 8.50×10−05 2000 −0.65 0.08 6.30×10−15 15 0.47

Medtr1g043190 MtCRY2B cryptochrome 2B
apoprotein

4.60×10−21 300 −0.96 0.14 8.50×10−12 140 −1.60 0.16 7.50×10−22 250 −3.10 0.17 1.30×10−73 10 0.18

Medtr7g118330 MtLHY late elongated
hypocotyl-like protein

3.00×10−70 37000 −1.90 0.18 2.00×10−25 28000 0.57 0.18 2.60×10−03 18000 2.90 0.18 7.40×10−58 18 0.27

Medtr4g108880 MtTOC1a two-component
response regulator-
like APRR7
protein

1.50×10−58 75 4.40 0.36 2.10×10−31 63 2.00 0.23 5.10×10−17 120 −0.97 0.18 2.60×10−07 2 0.69

Medtr3g037390 MtTOC1b timing of cab expression
1/PRR response regula-
tor

2.00×10−22 100 1.70 0.19 4.10×10−18 100 0.88 0.18 2.30×10−06 190 −0.71 0.15 1.70×10−05 2 0.37

Medtr4g061360 MtPRR37a PRR response regulator 1.20×10−11 580 −4.40 0.21 1.80×10−97 1600 −3.40 0.18 5.30×10−77 4400 −2.40 0.17 1.10×10−40 12 0.41

Medtr1g067110 MtPRR37b two-component
response regulator-
like APRR7
protein

1.90×10−03 350 −2.00 0.14 3.30×10−46 820 −1.40 0.12 5.20×10−30 2700 −2.10 0.12 5.60×10−66 9 0.34

Medtr3g092780 MtPRR59a PRR response regulator 4.20×10−30 22 0.28 0.32 4.60×10−01 150 −2.30 0.24 4.40×10−20 1400 −4.30 0.21 4.20×10−88 9 0.5

Medtr8g024260 MtPRR59b PRR response regulator 1.40×10−05 54 −2.30 0.24 5.20×10−21 210 −1.20 0.15 1.50×10−14 1300 −2.00 0.13 5.50×10−56 9 0.33

Medtr7g118260 MtPRR59c PRR response regulator 9.50×10−34 200 −6.20 0.38 8.60×10−57 710 −2.00 0.18 3.30×10−26 2100 −1.90 0.18 4.30×10−25 12 0.59

Medtr3g103970 MtELF3a early flowering protein 1.30×10−43 250 3.70 0.24 7.30×10−50 43 2.00 0.30 1.60×10−10 110 −1.00 0.22 2.20×10−05 4 0.37

Medtr1g016920 MtELF3b EARLY flowering pro-
tein, putative

9.20×10−01 – – – – – – – – – – – – – –

Medtr8g015470 ELF3-like hypothetical protein – – – – – – – – – – – – – – –

Medtr8g015480 ELF3-like early flowering protein,
putative

4.50×10−12 160 1.50 0.23 4.20×10−10 56 −0.38 0.26 2.00×10−01 150 −0.86 0.23 4.40×10−04 16 0.34

Medtr4g064730 MtLUXa myb-like DNA-binding
domain, shaqkyf class
protein

1.60×10−07 11 3.80 0.79 6.10×10−06 12 0.36 0.45 5.00×10−01 21 −0.62 0.38 1.50×10−01 7 0.57

Medtr7g089010 MtLUXb MYB-like transcription
factor family protein

2.90×10−02 180 −1.60 0.14 6.60×10−28 310 −1.10 0.12 4.90×10−19 330 −1.10 0.12 7.70×10−17 12 0.37

Medtr3g070490 MtELF4 early flowering protein 2.10×10−71 53 3.60 0.35 2.40×10−22 24 1.80 0.33 4.20×10−07 56 −4.00 0.37 2.30×10−25 16 0.32

Medtr8g020200 ELF4-like early flowering protein 5.80×10−01 – – – – – – – – – – – – – –

Medtr4g125590 ELF4-like early flowering protein 9.20×10−02 – – – – – – – – – – – – – –

Medtr2g041310 ELF4-like early flowering protein 2.60×10−02 160 −1.40 0.20 8.50×10−11 120 −0.55 0.20 1.20×10−02 200 −0.67 0.19 1.10×10−03 10 0.17

Medtr1g098160 MtGI gigantea protein 1B 2.60×10−14 35 −3.40 0.36 5.90×10−20 3300 −0.86 0.12 8.40×10−12 4100 −1.70 0.12 1.20×10−45 9 0.23

Medtr8g105590 MtFKF1 flavin-binding kelch
repeat F-box protein,
putative

4.60×10−56 14 3.30 0.60 1.50×10−07 24 −1.40 0.33 5.40×10−05 250 −5.00 0.29 1.70×10−64 11 0.78
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Table 1 (continued)
ZT0 ZT2 ZT4

Interaction Mean Log2 Log2 adj. Mean Log2 Log2 adj. Meam Log2 Log2 adj.
Gene identifier Name Description (Mt4.0

annotation)
adj. p-value read counts fold-change s.e p-value read counts fold-change s.e p-value read counts fold-change s.e p-value Cluster Membership

Medtr2g036510 MtZTL galactose oxidase/kelch
repeat protein

6.90×10−01 – – – – – – – – – – – – – –

Medtr2g058520 MtE1 E1 protein 2.20×10−03 1.8 −2.30 1.20 8.60×10−02 23 2.20 0.51 6.20×10−05 23 1.40 0.49 7.10×10−03 8 0.16

Medtr7g084970 MtFTa1 flowering locus protein
T

5.70×10−01 – – – – – – – – – – – – – –

Medtr7g085020 MtFTa2 flowering locus protein
T

2.80×10−03 17 1.00 0.44 3.80×10−02 11 −1.10 0.49 4.90×10−02 28 −0.97 0.39 2.30×10−02 11 0.3

Medtr6g033040 MtFTa3 flowering locus protein
T

– – – – – – – – – – – – – – –

Medtr7g006630 MtFTb1 flowering locus protein
T

2.00×10−03 0 −0.16 1.70 9.40×10−01 3 5.00 1.30 2.10×10−04 90 9.90 1.20 2.60×10−15 3 0.4

Medtr7g006690 MtFTb2 flowering locus protein
T

6.70×10−01 – – – – – – – – – – – – – –

Medtr2g461760 MtFULa MADS-box transcrip-
tion factor

– – – – – – – – – – – – – – –

Medtr4g109830 MtFULb MADS-box transcrip-
tion factor

3.00×10−02 10 1.70 0.60 8.00×10−03 24 −0.27 0.46 6.30×10−01 15 1.40 0.52 1.60×10−02 8 0.39

Medtr7g016630 MtFULc MADS-box transcrip-
tion factor

– – – – – – – – – – – – – – –

Medtr7g075870 MtSOC1a MADS-box transcrip-
tion factor

7.40×10−04 110 −0.16 0.18 4.60×10−01 120 0.53 0.18 5.30×10−03 150 0.86 0.17 1.90×10−06 3 0.35

Medtr8g033250 MtSOC1b MADS-box transcrip-
tion factor

– – – – – – – – – – – – – – –

Medtr8g033220 MtSOC1c MADS-box transcrip-
tion factor

9.80×10−01 – – – – – – – – – – – – – –

Medtr2g059540 MtCDF1 Dof domain zinc finger
protein

8.80×10−03 0 −0.16 1.70 9.40×10−01 8.7 −4.70 1.10 4.30×10−05 96 −8.20 1.10 1.00×10−13 11 0.4

Medtr5g041420 MtCDF2 DOF zinc finger protein 1.40×10−05 11 −1.10 0.54 5.70×10−02 9.5 2.40 0.65 7.60×10−04 2.7 3.80 1.30 7.30×10−03 5 0.19

Medtr5g041530 MtCDF3 cycling DOF factor 2 3.10×10−19 220 0.29 0.16 9.30×10−02 170 1.30 0.17 8.80×10−14 99 2.80 0.23 1.20×10−34 1 0.58

Medtr6g012450 MtCDF4 DOF-type zinc finger
DNA-binding family
protein

3.40×10−77 860 −1.40 0.14 1.60×10−21 350 1.90 0.16 5.40×10−31 270 2.40 0.17 1.30×10−45 5 0.34

Medtr6g027460 MtCDF5 Dof zinc finger DOF5.2-
like protein

1.40×10−18 370 1.40 0.19 4.40×10−13 350 2.00 0.19 2.30×10−24 100 4.90 0.37 1.30×10−37 1 0.69

Medtr7g010950 MtCDF6 DOF-type zinc finger
DNA-binding family
protein

6.40×10−30 360 −0.40 0.16 2.50×10−02 260 1.60 0.17 1.10×10−19 200 2.40 0.19 2.40×10−36 1 0.32

Medtr2g016030 MtCDFa Dof domain zinc finger
protein

8.90×10−01 – – – – – – – – – – – – – –

Medtr3g435480 MtCDFb DOF-type zinc finger
DNA-binding family
protein

2.60×10−22 1400 −3.10 0.24 2.40×10−35 800 −0.33 0.24 2.30×10−01 1400 0.33 0.24 2.20×10−01 12 0.23

Medtr4g082060 MtCDFc DOF-type zinc finger
DNA-binding family
protein

1.90×10−41 970 −1.90 0.15 5.40×10−35 720 0.73 0.15 2.80×10−06 760 0.69 0.15 1.10×10−05 13 0.26

Medtr5g041380 MtCDFd DOF domain, zinc fin-
ger protein

6.00×10−01 – – – – – – – – – – – – – –

Medtr5g041400 MtCDFe DOF domain, zinc fin-
ger protein

2.70×10−06 8.3 −2.70 0.71 2.80×10−04 8.7 1.00 0.58 1.20×10−01 3.5 2.50 0.98 1.70×10−02 18 0.21

Medtr6g027450 MtCDFf Dof zinc finger DOF5.2-
like protein

3.30×10−01 – – – – – – – – – – – – – –
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Table 1 (continued)
ZT0 ZT2 ZT4

Interaction Mean Log2 Log2 adj. Mean Log2 Log2 adj. Meam Log2 Log2 adj.
Gene identifier Name Description (Mt4.0

annotation)
adj. p-value read counts fold-change s.e p-value read counts fold-change s.e p-value read counts fold-change s.e p-value Cluster Membership

Medtr7g086780 MtCDFg Dof zinc finger DOF5.2-
like protein

1.80×10−01 – – – – – – – – – – – – – –

Medtr8g044220 MtCDFh DOF-type zinc finger
DNA-binding family
protein

1.50×10−01 – – – – – – – – – – – – – –

Medtr5g085250 MtCOP1 E3 ubiquitin-protein
ligase COP1

1.70×10−02 1200 −0.48 0.09 3.20×10−07 1800 −0.26 0.09 6.10×10−03 1600 −0.08 0.09 4.50×10−01 8 0.17

Medtr5g009530 SPA1-like ubiquitin ligase cop1,
putative

1.90×10−01 – – – – – – – – – – – – – –

Medtr8g027985 SPA1-like ubiquitin ligase cop1,
putative

8.90×10−170 310 3.40 0.16 5.10×10−96 1000 −1.10 0.11 4.10×10−20 2400 −1.60 0.11 1.60×10−47 17 0.46

Medtr2g085210 SPA1-like ubiquitin ligase cop1,
putative

1.30×10−01 – – – – – – – – – – – – – –

Medtr2g104140 TPL-like topless-like protein 9.70×10−05 1700 −0.89 0.12 3.30×10−13 1800 −0.48 0.12 1.50×10−04 1500 −0.11 0.12 4.20×10−01 18 0.2

Medtr4g009840 TPL-like topless-like protein 6.50×10−01 – – – – – – – – – – – – – –

Medtr4g114980 TPL-like topless-like protein 3.50×10−01 – – – – – – – – – – – – – –

Medtr2g435370 TPL-like transducin family
protein/WD-40 repeat
protein

– – – – – – – – – – – – – – –

Medtr2g435440 TPL-like topless-like protein – – – – – – – – – – – – – – –

Medtr4g120900 TPL-like topless-like protein 1.10×10−04 980 −0.48 0.07 9.70×10−12 1200 −0.22 0.07 1.70×10−03 1400 −0.05 0.06 5.40×10−01 12 0.34

Medtr7g112460 TPL-like topless-like protein 7.60×10−01 – – – – – – – – – – – – – –

Medtr2g065670 TPL-like topless-like protein 8.50×10−01 – – – – – – – – – – – – – –

Medtr2g435380 TPL-like topless-like protein – – – – – – – – – – – – – – –

Medtr1g012820 TPL-like topless-like protein – – – – – – – – – – – – – – –

Medtr6g444980 MtFE myb-like transcription
factor family protein

3.00×10−04 430 0.46 0.10 6.50×10−06 380 0.03 0.10 7.90×10−01 440 0.61 0.10 8.50×10−10 1 0.29

Medtr3g058980 NF-YB like nuclear transcription
factor Y protein

3.60×10−04 910 0.09 0.09 3.80×10−01 540 −0.42 0.09 1.30×10−05 820 −0.31 0.09 8.40×10−04 15 0.21

Medtr5g095740 NF-YB like nuclear transcription
factor Y protein

2.40×10−09 570 −0.80 0.17 4.70×10−06 160 0.69 0.18 5.00×10−04 430 −0.74 0.17 3.30×10−05 15 0.54

Medtr1g082660 NF-YC like nuclear transcription
factor Y protein

8.80×10−02 – – – – – – – – – – – – – –

Medtr3g099180 NF-YC like nuclear transcription
factor Y protein

5.10×10−03 1800 0.51 0.12 5.40×10−05 1200 0.84 0.12 3.20×10−11 1900 0.22 0.12 9.40×10−02 4 0.23

Medtr7g113680 NF-YC like nuclear transcription
factor Y protein

9.00×10−01 – – – – – – – – – – – – – –

Medtr1g093600 MtTEM1 AP2/ERF and B3 do-
main transcription fac-
tor

3.00×10−09 2600 −1.50 0.16 3.90×10−20 560 −0.15 0.17 4.50×10−01 360 −1.50 0.17 1.30×10−16 14 0.46

Medtr5g053920 MtTEM2 AP2/ERF and B3 do-
main transcription fac-
tor

7.40×10−03 1900 −1.20 0.17 2.10×10−11 1000 −0.35 0.18 7.60×10−02 550 −0.79 0.18 3.30×10−05 14 0.23

Medtr4g061200 MtTOE1a AP2-like ethylene-
responsive transcription
factor

1.90×10−05 42 1.10 0.28 1.90×10−04 37 0.61 0.28 4.80×10−02 70 −0.67 0.25 1.30×10−02 2 0.25

Medtr2g093060 MtTOE1b AP2-like ethylene-
responsive transcription
factor

1.20×10−04 1200 −0.15 0.08 1.00×10−01 1100 −0.64 0.08 2.20×10−14 1600 −0.24 0.08 4.90×10−03 9 0.2
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Table 1 (continued)
ZT0 ZT2 ZT4

Interaction Mean Log2 Log2 adj. Mean Log2 Log2 adj. Meam Log2 Log2 adj.
Gene identifier Name Description (Mt4.0

annotation)
adj. p-value read counts fold-change s.e p-value read counts fold-change s.e p-value read counts fold-change s.e p-value Cluster Membership

Medtr7g100590 MtTOE1c AP2 domain transcrip-
tion factor

1.90×10−02 49 0.82 0.27 6.00×10−03 28 0.30 0.30 4.00×10−01 64 −0.36 0.26 2.10×10−01 16 0.38

Medtr1g049140 MtTOE2 AP2 domain transcrip-
tion factor

2.50×10−17 1600 −1.60 0.13 4.00×10−33 2500 −0.65 0.13 8.40×10−07 2900 0.06 0.13 6.80×10−01 12 0.71

Medtr5g016810 MtAP2a AP2 domain transcrip-
tion factor

2.30×10−14 510 0.57 0.11 2.80×10−07 880 −0.61 0.10 4.30×10−09 730 −0.24 0.10 3.30×10−02 6 0.46

Medtr4g094868 MtAP2b AP2 domain transcrip-
tion factor

1.50×10−12 260 1.00 0.13 7.80×10−14 390 −0.17 0.12 2.30×10−01 280 −0.24 0.13 9.70×10−02 6 0.21

Medtr7g018170 MtCOLa zinc finger constans-like
protein

5.90×10−104 4400 −2.30 0.11 3.60×10−105 1500 0.79 0.11 1.50×10−12 2200 0.38 0.11 8.10×10−04 13 0.36

Medtr1g013450 MtCOLb zinc finger constans-like
protein

1.60×10−47 5000 −0.82 0.07 8.30×10−27 3800 0.16 0.08 5.50×10−02 3100 0.76 0.08 1.20×10−22 18 0.37

Medtr3g105710 MtCOLc zinc finger constans-like
protein

1.30×10−28 1700 −0.48 0.05 8.30×10−22 860 0.19 0.06 1.40×10−03 1200 0.28 0.05 5.00×10−07 14 0.32

Medtr4g128930 MtCOLd zinc finger constans-like
protein

1.10×10−38 2400 −2.60 0.14 6.10×10−81 1500 −0.34 0.14 2.00×10−02 2300 −0.35 0.13 1.50×10−02 12 0.19

Medtr3g082630 MtCOLe B-box type zinc finger
protein

1.50×10−54 48 7.90 1.20 3.80×10−10 5 2.30 0.75 5.20×10−03 39 −3.90 0.46 4.60×10−16 16 0.47

Medtr5g069480 MtCOLf zinc finger constans-like
protein

9.40×10−12 490 4.20 0.21 1.40×10−88 130 2.20 0.21 4.50×10−24 110 2.40 0.23 4.10×10−25 4 0.57

Medtr7g108150 MtCOLg zinc finger constans-like
protein

6.10×10−03 880 −0.36 0.09 7.50×10−05 510 0.08 0.09 4.40×10−01 650 −0.20 0.09 3.60×10−02 14 0.38

Medtr7g083540 MtCOLh zinc finger constans-like
protein

6.20×10−07 57 0.14 0.24 6.30×10−01 69 −0.19 0.23 5.00×10−01 61 −1.70 0.26 8.40×10−11 16 0.1

Medtr8g104190 MtCOLi zinc finger constans-like
protein

5.50×10−02 – – – – – – – – – – – – – –

Medtr2g088900 MtCOLj zinc finger constans-like
protein

2.50×10−02 79 −0.81 0.29 1.10×10−02 83 0.28 0.29 4.00×10−01 75 0.30 0.29 3.80×10−01 18 0.28

Medtr1g110870 MtCOLk zinc finger constans-like
protein

1.40×10−19 2000 1.70 0.16 2.20×10−22 230 −0.05 0.18 8.20×10−01 1200 −0.53 0.17 3.10×10−03 15 0.19

Medtr7g032240 MtCMF1 CCT motif protein 7.90×10−04 910 −0.26 0.08 2.10×10−03 470 0.11 0.09 2.50×10−01 1100 0.16 0.08 5.40×10−02 15 0.34

Medtr4g127420 MtCMF2 import apparatus pro-
tein

2.40×10−19 180 0.35 0.13 1.60×10−02 660 −0.78 0.11 6.00×10−12 840 −1.30 0.11 3.50×10−31 9 0.43

Medtr5g072780 MtCMF3 CCT motif protein 8.60×10−02 – – – – – – – – – – – – – –

Medtr3g100040 MtCMF5 GATA transcription
factor

3.00×10−01 – – – – – – – – – – – – – –

Medtr3g100050 MtCMF6 GATA transcription
factor

6.80×10−01 – – – – – – – – – – – – – –

Medtr5g066510 MtCMF7 GATA transcription
factor

7.30×10−01 – – – – – – – – – – – – – –

Medtr4g093730 MtCMF8 GATA transcription
factor

4.30×10−01 – – – – – – – – – – – – – –

Medtr1g008220 MtCMF9 CCT motif protein 3.40×10−21 480 1.20 0.18 6.30×10−11 500 −1.30 0.18 2.00×10−12 50 −0.54 0.24 3.90×10−02 18 0.27

Medtr3g091340 MtCMF10 CCT motif protein 7.60×10−43 470 1.90 0.14 3.20×10−42 700 −0.79 0.13 6.90×10−09 100 0.66 0.17 2.90×10−04 18 0.18

Medtr4g061910 MtCMF11a CCT motif protein – – – – – – – – – – – – – – –

Medtr4g061823 MtCMF11b CCT motif protein – – – – – – – – – – – – – – –

Medtr2g096080 MtCMF12 CCT motif protein 7.90×10−02 – – – – – – – – – – – – – –
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Table 1 (continued)
ZT0 ZT2 ZT4

Interaction Mean Log2 Log2 adj. Mean Log2 Log2 adj. Meam Log2 Log2 adj.
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annotation)
adj. p-value read counts fold-change s.e p-value read counts fold-change s.e p-value read counts fold-change s.e p-value Cluster Membership

Medtr8g098725 MtCMF13 CCT motif protein – – – – – – – – – – – – – – –

Medtr5g010120 MtCMF14 CCT motif protein – – – – – – – – – – – – – – –

Medtr2g068730 MtCMF15 CCT motif protein – – – – – – – – – – – – – – –

Medtr1g073350 MtCMF16 CCT motif protein 4.50×10−02 42 0.67 0.39 1.30×10−01 16 −0.75 0.46 1.50×10−01 36 −0.75 0.40 9.50×10−02 16 0.21

Medtr1g044785 MtCMF17 CCT motif protein 4.50×10−01 – – – – – – – – – – – – – –

Medtr4g008090 MtCMF18 GATA transcription
factor, putative

– – – – – – – – – – – – – – –

Medtr1g023260 CCT do-
main gene

salt tolerance-like
protein

1.20×10−06 230 0.71 0.13 1.10×10−07 200 −0.28 0.13 5.30×10−02 120 0.43 0.14 6.10×10−03 18 0.2

Medtr1g109350 CCT do-
main gene

B-box zinc finger
protein, putative

5.10×10−05 990 1.30 0.19 6.60×10−10 100 2.40 0.25 5.90×10−21 240 0.92 0.21 2.80×10−05 15 0.28

Medtr2g011450 CCT do-
main gene

B-box type zinc finger
protein

1.50×10−05 11 −1.70 0.52 2.30×10−03 30 0.32 0.38 4.70×10−01 10 1.90 0.54 8.60×10−04 8 0.37

Medtr2g073370 CCT do-
main gene

B-box type zinc finger
protein

2.70×10−15 1.8 4.20 1.30 3.00×10−03 24 −0.69 0.42 1.40×10−01 66 −4.90 0.53 4.00×10−19 9 0.4

Medtr2g089310 CCT do-
main gene

B-box type zinc finger
protein

2.50×10−62 690 −2.90 0.17 2.10×10−67 750 0.13 0.16 5.00×10−01 590 0.92 0.16 4.10×10−08 12 0.18

Medtr2g099010 CCT do-
main gene

salt tolerance-like
protein

1.00×10−42 18000 −0.59 0.10 3.40×10−08 14000 0.25 0.10 2.30×10−02 12000 1.50 0.10 2.90×10−45 1 0.24

Medtr3g113070 CCT do-
main gene

salt tolerance-like
protein

– – – – – – – – – – – – – – –

Medtr3g117320 CCT do-
main gene

salt tolerance-like
protein

2.10×10−04 26 3.50 0.64 2.70×10−07 3.2 1.90 0.94 7.20×10−02 8.3 −0.48 0.62 5.20×10−01 4 0.46

Medtr4g008050 CCT do-
main gene

B-box type zinc finger
protein, putative

2.30×10−11 49 −0.70 0.27 1.70×10−02 530 −0.09 0.21 7.40×10−01 350 1.60 0.22 3.90×10−13 8 0.26

Medtr4g046640 CCT do-
main gene

B-box type zinc finger
protein

3.70×10−08 12 0.42 0.53 5.10×10−01 81 1.20 0.42 7.60×10−03 34 5.30 0.76 1.70×10−11 8 0.65

Medtr4g067320 CCT do-
main gene

salt tolerance-like
protein

6.60×10−33 1200 −2.10 0.10 9.10×10−91 1800 −0.45 0.10 2.00×10−05 3700 −0.71 0.10 2.60×10−12 12 0.65

Medtr4g071200 CCT do-
main gene

salt tolerance-like
protein

– – – – – – – – – – – – – – –

Medtr5g021580 CCT do-
main gene

salt tolerance-like
protein

3.00×10−08 1200 −1.40 0.17 4.90×10−15 1600 −0.37 0.17 4.30×10−02 1600 0.09 0.17 6.60×10−01 12 0.48

Medtr3g116770 MtCBL1 BHLH transcription
factor

5.20×10−05 720 −0.76 0.17 2.00×10−05 320 0.29 0.17 1.30×10−01 1300 −0.68 0.16 1.20×10−04 10 0.16

(continued on next page)
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Table 1 (continued)
ZT0 ZT2 ZT4

Interaction Mean Log2 Log2 adj. Mean Log2 Log2 adj. Meam Log2 Log2 adj.
Gene identifier Name Description (Mt4.0

annotation)
adj. p-value read counts fold-change s.e p-value read counts fold-change s.e p-value read counts fold-change s.e p-value Cluster Membership

Medtr4g070320 MtCBL2 transcription factor 3.90×10−02 1200 −0.80 0.15 1.60×10−07 420 −1.40 0.16 1.40×10−17 1900 −0.86 0.14 1.50×10−08 10 0.16

Medtr7g053410 MtCBL3 BHLH transcription
factor

2.70×10−05 150 0.08 0.13 6.40×10−01 130 −0.52 0.14 5.30×10−04 210 0.39 0.12 2.70×10−03 3 0.083

Medtr8g012290 MtCBL4 BHLH transcription
factor

9.40×10−02 – – – – – – – – – – – – – –

Medtr1g017350 MtCBL5 transcription factor 1.70×10−02 57 0.67 0.23 7.00×10−03 30 −0.26 0.27 4.10×10−01 54 −0.24 0.23 3.60×10−01 16 0.2

Medtr5g048860 MtCBL6 BHLH transcription
factor

1.40×10−01 – – – – – – – – – – – – – –

Medtr8g065740 MtCBL7 transcription factor 8.00×10−01 – – – – – – – – – – – – – –

Medtr3g498825 MtCBL8 transcription factor
bHLH137

2.80×10−12 920 −0.04 0.07 6.30×10−01 910 −0.41 0.07 7.80×10−09 1000 0.32 0.07 7.00×10−06 18 0.18

Medtr8g099880 MtCBL9 basic helix loop helix
protein BHLH8

8.30×10−02 – – – – – – – – – – – – – –

Medtr8g062240 MtCBL10 transcription factor 6.00×10−02 – – – – – – – – – – – – – –

Medtr5g037250 MtCBL11 transcription factor 5.90×10−14 170 −0.57 0.18 3.10×10−03 180 −1.10 0.18 3.50×10−09 70 1.10 0.21 9.10×10−07 18 0.5

Medtr7g092510 MtCBL12 transcription factor 3.50×10−07 270 0.07 0.11 6.00×10−01 210 −0.65 0.12 2.70×10−07 360 −0.78 0.11 2.70×10−12 11 0.3

Medtr1g059270 MtCBL13 transcription factor 2.60×10−06 320 0.52 0.09 3.50×10−08 320 −0.14 0.09 1.60×10−01 230 0.36 0.10 6.40×10−04 1 0.22

Medtr6g084120 MtCBL14 transcription factor 3.20×10−11 92 −1.40 0.25 1.20×10−07 80 1.00 0.25 8.40×10−05 25 −1.10 0.32 2.30×10−03 18 0.27

Medtr7g099540 MtPIF1a transcription factor 5.10×10−25 1000 1.00 0.08 9.20×10−37 1300 0.13 0.08 1.40×10−01 1200 −0.12 0.08 1.70×10−01 6 0.22

Medtr1g069155 MtPIF1b transcription factor 9.00×10−01 – – – – – – – – – – – – – –

Medtr1g084980 MtPIF3a phytochrome-
interacting factor
3.1

6.90×10−16 1900 −2.70 0.22 1.00×10−31 1200 −0.44 0.22 7.70×10−02 300 −0.09 0.23 7.60×10−01 18 0.34

Medtr7g111320 MtPIF3b phytochrome-
interacting factor
3.1

3.20×10−01 – – – – – – – – – – – – – –

Medtr7g110810 MtPIF6 helix loop helix DNA-
binding domain protein

1.30×10−04 18 −2.40 0.54 1.90×10−05 27 0.64 0.45 2.20×10−01 12 0.08 0.52 9.00×10−01 18 0.2

Medtr3g449770 MtPIF45 transcription factor 4.50×10−32 2500 −2.00 0.11 1.40×10−69 2800 −0.34 0.11 4.20×10−03 3200 −0.28 0.11 2.20×10−02 12 0.42

Medtr7g039110 MtPIF78 transcription factor 1.20×10−03 5000 −0.40 0.09 5.80×10−05 3800 −0.08 0.09 4.60×10−01 3400 0.13 0.09 2.20×10−01 5 0.43

Medtr1g019240 MtPIL helix loop helix DNA-
binding domain protein

– – – – – – – – – – – – – – –

Medtr5g017040 MtSPT helix loop helix DNA-
binding domain protein

– – – – – – – – – – – – – – –

Notes.
The genes listed in this table are loci known or hypothesised to participate in the photoperiod pathway in legumes along with homologues of the core components of the pathway in A. thaliana.
They include potential FT promoter binding genes compiled by Ridge et al. (2016) from which the naming ofMtTOE1a toMtSPT derives.
Table depicts the the adjusted p-value for the interaction between time and condition. Note that if the adjusted p-value is significant each contrast between conditions at timepoints ZT0, ZT2 and ZT4 is
also given to facilitate identifying where the patterns of expression diverge. Included in these results is the mean normalised read counts for the gene at this timepoint.
If the interaction term adjusted p-value is not significant contrasts are omitted.
In all cases it is the expression in LD relative to SD which is tested. In addition the cluster assignment and membership value are listed. Differentially expressed results are in bold using an α= 0.05.
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resulted in 9,427 of the 9,516 genes having differing expression between LD and SD at a
minimum of one timepoint with 6,437, 4,511 and 6,159 for ZT0, ZT2 and ZT4 respectively
(Fig. S2A). We consider only genes with >2-fold differences with >10 mean normalised
reads as DE and there were 3,192 genes meeting this criteria at at least one timepoint.
This corresponds to 2131, 1062 and 2168 DE genes at ZT0, ZT2 and ZT4 respectively. Full
results are listed in Table S5. In these filtered lists of genes 4.9% of these genes differed
in the three timepoints and 32% differed at two or more timepoints demonstrating how
most genes have a single peak, predominantly at ZT0 or ZT4 (Fig. 4A). Notably, there were
fewer genes DE at ZT2 than the other timepoints and those that did mostly differed at one
or both of the other timpeoints too. Only 27% of the 1,062 genes DE at ZT2 are unique to
the timepoint (compared to 58.4% for ZT0 and 51.6% for ZT4).

The interaction term was found to be significant in the majority (91/146; 62%) of the
candidate genes associated with photoperiodic regulated flowering including 19/24 (79%)
of the circadian clock and photoreceptor candidate genes and a striking 8/8 (100%) of
the selected AP2 class of genes (Table 1). Of this set of 91 genes, 90 were statistically
different (α= 0.05) at one or more timepoints and for 61 genes the difference at at least
one timepoint was greater than >2-fold difference with >10 mean normalised reads. For
example, a gene encoding a predicted core component of the core circadian clock,MtLHY,
is expressed at ∼4-fold higher levels at ZT0 in SD than LD but this situation is reversed at
ZT4 when it is ∼7.5-fold higher in LD than SD.

To get a broader view of the results, themean abundances of all 9,516 genes which altered
their pattern of expression were taken and log2 transformed, before being standardised to
have amean of zero and standard deviation of one. The standardisedmean abundances were
then clustered into 18 clusters using c-means clustering (Table S6; see Fig. S3A for cluster
number optimisation) and visualised in Fig. 4B. This algorithm assigns a membership score
(between 0 and 1) for each gene to each cluster describing the degree to which an individual
observation belongs to a given cluster (see Fig. S4 for distribution of membership scores).
A gene is then assigned to the cluster for which it has the highest membership. Cluster 3,
which has 464 genes in it, was of particular interest asMtFTb1 is present. Thus these genes
have patterns of expression similar to MtFTb1 and may be involved in regulating MtFTb1
or involved in similar processes. Clusters 9, 11 and 17 (648, 598 and 538 genes respectively)
are also of interest as they contain genes with an opposite expression pattern to cluster
3, some of which may thus be negative regulators of MtFTb1 (e.g., MtFTa2 is in cluster
11). Specifically, these three clusters have peaks of expression at ZT4 in SD which are not
present in LDs (Fig. 4C).

With regard to candidate photoperiodic flowering time genes, alongside MtFTb1 in
cluster 3 there were only two genes from Table 1. These were MtSOC1a (Medtr7g075870)
and a BHLH transcription factor gene called MtCBL3 (Medtr7g053410). MtSOC1a is a
downstream target ofMtFTa1 (Medtr7g084970) and demonstrated to affect flowering time
(Jaudal et al., 2018). Another cluster 3 candidate flowering related gene Medtr3g101520
encodes a B3 domain, as does E1, the most important locus in the photoperiod pathway
of the tropical legume soybean (Glycine max (L.) Merr.; Xia et al., 2012). On the other
hand, the predicted circadian clock-like genes PRR37a, b and PRR59a-c (Matsushika et
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Table 2 Photoperiod induced changes in the magnitude of gene expression in candidate flowering time loci not observed to alter their pattern over time (see Ta-
ble 1).

ZT0 ZT2 ZT4

Condition Mean Log2 Log2 adj. Mean Log2 Log2 adj. Mean Log2 Log2 adj.
Gene identifier Name Description (Mt4.0

annotation)
adj. p-value read count fold-change s.e p-value read count fold-change s.e p-value read count fold-change s.e p-value Cluster Membership

Medtr2g049520 MtPHYE phytochrome protein – – – – – – – – – – – – – – –

Medtr1g016920 MtELF3b EARLY flowering protein,
putative

5.50×10−01 – – – – – – – – – – – – – –

Medtr8g015470 ELF3-like hypothetical protein – – – – – – – – – – – – – – –

Medtr8g020200 ELF4-like early flowering protein 1.60×10−20 100 −0.88 0.18 1.50×10−05 98 −1.2 0.19 7.40×10−09 210 −0.94 0.16 1.70×10−07 13 0.43

Medtr4g125590 ELF4-like early flowering protein 1.60×10−01 – – – – – – – – – – – – – –

Medtr2g036510 MtZTL galactose oxidase/kelch repeat
protein

8.20×10−01 – – – – – – – – – – – – – –

Medtr7g084970 MtFTa1 flowering locus protein T 1.80×10−27 28 5.2 0.79 1.20×10−09 16 6.4 1.2 1.90×10−06 55 6.8 0.89 2.10×10−12 1 0.32

Medtr6g033040 MtFTa3 flowering locus protein T – – – – – – – – – – – – – – –

Medtr7g006690 MtFTb2 flowering locus protein T 5.20×10−01 – – – – – – – – – – – – – –

Medtr2g461760 MtFULa MADS-box transcription factor 2.90×10−01 – – – – – – – – – – – – – –

Medtr7g016630 MtFULc MADS-box transcription factor – – – – – – – – – – – – – – –

Medtr8g033250 MtSOC1b MADS-box transcription factor – – – – – – – – – – – – – – –

Medtr8g033220 MtSOC1c MADS-box transcription factor 9.80×10−01 – – – – – – – – – – – – – –

Medtr2g016030 MtCDFa Dof domain zinc finger protein 7.60×10−01 – – – – – – – – – – – – – –

Medtr5g041380 MtCDFd DOF domain, zinc finger protein 4.40×10−01 – – – – – – – – – – – – – –

Medtr6g027450 MtCDFf Dof zinc finger DOF5.2-like
protein

2.10×10−09 12 3.1 0.67 4.10×10−05 9.8 1.8 0.57 5.50×10−03 2.7 3.7 1.3 9.70×10−03 2 0.53

Medtr7g086780 MtCDFg Dof zinc finger DOF5.2-like
protein

5.00×10−02 – – – – – – – – – – – – – –

Medtr8g044220 MtCDFh DOF-type zinc finger DNA-
binding family protein

9.50×10−05 65 0.93 0.21 1.10×10−04 60 0.49 0.21 4.00×10−02 63 0.26 0.21 2.80×10−01 2 0.4

Medtr5g009530 SPA1-like ubiquitin ligase cop1, putative 1.90×10−06 890 −0.22 0.062 1.40×10−03 980 −0.28 0.061 3.50×10−05 850 −0.096 0.063 1.70×10−01 18 0.52

Medtr2g085210 SPA1-like ubiquitin ligase cop1, putative 2.40×10−03 4100 0.075 0.086 4.30×10−01 4600 0.36 0.086 1.80×10−04 4700 0.18 0.086 6.20×10−02 6 0.45

Medtr4g009840 TPL-like topless-like protein 9.00×10−11 3200 −0.35 0.11 3.30×10−03 3000 −0.51 0.11 1.40×10−05 2000 −0.49 0.11 4.30×10−05 18 0.88

Medtr4g114980 TPL-like topless-like protein 1.20×10−05 840 −0.25 0.14 9.90×10−02 960 −0.42 0.13 6.30×10−03 1200 −0.59 0.13 8.90×10−05 9 0.57

Medtr2g435370 TPL-like transducin family protein/WD-
40 repeat protein

– – – – – – – – – – – – – – –

Medtr2g435440 TPL-like topless-like protein – – – – – – – – – – – – – – –

Medtr7g112460 TPL-like topless-like protein 1.60×10−18 570 −0.57 0.12 1.20×10−05 430 −0.65 0.12 1.40×10−06 450 −0.73 0.12 3.40×10−08 10 0.5

Medtr2g065670 TPL-like topless-like protein 6.70×10−01 – – – – – – – – – – – – – –

Medtr2g435380 TPL-like topless-like protein – – – – – – – – – – – – – – –

Medtr1g012820 TPL-like topless-like protein – – – – – – – – – – – – – – –
(continued on next page)
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Table 2 (continued)
ZT0 ZT2 ZT4

Condition Mean Log2 Log2 adj. Mean Log2 Log2 adj. Mean Log2 Log2 adj.
Gene identifier Name Description (Mt4.0

annotation)
adj. p-value read count fold-change s.e p-value read count fold-change s.e p-value read count fold-change s.e p-value Cluster Membership

Medtr1g082660 NF-YC like nuclear transcription
factor Y protein

6.40×10−03 370 −0.38 0.094 2.90×10−04 490 −0.14 0.089 1.60×10−01 530 −0.065 0.088 5.10×10−01 12 0.34

Medtr7g113680 NF-YC like nuclear transcription
factor Y protein

1.10×10−10 490 0.37 0.1 1.40×10−03 380 0.46 0.11 1.40×10−04 400 0.41 0.11 6.30×10−04 4 0.69

Medtr8g104190 MtCOLi zinc finger constans-like protein 2.00×10−02 5800 −0.032 0.07 6.90×10−01 4100 −0.092 0.071 2.50×10−01 6100 −0.29 0.07 1.80×10−04 15 0.28

Medtr5g072780 MtCMF3 CCT motif protein 6.10×10−01 – – – – – – – – – – – – – –

Medtr3g100040 MtCMF5 GATA transcription factor 4.50×10−02 240 −0.4 0.13 8.00×10−03 180 −0.14 0.14 3.80×10−01 210 −0.063 0.14 6.80×10−01 14 0.83

Medtr3g100050 MtCMF6 GATA transcription factor 1.20×10−01 – – – – – – – – – – – – – –

Medtr5g066510 MtCMF7 GATA transcription factor 2.40×10−01 – – – – – – – – – – – – – –

Medtr4g093730 MtCMF8 GATA transcription factor 1.70×10−01 – – – – – – – – – – – – – –

Medtr4g061910 MtCMF11a CCT motif protein – – – – – – – – – – – – – – –

Medtr4g061823 MtCMF11b CCT motif protein – – – – – – – – – – – – – – –

Medtr2g096080 MtCMF12 CCT motif protein 1.50×10−01 – – – – – – – – – – – – – –

Medtr8g098725 MtCMF13 CCT motif protein – – – – – – – – – – – – – – –

Medtr5g010120 MtCMF14 CCT motif protein – – – – – – – – – – – – – – –

Medtr2g068730 MtCMF15 CCT motif protein – – – – – – – – – – – – – – –

Medtr1g044785 MtCMF17 CCT motif protein 1.80×10−02 2.3 -2 1 8.70×10−02 4.5 −1.6 0.76 6.80×10−02 13 −0.51 0.54 4.00×10−01 16 0.54

Medtr4g008090 MtCMF18 GATA transcription factor,
putative

– – – – – – – – – – – – – – –

Medtr3g113070 CCT do-
main gene

salt tolerance-like protein – – – – – – – – – – – – – – –

Medtr4g071200 CCT do-
main gene

salt tolerance-like protein – – – – – – – – – – – – – – –

Medtr8g012290 MtCBL4 BHLH transcription factor 1.40×10−01 – – – – – – – – – – – – – –

Medtr5g048860 MtCBL6 BHLH transcription factor 4.20×10−01 – – – – – – – – – – – – – –

Medtr8g065740 MtCBL7 transcription factor 6.20×10−01 – – – – – – – – – – – – – –

Medtr8g099880 MtCBL9 basic helix loop helix protein
BHLH8

5.40×10−01 – – – – – – – – – – – – – –

Medtr8g062240 MtCBL10 transcription factor 8.90×10−03 110 0.066 0.16 7.20×10−01 64 0.28 0.19 1.90×10−01 82 0.72 0.18 3.60×10−04 4 0.31

Medtr1g069155 MtPIF1b transcription factor 9.30×10−01 – – – – – – – – – – – – – –

Medtr7g111320 MtPIF3b phytochrome-interacting factor
3.1

5.80×10−01 – – – – – – – – – – – – – –

Medtr1g019240 MtPIL helix loop helix DNA-binding
domain protein

– – – – – – – – – – – – – – –

Medtr5g017040 MtSPT helix loop helix DNA-binding
domain protein

– – – – – – – – – – – – – – –

Notes.
The genes listed in this table are loci known or hypothesised to participate in the photoperiod pathway in legumes along with homologues of the core components of the pathway in A. thaliana.
They include potential FT promoter binding genes compiled by Ridge et al. (2016) from which the naming ofMtCOLi toMtSPT derives.
Table depicts the the adjusted p-value for the interaction between time and condition. Note that if the adjusted p-value is significant each contrast between conditions at timepoints ZT0, ZT2 and ZT4 is
also given to facilitate identifying where the patterns of expression diverge. Included in these results is the mean normalised read counts for the gene at this timepoint.
If the interaction term adjusted p-value is not significant contrasts are omitted.
In all cases it is the expression in LD relative to SD which is tested. In addition the cluster assignment and membership value are listed. Differentially expressed results are in bold using an α= 0.05.
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Figure 4 Contrasting timepoint specific expression profiles of the genes which alter their pattern
of gene expression in response to the change of photoperiod conditions and clustering the relative
changes in expression over time. (A) contrasts the 3,912 DE genes (>2-fold difference and>10 mean
normalised reads) by the timepoints at which they are DE and plots their overlap. The principal chart
plots the size of the overlaps and the supplementary chart presents the number of genes DE (both up or
down) in LD relative to SD for each timepoint. (B) Heatmap of standardised gene abundances (such that
the average expression value is zero and the standard deviation is one) of all 9,516 genes which alter their
pattern of gene expression grouped into 18 clusters using c-means clustering. The number of genes in each
cluster is listed alongside. (C) Mean standardised abundances for selected clusters. Specifically cluster 3
was selected as it containsMtFTb1 which characteristically peaks at ZT4 in LD (orange and line) with no
expression in SD (blue and dotted). Clusters 9, 11 and 17 were selected as their pattern is opposite to that
of cluster 3 in that they peak at ZT4 in SD. Mean standardised abundances for all clusters are plotted in
Fig. S5.

Full-size DOI: 10.7717/peerj.6626/fig-4
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al., 2000; Nakamichi et al., 2005) all have profiles opposite to that of MtFTb1 with three
included in cluster 9 (Table 1). Additionally Medtr1g033620, a SHAQKYF class MYB-like
DNA-binding domain gene, is present in cluster 11 which is interesting as proteins of this
class have recently been implicated in the regulation of FT in A. thaliana (e.g., EFM and
FE ; Yan et al., 2014; Abe et al., 2015).

Next, genes in each cluster were then ranked by their fold-change at ZT4 becauseMtFTb1
has its greatest difference in expression between the two conditions at this timepoint (962-
fold up in LD; Fig. 1B). We focused on transcription factor genes and observed significant
fold changes in transcript levels of genes encoding a number of zinc finger proteins. For
instance, in cluster 3 at ZT4, the zinc finger (Ran-binding) family gene Medtr4g113840
was 45-fold elevated in LD compared to SD and the DOF-type zinc finger DNA-binding
family gene Medtr3g091820 was increased 2-fold. In contrast, in cluster 9 the B-box type
zinc finger protein Medtr2g073370 was 29-fold more abundant in SD than in LD at ZT4
and in cluster 11, Medtr2g059540, also a DOF domain zinc finger gene (denoted MtCDF1
in Table 1) was ∼300-fold higher in SD than in LD. Furthermore in cluster 17, the zinc
finger (Ran-binding) family geneMedtr6g069400 is 7-fold elevated in SD compared to LD
at ZT4.

Changes in the magnitude of gene expression
There is a class of genes which change their level of expression in response to the shift from
SD to LD conditions, but this does not alter the relative changes which occur at differing
timepoints. Thus it is only the magnitude, not the pattern of expression which changes
(e.g.,MtFTa1 or theNF-YC-like geneMedtr1g082660 in Figs. 1A and 1G). To identify these
genes a simpler model was fit the data which lacked the interaction term between growth
condition and time of sampling.

It was observed that in this model 8,695 genes differed in the magnitude of their
expression between conditions (α= 0.05; Table S7), but this was reduced to 4,694 when
those that also altered the pattern of their expression were omitted. Therefore 14.96% of
genes with >1 read (4,694/31,363 genes) alter just the magnitude of their expression in
response to the shift in photoperiod conditions. To provide timepoint level resolution of
these changes Wald significance tests were again used to contrast the 4,694 genes (Table
S8) with the significance levels of these genes adjusted for all three contrasts together
using the false discovery rate method. This resulted in 4,161 of the 4,694 genes differing
in magnitude at least one timepoint with 2,715, 2,268 and 2,666 for ZT0, ZT2 and ZT4
respectively (Fig. S2B). When considering genes with >2 fold differences and >10 mean
normalised reads as DE, only 819 genes differed in magnitude at at least one timepoint
and at ZT0, ZT2 and ZT4 this corresponded to 457, 353 and 454 genes respectively. Here
it was observed that only 65 genes (7.9%) of this set of genes are consistently higher in LDs
than SDs while 54 genes (9.99%) are consistently lower (Fig. 5A). The numbers in these
classes go up to 187 genes (22.8%) and 139 genes (17%) respectively when genes differing
at two or more timepoints are included. Like the class of genes which altered their pattern
of expression there are fewer DE genes at ZT2.
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Figure 5 Contrasting timepoint specific expression profiles of the genes which alter only the magni-
tude of their gene expression in response to the change of photoperiod conditions and clustering the
relative changes in expression over time. (A) contrasts the direction of the 819 genes which alter just the
magnitude of their gene expression and are DE (>2-fold difference and>10 mean normalised reads) at
one or more timepoint. The principal chart plots the size of the overlaps between timepoints and the sup-
plementary chart presents the number of genes DE (either up or down) in LD relative to SD for each time-
point. Membership within each group for individual genes, including non DE genes, is given in Table S8.
(B) The standardised and clustered abundances (such that the average expression value is zero and the
standard deviation is one) of all 4,694 genes which were classed as just altering the magnitude of their gene
expression in response to the photoperiod shift clustered into 18 clusters using c-means clustering. The
number of genes in each cluster is listed alongside. (C) Mean standardised abundance for clusters exam-
ined in more detail are plotted with cluster 1 selected for containingMtFTa1 which is expressed in LD
at all timepoints but not SD and clusters 9 and 10 were selected as genes in these clusters are consistently
higher in SD (blue and dotted) than in LD (orange and line). Mean standardised abundances for all clus-
ters are plotted in Fig. S6.

Full-size DOI: 10.7717/peerj.6626/fig-5
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Results for the candidate photoperiod loci are summarised in Table 2. Specifically these
are the candidate photoperiodic flowering time genes which were not classed as changing
their pattern of expression between conditions. Here 15/55 (27%) of the genes are classed
as altering just their magnitude in response to the photoperiodic shift. However, only
9/15 (60%) have statistically different levels of expression at two or more timepoints and
looking down the listMtFTa1 is the only gene to consistently differ>2-fold with>10mean
normalised reads. Thus, none of these candidate photoperiod genes are expressed similarly
toMtFTa1 which shows >30-fold higher levels in LD than in SD at all timepoints.

We then assessed the sets of genes whose expression is either consistently higher or lower
in LDs than SDs (65 and 54 genes respectively) for other candidate genes which could
potentially play a role in the regulation of flowering time. These include Medtr8g091720 a
NF-Y-like gene, which exhibits consistently greater expression (2.5–5.6-fold) in LD than in
SD, like that ofMtFTa1. Geneswhich consistently show reduced expression in LD compared
to SD include Medtr2g014200 which encodes a squamosa promoter-binding-like protein
as well as genes associated with sugar transport. For instance, Medtr3g074180 encoding
a trehalose-6-phosphate phosphatase is 2–3 fold lower accross the three timepoints and
Medtr0204s0040 a sugar porter family MFS transporter which not expressed in LD at all.
Sugar transport is a process linked to flowering time and the regulation of FT in A. thaliana
(Wahl et al., 2013).

In addition, while not previously linked to flowering time, these lists also contain a
number of genes which likely have regulatory functions such as Medtr5g079220 encoding
a R2R3-MYB transcription factor, Medtr3g107940 which produces a FBD protein and
Medtr8g012655 which is the gene for an ethylene response factor. These genes all have
greater expression in LD compared to SD. Conversely, genes which have reduced expression
in LD compared to SD include Medtr7g012790 encoding a circadian clock coupling
factor ZGT, Medtr7g105780 encoding an ovate transcriptional repressor, Medtr3g031220
which produces a WRKY transcription factor and Medtr8g026960 which is the gene for a
homeobox associated leucine zipper protein.

Relaxing the criteria for differential expression slightly and reconsidering the candidate
photoperiod loci also suggests thatMtCDFf (Medtr6g027450) could be investigated further
as it is higher in LD in all three timepoints (8.57-fold, 3.48-fold and 12.99-fold respectively)
however its expression is overall quite low with an average of only 2.7 normalised reads
at ZT4. Other potential candidates on the list include the ELF4-like gene Medtr8g020200,
consistently 1.8–2.3-fold higher in SD compared to LD, as is MtCMF17 (Medtr1g044785)
although, like MtCDFf, the expression in these datasets is low. This may reflect that these
genes are cell-type specific and so only expressed in a fraction of those sampled.

All 4,694 genes which differed in the magnitude of their expression between conditions
were then clustered into 18 clusters (Fig. 5B, Fig. S3B and Table S9).MtFTa1was present in
cluster 1 which had 331 genes. However, none of the selected photoperiodic candidate genes
clustered with MtFTa1. Clusters 9 (259 genes) and 10 (239 genes) have patterns opposite
to that of cluster 1 (Fig. 5C). A TPL-like gene from Table 2 is in cluster 9 and a second
TPL-like gene is in cluster 10. In addition, in clusters 9 and 10, a number of other flowering
time candidates are present including Medtr0020s0120 in cluster 9, which is similar to
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the FT antagonist TERMINAL FLOWER 1 in A. thaliana (Jaeger et al., 2013; Wickland &
Hanzawa, 2015). Also present in cluster 9 are a trio of genes encoding B3 binding domain
proteins Medtr1g021410, Medtr1g021435 and Medtr1g021500 and pair of genes which
encode SHAQKYF class MYB transcription factors Medtr0036s0260 and Medtr5g027550.
These genes are notable for genes containing these domains have been associated with
flowering time, as has the jumonji domain protein encoding gene Medtr2g011630 in
cluster 10 (Xia et al., 2012; Abe et al., 2015; Yan et al., 2014).

A total of 35/65 of the consistently differentially expressed genes which are higher in
LDs than SDs (Fig. 5A) are present in cluster 1. These include Medtr1g099440 which
encodes a membrane-associated kinase regulator-like protein,Medtr6g086805 a heat shock
transcription factor gene and Medtr4g009110 which encodes a helix loop helix DNA-
binding domain protein. Similarly, clusters 9 and 10 contain 19/54 of the consistently
differentially expressed genes which are lower in LDs than SDs. These genes include the
ethylene response factor gene Medtr5g016750 and Medtr4g119422 encoding a cullin-like
protein.

We then ranked the clustered genes by their fold-change between LD and SD at ZT0.
Strikingly, in cluster 1, within the top 13 genes with the largest fold increase in LD compared
to SD at ZT0,MtFTa1 is ranked 8th, while 10 of the other genes were homologues of IRON
MAN (IMA)/FE-UPTAKE-INDUCING PEPTIDE 1 (FEP1) genes. These encode mobile
signalling peptides integral for the uptake of of iron from the soil and octuple ima/fep1
mutants in A. thaliana result in severe chlorosis (Grillet et al., 2018; Hirayama et al., 2018).
They were also identified in a recent reannotation of the M. truncatula genome to identify
small, secreted peptides (De Bang et al., 2017). In addition cluster 3, which is similar to
cluster 1, has the remaining annotated IMA/FEP1 genes as 4 of the top 5 genes with the
largest fold-change differences at ZT0.

DISCUSSION
This study presents a thorough overview of the changes in the M. truncatula leaf tissue
transcriptome following a shift of vernalised plants from SD to LD conditions between
ZT0 and ZT4. Our data are of very high quality with an average mapping rate of 89.86%.
This suggests that while the existing Mt4.0v2 transcriptome captures the majority of
the signal in the data there is nevertheless space to improve it. To date, a majority of
transcriptomic datasets in M. truncatula have been generated from root tissue, not leaves
(e.g., experiments in the MtGEA database are >50% root tissue (Benedito et al., 2008)).
Thus this dataset broadens the understanding of gene expression in the aerial tissue of
M. truncatula, in particular in differing photoperiodic conditions. Consequently it could
be incorporated into future cross-species comparisons with datasets like that of Wu et al.
(2014) who performed a similar shift experiment in the SD-responsive soybean.

While the data presented here consist of two composite datasets, and so interpretation
requires caution, the results of this analysis are nevertheless biologically plausible. Initial
pairwise comparisons of gene expression between LD and SD at each timepoint individually
qualitatively agreed with previously published expression profiles of MtFTa1, MtFTb1
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and MtFTb2 (Figs. 1A–1C; Laurie et al., 2011). Furthermore, independent RT-qPCR
timecourses of MtFKF1, MtCDF1, MtCDF2 and MtCDF4 are similar to the transcript
abundances seen in these RNA-Seq datasets (Fig. 2). From these results it was concluded
that there is no significant batch effect between datasets and that it is appropriate to
interpret this data as a time series.

The dual approaches taken to analyse the data as a time series first considered the
interaction between condition and time and then just the effect of the condition. This
successfully identified the genes which alter the pattern or just the magnitude of their
expression respectively. This approach could serve as a template for similar datasets in
other plants which lack a CO-like regulator. Given the significant role the circadian clock
plays in the regulation of the A. thaliana transcriptome (Covington et al., 2008; Michael et
al., 2008) and the manner in which the photoperiod regulates the circadian clock (Nohales
& Kay, 2016), it is unsurprising to see that a greater number of genes were classed as
altering their pattern of expression (9,516/31,363 of detectable genes; 30.34%) than only
the magnitude of their expression (4,694/31,363; 14.96%). This is especially true of our
selected candidate photoperiodic genes (Table 1) where 62% had a significant change in
pattern.

Clustering was employed to subset the two classes of DE genes further based on their
normalised abundances across the three timepoints. The low membership scores reveal the
small degree of separation between clusters. This may be a feature of gene expression data,
but the strength of c-means clustering is that it allows the certainty of cluster assignment to
be assessed (Tables S6, S9). An alternative approach to subset the classes of genes would be
to group them based on functional gene set descriptors such as Gene Ontology (GO) terms
and cluster until individual clusters become enriched for single GO terms. However since
in M. truncatula only 37% of genes have annotated GO terms (Tang et al., 2014), their use
is currently of limited utility.

This study has identified additional candidate photoperiodic flowering time genes for
future characterising and reverse genetics screens. In terms of identifying genes co-expressed
with the LD-induced M. truncatula FT-like genes, candidate genes such as the zinc finger
gene Medtr4g113840 and the B3 domain transcription factor gene Medtr3g101520 (both
in the same cluster asMtFTb1) present as future avenues of inquiry as potential regulators
of photoperiodic flowering. Conversely, it would be interesting to investigate the CCT
containing B-box type zinc finger gene Medtr2g073370 which has the opposite pattern
of expression to MtFTb1 consistent with a repressive role. Finally, it is notable that none
of the list of candidate photoperiod genes responded in a similar way to the SD to LD
photoperiodic shift as the potent floral activator MtFTa1 (Table 2). However a number of
other potential regulators were identified, such as the NF-Y-like Medtr8g091720 which has
consistently higher expression in LD or the pair of TPL-like genes (Medtr4g114980 and
Medtr7g112460) and ethylene response factor geneMedtr5g016750 which all have a pattern
of expression opposite toMtFTa1.

The experiments analysed in this study focused on the first four hours of the diurnal
cycle where, in LD, MtFTa1 is induced and which precede and include the first peak in
expression of LD induced MtFTb1 and MtFTb2 at ZT4 (Laurie et al., 2011). It should be
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noted that the clustering presented in this study is limited to the timepoints sampled and
cannot be considered predictive of the pattern in which genes are expressed later in the
day. Genes in the same cluster may have divergent patterns later in the day. Given the
diurnal pattern of expression of MtFTb1 and MtFTb2 (Laurie et al., 2011), our ability to
identify candidate regulators which share patterns of expression would be enhanced by
the inclusion of additional samples from later timepoints. Notably at ZT8 to capture the
trough and ZT16 to capture the second peak in expression of MtFTb1 and MtFTb2 in
LD. This is because samples from later timepoints would facilitate greater discrimination
between expressed genes and thus result in smaller clusters. However, it is also possible
that the regulator ofM. truncatula FT-like gene expression is post-translationally regulated
because light/protein dependent mechanisms are common in photoperiodic and circadian
regulatory networks. In this case, it might not be possible to identify the regulators using a
co-expression approach.

CONCLUSIONS
This study further elucidates the photoperiodic acceleration of flowering in the reference
legume species M. truncatula which interestingly appears to lack a CO-like regulator. We
found that the photoperiodic shift from SD to LD conditions had a large effect on the
leaf transcriptome with 14,210 genes altering their pattern or magnitude of expression.
Candidate regulators that were co-expressed with the LD-induced FT-like genes were
identified by clustering. It was notable that none of the list of candidate photoperiod
genes responded to the photoperiodic shift in a similar manner as that of the potent floral
activator MtFTa1, and few were similar to that of the MtFTb genes. Thus this analysis
further supports the idea that FT-like genes in M. truncatula are uncoupled from the
photoperiodic transcriptional networks seen in other species and that flowering time in
M. truncatula is induced in a novel manner. Future work will focus on molecular-genetic
analysis of the function of the candidate regulators identified in this study inM. truncatula
photoperiodic flowering.

ACKNOWLEDGEMENTS
We would like to thank our anonymous reviewers, Nicole Cloonan, Peter Tsai, Kevin
Chang and William Schierding for their advice and insight in analyzing the data. Many
thanks also to the other members of the Plant Molecular Biology Lab at the University of
Auckland, especially Betty Phan and Lulu Zhang.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The research was funded by C10X0816 MeriNET (www.msi.govt.nz/) and by the New
Zealand Marsden Fund (http://www.royalsociety.org.nz/programmes/funds/marsden/)
contract 14-UOA-125. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Thomson et al. (2019), PeerJ, DOI 10.7717/peerj.6626 26/33

https://peerj.com
www.msi.govt.nz/
http://www.royalsociety.org.nz/programmes/funds/marsden/
http://dx.doi.org/10.7717/peerj.6626


Grant Disclosures
The following grant information was disclosed by the authors:
C10X0816 MeriNET.
New Zealand Marsden Fund: contract 14-UOA-125.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Geoffrey Thomson conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or
tables, authored or reviewed drafts of the paper, approved the final draft.
• James Taylor performed the experiments, contributed reagents/materials/analysis tools,
approved the final draft.
• Joanna Putterill conceived and designed the experiments, analyzed the data, contributed
reagents/materials/analysis tools, prepared figures and/or tables, authored or reviewed
drafts of the paper, approved the final draft.

Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

The University of Auckland Institutional Biological Safety Committee granted Biological
Safety Approval to carry out this study within its facilities (GMO08-UA006).

Data Availability
The following information was supplied regarding data availability:

Raw data is available at GEO, accession number: GSE118893.
Code is available at Figshare: https://doi.org/10.17608/k6.auckland.6993641.v5.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.6626#supplemental-information.

REFERENCES
AbeM, Kaya H,Watanabe-Taneda A, Shibuta M, Yamaguchi A, Sakamoto T, Kurata

T, Ausin I, Araki T, Alonso-Blanco C. 2015. FE, a phloem-specific MYB-related
protein, promotes flowering through transcriptional activation of FLOWERING
LOCUS T and FLOWERING LOCUS T INTERACTING PROTEIN 1. The Plant
Journal 83(6):1059–1068 DOI 10.1111/tpj.12951.

Andrés F, Coupland G. 2012. The genetic basis of flowering responses to seasonal cues.
Nature Reviews. Genetics 13:627–639 DOI 10.1038/nrg3291.

Ballerini ES, Kramer EM. 2011. In the light of evolution: a reevaluation of conservation
in the CO-FT regulon and its role in photoperiodic regulation of flowering time.
Frontiers in Plant Science 2:81 DOI 10.3389/fpls.2011.00081.

Thomson et al. (2019), PeerJ, DOI 10.7717/peerj.6626 27/33

https://peerj.com
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118893
https://doi.org/10.17608/k6.auckland.6993641.v5
http://dx.doi.org/10.7717/peerj.6626#supplemental-information
http://dx.doi.org/10.7717/peerj.6626#supplemental-information
http://dx.doi.org/10.1111/tpj.12951
http://dx.doi.org/10.1038/nrg3291
http://dx.doi.org/10.3389/fpls.2011.00081
http://dx.doi.org/10.7717/peerj.6626


Barter R. 2018. Superheat: an R package for generating beautiful and customizable
heatmaps. GitHub repository. Available at https:// github.com/rlbarter/ superheat .

Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K,Wan-
dreyM, Verdier J, Zuber H, Ott T, Moreau S, Niebel A, Frickey T,Weiller
G, He J, Dai X, Zhao PX, Tang Y, Udvardi MK. 2008. A gene expression atlas
of the model legumeMedicago truncatula. The Plant Journal 55(3):504–513
DOI 10.1111/j.1365-313X.2008.03519.x.

Bushnell B. 2018. BBTools: a suite of fast, multithreaded bioinformatics tools designed
for analysis of DNA and RNA sequence data. Joint Genome Institute. Available at
https:// jgi.doe.gov/data-and-tools/ bbtools/ .

Cheng X, Li G, Tang Y,Wen J. 2018. Dissection of genetic regulation of compound
inflorescence development inMedicago truncatula. Development 145:dev.158766
DOI 10.1242/dev.158766.

Conway JR, Lex A, Gehlenborg N. 2017. UpSetR: an R package for the visualiza-
tion of intersecting sets and their properties. Bioinformatics 33(18):2938–2940
DOI 10.1093/bioinformatics/btx364.

CovingtonMF, Maloof JN, StraumeM, Kay SA, Harmer SL. 2008. Global transcriptome
analysis reveals circadian regulation of key pathways in plant growth and develop-
ment. Genome Biology 9(8):R130 DOI 10.1186/gb-2008-9-8-r130.

Dally N, Xiao K, Holtgräwe D, Jung C. 2014. The B2 flowering time locus of
beet encodes a zinc finger transcription factor. Proceedings of the National
Academy of Sciences of the United States of America 111(28):10365–10370
DOI 10.1073/pnas.1404829111.

De Bang T, Lundquist PK, Dai X, Boschiero C, Zhuang Z, Pant P, Torres-Jerez I, Roy S,
Nogales J, Veerappan V, Dickstein R, Udvardi MK, Zhao PX, ScheibleW. 2017.
Genome-wide identification of medicago peptides involved in macronutrient re-
sponses and nodulation. Plant Physiology 175:1669–1689 DOI 10.1104/pp.17.01096.

Fudge JB, Lee RH, Laurie RE, Mysore KS,Wen J, Weller JL, Macknight RC. 2018.
Medicago truncatula SOC1 genes are up-regulated by environmental cues that
promote flowering. Frontiers in Plant Science 9:496 DOI 10.3389/fpls.2018.00496.

Gibeaut DM, Hulett J, Cramer R, Seemann JR. 1997.Maximal biomass of Arabidopsis
thaliana using a simple, low-maintenance hydroponic method and favorable
environmental conditions. Plant Physiology 115:317–319 DOI 10.1104/pp.115.2.317.

Gnesutta N, Kumimoto RW, Swain S, Chiara M. 2017. CONSTANS imparts DNA
sequence-specificity to the histone-fold NF- YB / NF-YC dimer. The Plant Cell
29(6):1516–1532 DOI 10.1105/tpc.16.00864.

Goralogia G, Liu T, Zhao L, Panipinto P, Groover E, Bains Y, Imaizumi T. 2017.
CYCLING DOF FACTOR 1 represses transcription through the TOPLESS co-
repressor to control photoperiodic flowering in Arabidopsis. The Plant Journal
92(2):244–262 DOI 10.1111/tpj.13649.

Grillet L, Lan P, LiW,Mokkapati G, SchmidtW. 2018. IRONMAN, a ubiquitous
family of peptides that control iron transport in plants. Nature Plants 4(11):953–963
DOI 10.1038/s41477-018-0266-y.

Thomson et al. (2019), PeerJ, DOI 10.7717/peerj.6626 28/33

https://peerj.com
https://github.com/rlbarter/superheat
http://dx.doi.org/10.1111/j.1365-313X.2008.03519.x
https://jgi.doe.gov/data-and-tools/bbtools/
http://dx.doi.org/10.1242/dev.158766
http://dx.doi.org/10.1093/bioinformatics/btx364
http://dx.doi.org/10.1186/gb-2008-9-8-r130
http://dx.doi.org/10.1073/pnas.1404829111
http://dx.doi.org/10.1104/pp.17.01096
http://dx.doi.org/10.3389/fpls.2018.00496
http://dx.doi.org/10.1104/pp.115.2.317
http://dx.doi.org/10.1105/tpc.16.00864
http://dx.doi.org/10.1111/tpj.13649
http://dx.doi.org/10.1038/s41477-018-0266-y
http://dx.doi.org/10.7717/peerj.6626


Hayama R, Yokoi S, Tamaki S, YanoM, Shimamoto K. 2003. Adaptation of pho-
toperiodic control pathways produces short-day flowering in rice. Nature
422(6933):719–722 DOI 10.1038/nature01549.

Hecht V, Knowles CL, Schoor JKV, Liew LC, Jones SE, Lambert MJM,Weller JL.
2007. Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic
flowering, deetiolation, and transcriptional regulation of circadian clock. Plant
Physiology 144:648–661 DOI 10.1104/pp.107.096818.

Hecht V, Laurie RE, Vander Schoor JK, Ridge S, Knowles CL, Liew LC, Sussmilch
FC, Murfet IC, Macknight RC,Weller JL. 2011. The pea GIGAS gene is a FLOW-
ERING LOCUS T homolog necessary for graft-transmissible specification of
flowering but not for responsiveness to photoperiod. The Plant Cell 23:147–161
DOI 10.1105/tpc.110.081042.

Highkin HR. 1956. Vernalisation in Peas. Plant Physiology 31(5):399–403
DOI 10.1104/pp.31.5.399.

Hill JR. 2000. Jester - Application No: 98/201. Plant Varieties Journal 13(2):40.
Hirayama T, Lei GJ, Yamaji N, Nakagawa N, Ma JF. 2018. The putative peptide gene

FEP1 regulates iron deficiency response in arabidopsis. Plant and Cell Physiology
59(9):1739–1752 DOI 10.1093/pcp/pcy145.

Jaeger KE, Pullen N, Lamzin S, Morris RJ, Wigge PA. 2013. Interlocking feedback loops
govern the dynamic behavior of the floral transition in Arabidopsis. The Plant Cell
25:820–833 DOI 10.1105/tpc.113.109355.

Jaudal M, Zhang L, Che C, Li G, Tang Y,Wen J, Mysore KS, Putterill J. 2018. A SOC1-
like geneMtSOC1a promotes flowering and primary stem elongation in Medicago.
Journal of Experimental Botany 69(20):4867–4880 DOI 10.1093/jxb/ery284.

Kakar K,WandreyM, Czechowski T, Gaertner T, ScheibleW-R, Stitt M, Torres-
Jerez I, Xiao Y, Redman JC,WuHC, Cheung F, Town CD, Udvardi MK. 2008.
A community resource for high-throughput quantitative RT-PCR analysis of
transcription factor gene expression inMedicago truncatula. Plant Methods 4:18
DOI 10.1186/1746-4811-4-18.

Kumar L, Futschik M. 2007.Mfuzz: a software package for soft clustering of microarray
data Bioinformation. Bioinformation 2(1):5–7 DOI 10.6026/97320630002005.

Laurie RE, Diwadkar P, Jaudal M, Zhang L, Hecht V,Wen J, Tadege M,Mysore
KS, Putterill J, Weller JL, Macknight RC. 2011. The Medicago FLOWERING
LOCUS T homolog,MtFTa1, is a key regulator of flowering time. Plant Physiology
156(4):2207–2224 DOI 10.1104/pp.111.180182.

Li C, Distelfeld A, Comis A, Dubcovsky J, Osmond G. 2011.Wheat flowering repressor
VRN2 and promoter CO2 compete for interactions with NUCLEAR FACTOR-Y
complexes. The Plant Journal 67:763–773 DOI 10.1111/j.1365-313X.2011.04630.x.

Liew LC, Hecht V, Laurie RE, Knowles CL, Vander Schoor JK, Macknight RC,Weller
JL. 2009. DIE NEUTRALIS and LATE BLOOMER 1 contribute to regulation of the
pea circadian clock. The Plant Cell 21(10):3198–3211 DOI 10.1105/tpc.109.067223.

Thomson et al. (2019), PeerJ, DOI 10.7717/peerj.6626 29/33

https://peerj.com
http://dx.doi.org/10.1038/nature01549
http://dx.doi.org/10.1104/pp.107.096818
http://dx.doi.org/10.1105/tpc.110.081042
http://dx.doi.org/10.1104/pp.31.5.399
http://dx.doi.org/10.1093/pcp/pcy145
http://dx.doi.org/10.1105/tpc.113.109355
http://dx.doi.org/10.1093/jxb/ery284
http://dx.doi.org/10.1186/1746-4811-4-18
http://dx.doi.org/10.6026/97320630002005
http://dx.doi.org/10.1104/pp.111.180182
http://dx.doi.org/10.1111/j.1365-313X.2011.04630.x
http://dx.doi.org/10.1105/tpc.109.067223
http://dx.doi.org/10.7717/peerj.6626


Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using
real-time quantitative PCR and the 2−11Ct Method.Methods 25(4):402–408
DOI 10.1006/meth.2001.1262.

LoveMI, HuberW, Anders S. 2014.Moderated estimation of fold change and dispersion
for RNA-Seq data with DESeq2. Genome Biology 15:550
DOI 10.1186/s13059-014-0550-8.

Matsushika A, Makino S, KojimaM,Mizuno T. 2000. Circadian waves of expression
of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana:
insight into the plant circadian clock. Plant & Cell Physiology 41(9):1002–1012
DOI 10.1093/pcp/pcd043.

Michael TP, Mockler TC, Breton G, McEntee C, Byer A, Trout JD, Hazen SP, Shen R,
Priest HD, Sullivan CM, Givan SA, YanovskyM, Hong F, Kay SA, Chory J. 2008.
Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory
modules. PLOS Genetics 4(2):e14 DOI 10.1371/journal.pgen.0040014.

Nakamichi N, Kita M, Ito S, Yamashino T, Mizuno T. 2005. PSEUDO-RESPONSE
REGULATORS, PRR9, PRR7 and PRR5, Together play essential roles close to the
circadian clock of Arabidopsis thaliana. Plant and Cell Physiology 46(5):686–698
DOI 10.1093/pcp/pci086.

Nohales MA, Kay SA. 2016.Molecular mechanisms at the core of the plant circa-
dian oscillator. Nature Structural and Molecular Biology 23(12):1061–1069
DOI 10.1038/nsmb.3327.

Patro R, Duggal G, LoveMI, Irizarry RA, Kingsford C. 2017. Salmon provides fast and
bias-aware quantification of transcript expression. Nature Methods 14(4):417–419
DOI 10.1038/nmeth.4197.

Pearce S, Shaw LM, Lin H, Cotter JD, Li C, Dubcovsky J, Hughes H, Chase C, Mary-
land CL, Moore B, Alto P, California JD. 2017. Night-break experiments shed
light on the Photoperiod1-mediated flowering. Plant Physiology 174:1139–1150
DOI 10.1104/pp.17.00361.

Pin PA, ZhangW, Vogt SH, Dally N, Büttner B, Schulze-Buxloh G, Jelly NS, Chia
T. YP, Mutasa-Göttgens ES, Dohm JC, Himmelbauer H,Weisshaar B, Kraus
J, Gielen JJL, Lommel M,Weyens G,Wahl B, Schechert A, Nilsson O, Jung C,
Kraft T, Müller AE. 2012. The role of a pseudo-response regulator gene in life
cycle adaptation and domestication of beet. Current Biology 22(12):1095–1101
DOI 10.1016/j.cub.2012.04.007.

Putterill J, Robson F, Lee K, Simon R, Coupland G. 1995. The CONSTANS gene of
Arabidopsis promotes flowering and encodes a protein showing similarities to zinc
finger transcription factors. Cell 80(6):847–857 DOI 10.1016/0092-8674(95)90288-0.

Putterill J, Varkonyi-Gasic E. 2016. FT and florigen long-distance flowering control in
plants. Current Opinion in Plant Biology 33:77–82 DOI 10.1016/j.pbi.2016.06.008.

Putterill J, Zhang L, Yeoh CC, Balcerowicz M, Jaudal M, Varkonyi-Gasic E. 2013. FT
genes and regulation of flowering in the legumeMedicago truncatula. Functional
Plant Biology 40:1199–1207 DOI 10.1071/FP13087.

Thomson et al. (2019), PeerJ, DOI 10.7717/peerj.6626 30/33

https://peerj.com
http://dx.doi.org/10.1006/meth.2001.1262
http://dx.doi.org/10.1186/s13059-014-0550-8
http://dx.doi.org/10.1093/pcp/pcd043
http://dx.doi.org/10.1371/journal.pgen.0040014
http://dx.doi.org/10.1093/pcp/pci086
http://dx.doi.org/10.1038/nsmb.3327
http://dx.doi.org/10.1038/nmeth.4197
http://dx.doi.org/10.1104/pp.17.00361
http://dx.doi.org/10.1016/j.cub.2012.04.007
http://dx.doi.org/10.1016/0092-8674(95)90288-0
http://dx.doi.org/10.1016/j.pbi.2016.06.008
http://dx.doi.org/10.1071/FP13087
http://dx.doi.org/10.7717/peerj.6626


R Core Team. 2018. R: a language and environment for statistical computing. Vienna: R
Foundation for Statistical Computing. Available at https://www.R-project.org/ .

Ridge S, Deokar A, Lee R, Daba K, Macknight RC,Weller JL, Tar’an B. 2017. The
chickpea Early Flowering 1 (Efl1) locus is an ortholog of Arabidopsis ELF3. Plant
Physiology 175:802–815 DOI 10.1104/pp.17.00082.

Ridge S, Sussmilch FC, Hecht V, Schoor KV, Lee R, Aubert G, Burstin J, Macknight RC,
Weller JL. 2016. Identification of LATE BLOOMER2 as a CYCLING DOF FACTOR
homolog reveals conserved and divergent features of the flowering response to
photoperiod in pea. The Plant Cell 28:2545–2559 DOI 10.1105/tpc.15.01011.

Roberts EH, Hadley P, Summerfield RJ. 1985. Effects of temperature and photoperiod
on flowering in chickpeas (Cicer arietinum L.). Annals of Botany 55:881–892
DOI 10.1093/oxfordjournals.aob.a086969.

Shaw LM, Turner AS, Herry L, Griffiths S, Laurie DA. 2013.Mutant alleles of
Photoperiod-1 in Wheat (Triticum aestivum L.) that confer a late flowering phenotype
in long days. PLOS ONE 8(11):e79459 DOI 10.1371/journal.pone.0079459.

Simon S, Rühl M, DeMontaigu A,Wötzel S, Coupland G. 2015. Evolution of CON-
STANS regulation and function after gene duplication produced a photope-
riodic flowering switch in the Brassicaceae.Molecular Biology and Evolution
32(9):2284–2301 DOI 10.1093/molbev/msv110.

Soneson C, LoveMI, RobinsonMD. 2015. Differential analyses for RNA-seq :
transcript-level estimates improve gene-level inferences. F1000Research 4:1521
DOI 10.12688/f1000research.7563.1.

Song YH, Kubota A, KwonMS, CovingtonMF, Lee N, Taagen ER, Laboy Cintrón
D, Hwang DY, Akiyama R, Hodge SK, Huang H, Nguyen NH, NusinowDA,
Millar AJ, Shimizu KK, Imaizumi T. 2018.Molecular basis of flowering un-
der natural long-day conditions in Arabidopsis. Nature Plants 4(10):824–835
DOI 10.1038/s41477-018-0253-3.

Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T. 2015. Photoperiodic flow-
ering: time measurement mechanisms in leaves. Annual Review of Plant Biology
66:441–464 DOI 10.1146/annurev-arplant-043014-115555.

Summerfield RJ, Roberts EH, ErskineW, Ellis RH. 1985. Effects of temperature
and photoperiod on flowering in lentils (Lens culinarisMedic). Annals of Botany
56:659–671 DOI 10.1093/oxfordjournals.aob.a087055.

TadegeM,Wen J, He J, Tu H, Kwak Y, Eschstruth A, Cayrel A, Endre G, Zhao PX,
ChabaudM, Ratet P, Mysore KS. 2008. Large-scale insertional mutagenesis using
the Tnt1 retrotransposon in the model legumeMedicago truncatula. The Plant
Journal 54(2):335–347 DOI 10.1111/j.1365-313X.2008.03418.x.

Tang H, Krishnakumar V, Bidwell S, Rosen B, Chan A, Zhou S, Gentzbittel L, Childs
KL, Yandell M, Gundlach H, Mayer KF, Schwartz DC, Town CD. 2014. An
improved genome release (version Mt4.0) for the model legumeMedicago truncatula.
BMC Genomics 15:312 DOI 10.1186/1471-2164-15-312.

The Legume PhylogenyWorking Group. 2013. Legume phylogeny and classification in
the 21st century: progress, prospects and lessons for other species-rich clades Legume

Thomson et al. (2019), PeerJ, DOI 10.7717/peerj.6626 31/33

https://peerj.com
https://www.R-project.org/
http://dx.doi.org/10.1104/pp.17.00082
http://dx.doi.org/10.1105/tpc.15.01011
http://dx.doi.org/10.1093/oxfordjournals.aob.a086969
http://dx.doi.org/10.1371/journal.pone.0079459
http://dx.doi.org/10.1093/molbev/msv110
http://dx.doi.org/10.12688/f1000research.7563.1
http://dx.doi.org/10.1038/s41477-018-0253-3
http://dx.doi.org/10.1146/annurev-arplant-043014-115555
http://dx.doi.org/10.1093/oxfordjournals.aob.a087055
http://dx.doi.org/10.1111/j.1365-313X.2008.03418.x
http://dx.doi.org/10.1186/1471-2164-15-312
http://dx.doi.org/10.7717/peerj.6626


phylogeny and classification in the 21st century: progress, prospects and lessons for
other species-rich clades. Taxon 62:217–248 DOI 10.12705/622.8.

Thomson G. 2018. The transcriptomic response to a short day to long day shift in leaves
of the reference legumeMedicago truncatula (Code supplement). Figshare repository.
Available at https://doi.org/10.17608/k6.auckland.6993641.v5.

Turck F, Fornara F, Coupland G. 2008. Regulation and identity of florigen: FLOW-
ERING LOCUS T moves center stage. Annual Review of Plant Biology 59:573–594
DOI 10.1146/annurev.arplant.59.032607.092755.

Vance CP. 2001. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nu-
trition in a world of declining renewable resources. Plant Physiology 127:390–397
DOI 10.1104/pp.010331.

Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, Lunn JE,
Stitt M, SchmidM. 2013. Regulation of flowering by trehalose-6-phosphate signaling
in Arabidopsis thaliana. Science 339:704–707 DOI 10.1126/science.1230406.

Weller JL, Ortega R. 2015. Genetic control of flowering time in legumes. Frontiers in
Plant Science 6:207.

WickhamH. 2017. Tidyverse: easily install and load the ‘Tidyverse’. R package version
1.2.1. Available at https://CRAN.R-project.org/package=tidyverse.

Wickland DP, Hanzawa Y. 2015. The FLOWERING LOCUS T /TERMINAL FLOWER
1 gene family: functional evolution and molecular mechanisms.Molecular Plant
8(7):983–997 DOI 10.1016/j.molp.2015.01.007.

Wigge PA, KimMC, Jaeger KE, BuschW, SchmidM, Lohmann JU,Weigel D. 2005. In-
tegration of spatial and temporal information during floral induction in Arabidopsis.
Science 309(5737):1056–1059 DOI 10.1126/science.1114358.

Wong ACS, Hecht VFG, Picard K, Diwadkar P, Laurie RE,Wen J, Mysore K, Macknight
RC,Weller JL. 2014. Isolation and functional analysis of CONSTANS-LIKE
genes suggests that a central role for CONSTANS in flowering time control is not
evolutionarily conserved inMedicago truncatula. Frontiers in Plant Science 5:486
DOI 10.3389/fpls.2014.00486.

Wu F, Price BW, HaiderW, Seufferheld G, Nelson R, Hanzawa Y. 2014. Func-
tional and evolutionary characterization of the CONSTANS gene family
in short-day photoperiodic flowering in soybean. PLOS ONE 9(1):e85754
DOI 10.1371/journal.pone.0085754.

Xia Z,Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato
S, Yamazaki T, Lu S, WuH, Tabata S, Harada K. 2012. Positional cloning and
characterization reveal the molecular basis for soybean maturity locus E1 that
regulates photoperiodic flowering. Proceedings of the National Academy of Sciences
of the United States of America 109(32):E2155–E2164 DOI 10.1073/pnas.1117982109.

Yan Y, Shen L, Chen Y, Bao S, Thong Z, Yu H. 2014. AMYB-domain protein EFM
mediates flowering responses to environmental cues in Arabidopsis. Developmental
Cell 30:437–448 DOI 10.1016/j.devcel.2014.07.004.

Young ND, Debellé F, Oldroyd GED, Geurts R, Cannon SB, Udvardi MK, Benedito
VA, Mayer KFX, Gouzy J, Schoof H, Van de Peer Y, Proost S, Cook DR, Meyers

Thomson et al. (2019), PeerJ, DOI 10.7717/peerj.6626 32/33

https://peerj.com
http://dx.doi.org/10.12705/622.8
https://doi.org/10.17608/k6.auckland.6993641.v5
http://dx.doi.org/10.1146/annurev.arplant.59.032607.092755
http://dx.doi.org/10.1104/pp.010331
http://dx.doi.org/10.1126/science.1230406
https://CRAN.R-project.org/package=tidyverse
http://dx.doi.org/10.1016/j.molp.2015.01.007
http://dx.doi.org/10.1126/science.1114358
http://dx.doi.org/10.3389/fpls.2014.00486
http://dx.doi.org/10.1371/journal.pone.0085754
http://dx.doi.org/10.1073/pnas.1117982109
http://dx.doi.org/10.1016/j.devcel.2014.07.004
http://dx.doi.org/10.7717/peerj.6626


BC, Spannagl M, Cheung F, DeMita S, Krishnakumar V, Gundlach H, Zhou S,
Mudge J, Bharti AK, Murray JD, NaoumkinaMA, Rosen B, Silverstein KAT, Tang
H, Rombauts S, Zhao PX, Zhou P, Barbe V, Bardou P, Bechner M, Bellec A, Berger
A, Bergès H, Bidwell S, Bisseling T, Choisne N, Couloux A, Denny R, Deshpande
S, Dai X, Doyle JJ, Dudez A-M, Farmer AD, Fouteau S, Franken C, Gibelin C, Gish
J, Goldstein S, González AJ, Green PJ, Hallab A, HartogM, Hua A, Humphray SJ,
Jeong D-H, Jing Y, Jöcker A, Kenton SM, KimD-J, Klee K, Lai H, Lang C, Lin S,
Macmil SL, Magdelenat G, Matthews L, McCorrison J, Monaghan EL, Mun J-H,
Najar FZ, Nicholson C, Noirot C, O’Bleness M, Paule CR, Poulain J, Prion F, Qin
B, Qu C, Retzel EF, Riddle C, Sallet E, Samain S, Samson N, Sanders I, Saurat O,
Scarpelli C, Schiex T, Segurens B, Severin AJ, Sherrier DJ, Shi R, Sims S, Singer SR,
Sinharoy S, Sterck L, Viollet A,Wang B-B,Wang K,WangM,Wang X,Warfsmann
J, Weissenbach J, White DD,White JD,Wiley GB,Wincker P, Xing Y, Yang L,
Yao Z, Ying F, Zhai J, Zhou L, Zuber A, Dénarié J, Dixon RA, May GD, Schwartz
DC, Rogers J, Quétier F, Town CD, Roe BA. 2011. The Medicago genome provides
insight into the evolution of rhizobial symbioses. Nature 480(7378):520–524
DOI 10.1038/nature10625.

Thomson et al. (2019), PeerJ, DOI 10.7717/peerj.6626 33/33

https://peerj.com
http://dx.doi.org/10.1038/nature10625
http://dx.doi.org/10.7717/peerj.6626

