Representation of H-closed monoreflections in archimedean ℓ-groups with weak unit

Bernhard Banaschewski and Anthony W. Hager*
Communicated by Themba Dube

Abstract

The category of the title is called \mathcal{W}. This has all free objects $F(I)(I$ a set $)$. For an object class $\mathcal{A}, H \mathcal{A}$ consists of all homomorphic images of \mathcal{A}-objects. This note continues the study of the H-closed monoreflections (\mathcal{R}, r) (meaning $H \mathcal{R}=\mathcal{R}$), about which we show (inter alia): $A \in \mathcal{A}$ if and only if A is a countably up-directed union from $H\{r F(\omega)\}$. The meaning of this is then analyzed for two important cases: the maximum essential monoreflection $r=c^{3}$, where $c^{3} F(\omega)=C\left(\mathbb{R}^{\omega}\right)$, and $C \in H\left\{c\left(\mathbb{R}^{\omega}\right)\right\}$ means $C=C(T)$, for T a closed subspace of \mathbb{R}^{ω}; the epicomplete, and maximum, monoreflection, $r=\beta$, where $\beta F(\omega)=B\left(\mathbb{R}^{\omega}\right)$, the Baire functions, and $E \in H\left\{B\left(\mathbb{R}^{\omega}\right)\right\}$ means E is an epicompletion (not "the") of such a $C(T)$.

1 Introduction

\mathcal{W} is the category of archimedean ℓ-groups G with distinguished weak order unit e_{G}, and morphisms $G \xrightarrow{\varphi} H$ the ℓ-group homomorphisms with $\varphi\left(e_{G}\right)=$

[^0]e_{H}. We compress the discussion in $\S 1$ of [11], which see for more detail. " $A \leq B$ " means A is a \mathcal{W}-subobject of B.

The forgetful functor $\mathcal{W} \rightarrow$ Sets has the left adjoint F. An $F(I)$ is the free object on the set I, and this is the \mathcal{W}-subobject of $\mathbb{R}^{\mathbb{R}^{I}}$ generated by the constant function 1 , and all projections $\pi_{i}: \mathbb{R}^{I} \rightarrow \mathbb{R}\left(i \mapsto \pi_{i}\right.$ is the "insertion of generators" $I \hookrightarrow F(I)$).

A full subcategory \mathcal{R} of \mathcal{W} is monoreflective if $\forall A \in \mathcal{W} \exists$ monic $A \xrightarrow{r_{A}}$ $r A, r A \in \mathcal{R}$, with the property: $\forall A \xrightarrow{\varphi} R, R \in \mathcal{R}, \exists!r A \xrightarrow{\bar{\varphi}} R$ with $\bar{\varphi} r_{A}=\varphi$. We usually write $A \leq r A$ for the r_{A}. We abuse language and notation by saying as convenient (\mathcal{R}, r) or \mathcal{R}, or r, is a monoreflection.

The class of monoreflections is ordered by: $r \leq s$ means $\forall A \exists$ monic f with $s_{A}=f r_{A}$.

Let $M \xrightarrow{m} M^{\prime} \in \mathcal{W}$. Then, $A \in \operatorname{inj}\{m\}$ means: $\forall M \xrightarrow{\varphi} A \exists M^{\prime} \xrightarrow{\varphi^{\prime}} A$ with $\varphi^{\prime} m=\varphi$.
" ω " stands for the natural numbers, or any countable set, or the ordinal or cardinal.

Theorem 1.1 ([11], 2.7). Suppose (\mathcal{R}, r) is an H-closed monoreflection. Then $\mathcal{R}=\operatorname{inj}\{F(\omega) \leq r F(\omega)\}$.

Theorem 1.1 is one of the main results of [11] and is the cornerstone of that paper. It devolves from categorical generalities, and many special features of \mathcal{W}, some of which we describe below, and some later when needed.

Another main result of [11] is the characterization of the $r F(\omega)$ in Theorem 1.1. Namely, 3.6 there says these are exactly the S with $F(\omega) \stackrel{\sigma}{\leq} S \leq$ $B\left(\mathbb{R}^{\omega}\right)\left(B\right.$ the Baire functions), with σ epic and $S \circ S^{\omega}=S$ (that is, $\forall s$ and countable $\left\{s_{n}\right\}$ from S, the function $\mathbb{R}^{\omega} \xrightarrow{\left\langle s_{n}\right\rangle} \mathbb{R}^{\omega} \xrightarrow{s} \mathbb{R}$ lies in S). The cases for c^{3} and β are mentioned in the Abstract, and will be deployed below.

Let $\stackrel{\omega}{\uplus}$ denote a countably up-directed union, in Sets or in \mathcal{W}. For $\mathcal{A} \subseteq$ Sets or $\mathcal{W}, A \in \stackrel{\omega}{\circlearrowleft} \mathcal{A}$ means there is a family \mathcal{A}^{\prime} of \mathcal{A}-subobjects of A with $A=\stackrel{\omega}{\biguplus} \mathcal{A}^{\prime}$.

For $I \in$ Sets, let $\mathcal{P}_{0}(I)=\{J \subseteq I| | J \mid \leq \omega\}$. Then $I=\stackrel{\omega}{\bigcup} \mathcal{P}_{0}(I)$. For $A \in \mathcal{W}, A=\stackrel{\omega}{\uplus}\{B \leq A| | B \mid \leq \omega\}$. From the form of the $F(I)$, and the fact that any $f \in C\left(\mathbb{R}^{I}\right)$ factors through a countable subproduct, we have $F(I)=\stackrel{\omega}{\bigcup}\left\{F(J) \mid J \in \mathcal{P}_{0}(I)\right\}$.

A crucial ingredient to what we have said so far, and necessary later, is the Yosida representation of \mathcal{W}-objects:
\mathbb{R} is the real numbers, and $\overline{\mathbb{R}}=\mathbb{R} \cup\{ \pm \infty\}$ under the obvious topology and order. For X a topological space, $D(X)=\{f \in C(X, \overline{\mathbb{R}}) \mid$ $f^{-1} \mathbb{R}$ dense in $\left.X\right\}$. This is a lattice containing $C(X)$, but has only partly defined + . For $A \in \mathcal{W}, A \leq D(X)$ means $A \stackrel{\mathcal{V}}{\approx} A^{\prime} \subseteq D(X)$, where A^{\prime} is closed under the partly defined data required to make $A^{\prime} \in \mathcal{W}$.

The Yosida representation of $A \in \mathcal{W}$ (see [12]) says:
(1) $A \leq D(\mathcal{Y} A)$ for a unique compact Hausdorff $\mathcal{Y} A$ for which A separates the points.
(2) For $A \xrightarrow{\varphi} B \in \mathcal{W}$, there is a unique continuous $\mathcal{Y} A \underset{\mathcal{Y}_{\varphi}}{\mathscr{Y} B \text { for which }}$ $\varphi(a)=a \circ \mathcal{Y} \varphi \forall a \in A$. If φ is onto, then $\mathcal{Y} \varphi$ is an embedding, $\mathcal{Y} A \hookleftarrow \mathcal{Y} B$.

The Yosida representation of $C(X), X$ Tychonoff, is Čech-Stone extension $C(X) \ni f \mapsto \beta f \in D(\beta X)$.

2 Main Theorem

We expand on Theorem 1.1.
Theorem 2.1. Suppose (\mathcal{R}, r) is an H-closed monoreflection in \mathcal{W}. For $A \in \mathcal{W}$, the following are equivalent:
(1) $A \in \mathcal{R}$.
(2) There is I with a surjection $r F(I) \rightarrow A$.
(3) $A \in \operatorname{inj}\{F(\omega) \leq r F(\omega)\}$.
(4) Each countable $B \stackrel{i_{B}}{\leq} A\left(i_{B}\right.$ labels the inclusion) has the property

$$
\begin{equation*}
\text { there is } r B \xrightarrow{\bar{i}_{B}} A \text { with } \bar{i}_{B} r_{B}=i_{B} \tag{*}
\end{equation*}
$$

(5) $A \in \bigcup_{\omega}^{\omega} H\{r F(\omega)\}$.
(6) $A \in \bigcup \mathcal{R}$.

Proof. (1) $\Leftrightarrow(2)$ is quite general: For $(1) \Longrightarrow(2)$, take $F(I) \xrightarrow{\varphi} A$. We have $r F(I) \xrightarrow{\bar{\varphi}} A$ with $\bar{\varphi} r_{F(I)}=\varphi$ because $A \in \mathcal{R}$, and $\bar{\varphi}$ is a surjection.
(2) \Longrightarrow (1) because $\mathcal{R}=H \mathcal{R}$.
$(1) \Leftrightarrow(3)$ is exactly Theorem 1.1.
$(1) \Longrightarrow(2)$ is obvious (in fact, for any $B \leq A$).
$(4) \Longrightarrow(5)$. We isolate two steps of the proof, just assuming (\mathcal{R}, r) monoreflective (not assuming $(H \mathcal{R}=\mathcal{R})$. Proofs of these items are obvious.

Step (i). Suppose $B \in \mathcal{W}$ and $|B| \leq \omega$. Take any $F(\omega) \xrightarrow{\varphi} B$. We then take $\bar{\varphi}$ as shown

commuting, so $B \leq \bar{\varphi}(r F(\omega)) \leq r B$.
Step (ii). Suppose $A=\bigcup_{\alpha} B_{\alpha}$, where each $B_{\alpha} \leq A$ has the property (*) in (4), with corresponding $\bar{i}_{B_{\alpha}}$. Then $A=\bigcup_{\alpha}^{\omega} \bar{i}_{B_{\alpha}}\left(r B_{\alpha}\right)$.

Now suppose $H \mathcal{R}=\mathcal{R}$. In Step (i), we then have $\bar{\varphi}_{R}(r F(\omega)) \in \mathcal{R}$, thus $\bar{\varphi}_{R}(r F(\omega))=r B$, because the embedding $B \leq r B$ is "minimal to \mathcal{R} " (see [10]). This makes $r B \in H\{r F(\omega)\}$.

Finally: Write $A=\stackrel{\omega}{\bigcup}\{B|B \leq A,|B| \leq \omega\}$. By (4), step (ii) applies and $A=\stackrel{\omega}{\circlearrowleft}\left\{\bar{i}_{B}(r B)|B \leq A,|B| \leq \omega\}\right.$. Since each $r B \in H\{r F(\omega)\}$, also each $\bar{i}_{B}(r B) \in H\{r F(\omega)\}$. Thus, (5).
(5) \Longrightarrow (6) because $H \mathcal{R}=\mathcal{R}$.
$(6) \Longrightarrow(3)$ This amounts to showing that $\operatorname{inj}\{F(\omega) \leq r F(\omega)\}$ is closed under $\stackrel{\omega}{\uplus}$, since we already noted $(3) \Longleftrightarrow(1)$. So suppose $A=\stackrel{\omega}{\uplus} R_{\alpha}$, $R_{\alpha}=\operatorname{inj}\{F(\omega) \leq r F(\omega)\}$, and take $F(\omega) \xrightarrow{\varphi} A$. Since $|F(\omega)|=\omega$, also $|\varphi(F(\omega))| \leq \omega$, and $\varphi(F(\omega)) \leq$ some R_{α}. So there is $r F(\omega) \xrightarrow{\bar{\varphi}} R_{\alpha} \in A$ extending φ.

We now examine 2.1 for the important cases $r=c^{3}$ and $r=\beta$.

$3 \quad c^{3}$ (Closed under countable composition)

" $c^{3 "}$ " stands for "closed under countable composition", originally studied in [13]. The definition goes as follows.

Each $A \in \mathcal{W}$ has its Yosida representation $A \leq D(\mathcal{Y} A)$. A sequence a_{1}, a_{2}, \ldots from A has $\bigcap a^{-1} \mathbb{R}$ dense in $\mathcal{Y} A$ (Baire Category Theorem) and
let $\left\langle a_{n}\right\rangle=\bigcap_{n} a_{n}^{-1} \mathbb{R} \rightarrow \mathbb{R}^{\omega}$ be the function defined by $\pi_{j}\left(\left\langle a_{n}\right\rangle(x)\right)=a_{j}(x)$ $\forall j$. For $f \in C\left(\mathbb{R}^{\omega}\right)$, we have the composition $\bigcap_{m} a_{n}^{-1}(\mathbb{R}) \xrightarrow{\left\langle a_{n}\right\rangle} \mathbb{R}^{\omega} \xrightarrow{f} \mathbb{R}$. A is c^{3} if each such $f \circ\left\langle a_{n}\right\rangle$ extends over $\mathcal{Y} A$ to an element of A.
c^{3} will denote either the object class, or reflections $A \leq c^{3} A$. We assemble known facts.

Theorem 3.1. (Each item without specific reference can be located in [11] §1, with reference to original sources.)
(a) ([13]). A is c^{3} if and only if $A=\stackrel{\omega}{\biguplus}\left\{C\left(\bigcap_{n} a_{n}^{-1} \mathbb{R}\right) \mid a_{1}, a_{2}, \cdots \in A\right\}$ if and only if there is a Tychonoff space X and a surjection $C(X) \rightarrow A$.
(b) A is c^{3} if and only if $A \approx C(\mathcal{L}), \mathcal{L}$ a locale (aka, the f-ring of real-valued continuous functions on a frame $\mathcal{L})$.
(c) c^{3} is monoreflective, with reflections $A \leq c^{3} A=\underset{\longrightarrow}{\lim }\left\{C\left(\bigcap_{n} a_{n}^{-1} \mathbb{R}\right) \mid\right.$ $\left.a_{1}, a_{2}, \ldots \in A\right\}$, and is an essential monoreflection (meaning that $A \leq c^{3} A$ is a essential monic).

The class c^{3} is H-closed.
(d) c^{3} is the largest essential monoreflection (with the smallest class of objects).
(e) \forall set $I, c^{3} F(I)=C\left(\mathbb{R}^{I}\right)=\stackrel{\omega}{\biguplus}\left\{C\left(\mathbb{R}^{J}\right) \mid J \in \mathcal{P}_{0}(I)\right\}$.

We consider the meaning of 2.1 (4) for $r=c^{3}$.
A Tychonoff space X is called Čech-complete if X is G_{δ} in βX (see [7]). We abbreviate "Lindelöf and Čech-complete" to "LČ".

Theorem 3.2. If X is $L \check{C}$, then $H\{C(X)\}=\{C(T) \mid$ Tclosed in $X\}$.
Proof. First note: For any Tychonoff space X and $T \subseteq X$, the restriction $C(X) \ni f \mapsto f \mid T \in C(T)$ defines a \mathcal{W}-homomorphism $C(X) \xrightarrow{\rho_{T}} C(T)$, and ρ_{T} is onto if and only if T is C-embedded in X (which entails the closure \bar{T} is C-embedded.) (See [8].)

Now suppose X is LC. Then X is normal, so any closed T is C-embedded, thus $C(T) \in H\{C(X)\}$.

For the converse, we shall use details of the Yosida representation; see §1. Any $A \xrightarrow{\varphi} B$ has the quasi-dual embedding $\mathcal{Y} A \hookleftarrow \mathcal{Y} B$ for which $\varphi(a)=a \mid \mathcal{Y} B \forall a \in A$. This entails $a^{-1} \mathbb{R} \cap \mathcal{Y} B$ dense in $\mathcal{Y} B$, and thus $\forall a_{1}, a_{2}, \cdots \in A,\left(\bigcap_{n} a_{n}^{-1}(\mathbb{R})\right) \cap \mathcal{Y} B=\bigcap_{n}\left(a_{n}^{-1} \mathbb{R} \cap \mathcal{Y} B\right)$ dense in $\mathcal{Y} B$ (Baire Category Theorem).

Now, the Yosida representation of a $C(X)$ is extension over Čech-Stone compactification βX, as $C(X) \approx\{\beta a \mid a \in C(X)\}$. And X is LČ if and only if $\exists a_{1}, a_{2}, \cdots \in C(X)$ with $X=\bigcap_{n}\left(\beta a_{n}\right)^{-1} \mathbb{R}$.

Suppose X is LČ, and $C(X) \xrightarrow{\varphi} B$ with Yosida dual embedding $\beta X \hookleftarrow$ $\mathcal{Y} B$. Take $\left\{a_{n}\right\} \subseteq C(X)$ with $X=\bigcap_{n}\left(\beta a_{n}\right)^{-1} \mathbb{R}$ as above. Then $T=$ $X \cap \mathcal{Y} B=\bigcap_{n}\left(\beta a_{n}\right)^{-1} \mathbb{R} \cap \mathcal{Y} B$ is dense in $\mathcal{Y} B$. (So we can view $B \leq C(T)$), and closed in the normal X (thus C-embedded) so $B=C(T)$.

Summing up, we interpret Theorem 2.1 for c^{3} through Theorem 3.2 and some of Theorem 3.1.

Corollary 3.3. For $A \in \mathcal{W}$, the following are equivalent:
(1) $A \in c^{3}$.
(2) There is I with a surjection $C\left(\mathbb{R}^{I}\right) \rightarrow A$.
(3) $A \in \operatorname{inj}\left\{F(\omega) \leq C\left(\mathbb{R}^{\omega}\right)\right\}$.
(4) For any countable $B \leq A$, also $c^{3} B \leq A$.
(5) $A \subseteq \underset{\omega}{\circlearrowleft}\left\{C(T) \mid T\right.$ closed in $\left.\mathbb{R}^{\omega}\right\}$.
(6) $A \in \bigcup c^{3}$.

Proof. This is all quite immediate. We just note: (4) is just Theorem 2.1(5), using Theorem 3.2 for $X=\mathbb{R}^{\omega}$.
(4) is the statement that in Theorem 2.1(4) the \bar{i}_{B} are one-to-one. This follows solely from the essentiality of the reflection maps $B \leq c^{3} B$.

Remark 3.4. (a) $A \in \biguplus c^{3} \nRightarrow A \in \stackrel{\omega}{\bigcup} c^{3}$. An example is $A=\{f \in$ $C\left(\mathbb{R}^{\omega}\right) \mid \exists$ finite $F \subseteq \omega$ s.t. $\left.f=\bar{f} \circ \pi_{F}\right\}$.
(b) Corollary 3.3 (3) and (5) are to be compared with Theorem 3.1(a). The X in Theorem 3.1(a) is $\mathcal{Y} A \times \mathbb{N}$.
(c) We note [7], p. 74: T is (\approx) a closed subspace of \mathbb{R}^{ω} if and only if T is completely metrizable and separable.
(d) In Corollary $3.3(5)$, the $A=\stackrel{\omega}{\bigcup} C(T)$'s is a countably directed direct limit, $A={\underset{\sim}{\lim }}_{\omega} C(T)$'s. The Yosida functor converts this to an inverse limit $\mathcal{Y} A=\lim _{\omega} \overrightarrow{\beta T}{ }^{\omega}$'s. Using $A=C(X)$ with X real compact, and a little fiddling yields $X \stackrel{\omega}{=} \lim _{\omega} T$'s, and if X is compact, so are the T 's. This is more or less a result of $\stackrel{\omega}{\text { Pasynkov [15]. See also [7], p. } 220 .}$
(e) An essential reflection (\mathcal{R}, r) has $r \leq c^{3}$ (Theorem 3.1 (d)), and if $\mathcal{R}=H \mathcal{R}$, Corollary 3.3 holds mutatis mutandis. For $r F(\omega)=S$ (see
the second paragraph after Theorem 1.1), we have $F(\omega) \stackrel{\sigma}{\leq} S \leq C\left(\mathbb{R}^{\omega}\right)$, and " σ epic" is automatic. Examples of this are: $\mathcal{R}=$ "rings" $(\mathcal{W}$-objects A with a compatible f-ring multiplication with identity the \mathcal{W}-unit e_{A}), vector lattices, algebras, For example: for rings, $r F(\omega)$ is the sub- f-ring of $C\left(\mathbb{R}^{\omega}\right)$ generated by $F(\omega)$. In Corollary $3.3(4)$, each $C(T)$ is to be replaced by the set of restrictions $r F(\omega) \mid T$. An additional feature of any essential r is that $r F(\omega) \mid T=r(F(\omega) \mid T)$.
(f) The present paper began with an analysis of a version of Corollary 3.3 and some related matters, in the view of a c^{3}-object as the f-ring of real-valued continuous functions on a frame. As such, it was reported in [6]: where c^{3} was taken as condition $3.3(3)$, thus avoiding a reference to the Yosida representation and the reflection is then given an explicit frametheoretic form. See [4] for details.

4β (Epicomplete)

E is called epicomplete if $E \xrightarrow{\varphi} \bullet$ monic and epic implies φ an isomorphism. The class of epicomplete objects is denoted $E C$.

Recall that, for a Tychonoff space $X, B(X)$ denotes the \mathcal{W}-object of real-valued Baire functions on X.

We summarize known features of $E C$, prior to the interpretation of Theorem 2.1 for $\mathcal{R}=E C$.

Theorem 4.1. (Each item without specific reference can be located in [11], with reference to original sources.)
(a) $E \in E C$ if and only if E is σ-complete both conditionally, and laterally if and only if $E \approx D(X)$ with X basically disconnected (the X is $\mathcal{Y} E$). Thus, any $B(X) \in E C$.
(b) ([3]). $E \approx C(\mathcal{P})$ with \mathcal{P} a P-locale. (Such a \mathcal{P} is the localic intersection of $\{S \mid S$ is dense cozero in $\mathcal{Y} E\}$.)
(c) EC is monoreflective, thus the maximum monoreflection. The reflection of A is $\beta A=B(\mathcal{Y} A) / N$, for a certain σ-ideal N.
$E C$ is H-closed, thus $E C=H\{B(K) \mid K$ compact $\}$.
(d) If X is Lindelöf and Čech-complete, then $\beta C(X)=B(X)$.
(e) For every set $I, \beta F(I)=B\left(\mathbb{R}^{I}\right)=\stackrel{\omega}{\bigcup}\left\{B\left(\mathbb{R}^{J}\right) \mid J \in \mathcal{P}_{0}(I)\right\}$.

We now interpret Theorem 2.1. Most of this is the routine writing-down of items in Theorem 2.1 using information in Theorem 4.1. An exception is Theorem 2.1 (5), which says $A \in H\left\{B\left(\mathbb{R}^{\omega}\right)\right\}$. "An" epicompletion of $A \in \mathcal{W}$ is an epic $A \leq E$, with $E E C$. These are exactly the quotients over A of βA.
Theorem 4.2. Suppose X is $L \check{C}$ (as is \mathbb{R}^{ω}).
(a) $E \in H\{B(X)\}$ if and only if there is F closed in X such that E is AN epicompletion of $C(F)$.
(b) (Note that an F in (a) is again $L \check{C}$.) $C(X)$ has a unique epicompletion if and only if X is discrete and countable (and thus $X \approx \mathbb{N}, C(X) \approx$ $C(\mathbb{N})$, is already $E C)$.
(c) If X is not countable discrete, there are many epicompletions of $C(X)$.
Proof. (a) Suppose $E \in H\{B(X)\}$, as $B(X) \xrightarrow{\varphi} E$. We have

where φ_{0} is the restriction of φ, e labels the inclusion, and $\varphi \beta_{C}=e \varphi_{0}$ (obviously), so e is epic (as a second factor of the epic $\varphi \beta_{C}$).

By Theorem 3.2, $\varphi(C(X))$ is the desired $C(F)$.
Suppose F is closed in X and $C(F) \stackrel{e}{\leq} E$ is an epicompletion. We then have

where ρ is the restriction map described at the beginning of the proof of Theorem 3.2, and then $\exists \bar{\rho}$ with $\bar{\rho} \beta_{C}=e \rho$ by the universal mapping property of β.

We have $C(F) \stackrel{i}{\leq} \bar{\rho}(\beta C(X)) \stackrel{j}{\leq} E(i, j$ are labels) with $j i=e$. But $\bar{\rho}(\beta C(X)) \in E C$ (by Theorem 4.1(c)), and e is epic, thus also j. So j is equality.
(b) If $C(X) \approx C(\mathbb{N})$, already $C(X) \in E C$, so is its only epicompletion.

If $C(X)$ has a unique epicompletion, it must be $C(X) \leq B(X)$ (Theorem 4.1 (d)), and this must be an essential embedding (because any $A \in \mathcal{W}$ has a (unique) essential epicompletion ($[2], \S 9)$). If X has a non-void nowhere dense zero-set Z, then the characteristic function $\chi(Z) \in B(X)$, and there is no $0<a \in C(X)$ with $a \leq \chi(Z): C(X) \leq B(X)$ is not essential. Thus there is no such Z, so X is what is called an almost P-space. But the only almost P-space which is LČ is $(\approx) \mathbb{N}$.
(c) See [1] and [2] for several constructions. We omit details.

Referring to Theorem 4.2 , let $\mathcal{E C S}\left(\mathbb{R}^{\omega}\right)$ stand for the family of epicompletions of objects of the form $C(T)$, for T closed in \mathbb{R}^{ω}.

Summing up, we write down Theorem 2.1 for $\mathcal{W} \xrightarrow{\beta} E C$ using Theorem 4.2 and some of Theorem 4.1.

Corollary 4.3. For $A \in \mathcal{W}$, the following are equivalent:
(1) $A \in E C$.
(2) There is I with a surjection $B\left(\mathbb{R}^{I}\right) \rightarrow A$.
(3) $A \in \operatorname{inj}\left\{F(\omega) \leq B\left(\mathbb{R}^{\omega}\right)\right\}$.
(4) Each countable $B \stackrel{i_{B}}{\leq} A$, has the property

$$
\begin{equation*}
\text { there is } \beta B \xrightarrow{\bar{i}_{B}} A \text { with } \bar{i}_{B} \beta_{B}=i_{B} \text {. } \tag{*}
\end{equation*}
$$

(5) $A \in \stackrel{\omega}{\omega} \stackrel{\omega}{\omega} \mathcal{E C S}\left(\mathbb{R}^{\omega}\right)$.
(6) $A \in \biguplus E C$.

The comparison of Corollary 4.3 (4) and (5) with Corollary 3.3 (4) and (5), shows a huge difference between c^{3} (or any essential reflection) with β and identifies some special classes of $E C$ objects which might deserve further study. (It is quite rare that any $A \leq \beta A$ is essential; see [2], §9.)

We consider the analogue of Corollary 3.3 (4) for β. Recall that for $B \leq A, \beta B \leq A$ means that the \bar{i}_{B} in 2.8 (4) is one-to-one.

Theorem 4.4. Suppose $A \in \mathcal{W}$. For every countable $B \leq A$,

$$
\begin{equation*}
\beta B \leq A \text { if and only if } A \approx \mathbb{R}^{n} \text { for some } n \in \mathbb{N} . \tag{*}
\end{equation*}
$$

Proof. Notice that either the condition implies $A \in E C$: for $A \in E C$ (or just a vector lattice), $A \approx \mathbb{R}^{n}\left(n \in \mathbb{N}\right.$) means $|\mathcal{Y} A|=n$ (and $\mathbb{R}^{n}=$ $C(\{0,1, \ldots, n-1\}))$.
(\Longleftarrow) We omit the easy proof.
(\Longrightarrow) We show that $\mathcal{Y} A$ infinite $\Longrightarrow A$ fails $(*)$.
(i) $A=C(\mathbb{N})$ fails $(*)$.
(ii) If $A \in E C$ and $\mathcal{Y} A$ is infinite, then there is an embedding $C(\mathbb{N}) \leq A$.
(iii) If $A \in E C$ and $\mathcal{Y} A$ is infinite, then A fails ($*$).

For (i): Let $B \leq C(\mathbb{N})$ be generated by rational multiples of the characteristic functions χ_{p} of the $p \in \mathbb{N}$. A little thought reveals that the uniform completion $u B=c^{3} B=C(\alpha \mathbb{N})$, where $\alpha \mathbb{N}=\mathbb{N} \cup\{\alpha\}$ the one-point compactification of \mathbb{N}. Then $\beta C(\alpha \mathbb{N})=B(\alpha \mathbb{N})$ (Theorem $4.1(\mathrm{~d})$). Then, the \bar{i}_{B} is not one-to-one: $\bar{i}_{B}\left(\psi_{\alpha}\right)=0$.

For (ii): As with any infinite Hausdorff space, there is countable $L=$ $\left\{x_{n}\right\} \subseteq \mathcal{Y} A$ on pairwise disjoint open sets $\left\{U_{n}\right\}$ in $\mathcal{Y} A$ with $U_{n} \cap L=\left\{x_{n}\right\} \forall n$. We have $L \approx \mathbb{N}$. Since $\mathcal{Y} A$ is basically disconnected, thus zero-dimensional ([8]). The U_{n} may be chosen clopen, and $\bar{U} \approx \beta \tilde{U}$ (Čech-Stone). Choose any $p_{0} \in U$, and retract $\mathcal{Y} A \xrightarrow{\rho} \bar{U}$ as $\rho(x)=\left[x\right.$, if $x \in \bar{U} ; p_{0}$ if $\left.x \notin \bar{U}\right]$. Since \bar{U} is clopen, ρ is continuous.

Let $f \in C(L)$. Extend to $\bar{f} \in C(U)$ by $f\left(U_{n}\right)=\left\{f\left(x_{n}\right)\right\}$. Then extend \bar{f} to $\overline{\bar{f}} \in D(\beta \bar{U})$ (since $\bar{U}=\beta U)$. Now $\overline{\bar{f}} \circ \rho \in D(\mathcal{Y} A)\left((\overline{\bar{f}} \circ \rho)^{-1} \mathbb{R}=\bar{f}^{-1}(\mathbb{R}) \subseteq\right.$ $\bar{U}-u$, which is nowhere dense). Define $C(L) \stackrel{\tilde{\rho}}{\leq} D(\mathcal{Y} A) \in A$ as $\tilde{\rho}(f)=$ $\overline{\bar{f}} \circ \rho$. Such compositions preserve ℓ-group operations (and multiplication) and constants, so $\tilde{\rho}(1)=1$, and $\tilde{\rho} \in \mathcal{W}$.

For (iii): In (ii) we have $C(L) \stackrel{\tilde{\rho}}{\leq} A$, which we re-name $C(\mathbb{N}) \stackrel{k}{\leq} A$. In (i), we have countable $B \stackrel{i_{B}}{\leq} C(\mathbb{N})$ with \bar{i}_{B} not 1-1. We have

with the inclusion $B \stackrel{j_{B}}{\leq} A$ being $j_{B}=k i_{B}$ and with $\bar{i}_{B} \beta_{B}=i_{B}, \bar{j}_{B} \beta_{B}=$ $j_{B}=k i_{B}$. Thus $\bar{j}_{B} \beta_{B}=k \bar{i}_{B} \beta_{B}$, so $\bar{j}_{B}=k \bar{i}_{B}$ since β_{B} is epic. Since \bar{i}_{B} is not one-to-one, neither is \bar{j}_{B}.

Let $B \mathcal{S}\left(\mathbb{R}^{\omega}\right) \equiv\left\{B(T) \mid T\right.$ dense in $\left.\mathbb{R}^{\omega}\right\}$. The analogue of Corollary $3.3(5)$ for β is the condition

$$
\begin{equation*}
A \in \stackrel{\omega}{\bigcup}\left\{B(T) \mid T \text { closed in } \mathbb{R}^{\omega}\right\} \tag{**}
\end{equation*}
$$

All we have to say is: sometimes this happens, sometimes not.
Remark 4.5. (a) There are A satisfying ($* *$): Obviously, any $B(T)$; less trivially, ([11]) for uncountable $I, B\left(\mathbb{R}^{I}\right)=\stackrel{\omega}{\bigcup}\left\{B\left(\mathbb{R}^{J}\right) \mid J \in \mathcal{P}_{0}(I)\right\}$.
(b) There are many A failing $(* *)$. The countable chain condition, ccc, of a space or \mathcal{W}-object is relevant here. X (resp., A) has ccc if there is no uncountable pairwise disjoint family of non-void open sets in X (respectively, non-zero positive elements in A). A has ccc if and only if $\mathcal{Y} A$ does (because $\operatorname{coz} A$ is a base in $\mathcal{Y} A)$.

If A has ccc and satisfies $(* *)$, then in the Yosida representation $A \approx$ $D(\mathcal{Y} A)$, each $a \in A$ is locally constant on a dense open subset of $\mathcal{Y} A$. (If $A=\overleftrightarrow{\bigcup} B\left(T_{\alpha}\right)$, then each $B\left(T_{\alpha}\right)$ has ccc, and it follows that T_{α} is a copy \mathbb{N}_{α} of \mathbb{N}. For each $\left.\alpha, C\left(\mathbb{N}_{\alpha}\right)=\beta \mathbb{N}_{\alpha}{ }^{\tilde{c}} \mathcal{Y} A\right)$. If $a \in C\left(\mathbb{N}_{\alpha}\right)$, then $a^{"}={ }^{\prime \prime} a \circ \tau$ is locally constant on $\tau^{-1}\left(\mathbb{N}_{\alpha}\right)$.)

Consider the absolute (projective cover) $[0,1] \stackrel{\pi}{\leftarrow} a[0,1]$. Using irreducibility of π : Since $[0,1]$ has ccc, so do $a[0,1]$, and also $A=D(a[0,1])$. Here $C([0,1]) \leq A$, as $f \mapsto f \circ \pi$. No continuous nonconstant f has $f \circ \pi$ locally constant on a dense subset of $a[0,1]$. Thus A fails (**).
(c) The class $E C$ consists exactly of the $D(X), X$ compact and basically disconnected. The class $\sigma B A$ of σ-complete Boolean algebras consists exactly of the clopen algebras clop X for the same X [16]. So, the various properties of $E C$'s considered here have direct translations to $\sigma B A$. For example, corresponding to 4.6 are the $\sigma B A$'s of the form $\mathcal{A} \in \stackrel{\omega}{\bigcup}\{\mathcal{B}(T) \mid$ T closed in $\left.\mathbb{R}^{\omega}\right\}, \mathcal{B}$ denoting the σ-field of Baire sets.

We leave the subject for now.

Acknowledgement

We thank Mojgan Mahmoudi for assistance in preparation of the paper.

References

[1] Ball, R.N. and Hager, A.W., Characterization of epimorphisms in Archimedean lattice-ordered groups and vector lattices, In: "Lattice-Ordered Groups", Math. Appl. 48, Kluwer Academic Publisher, 1989, 175-205.
[2] Ball, R.N. and Hager, A.W., Epicompletion of Archimedean ℓ-groups and vector lattices with weak unit, J. Austral. Math. Soc. Ser. A 48(1) (1990), 25-56.
[3] Ball, R.N., Hager, A.W., and Walters-Wayland, J., Pointfree pointwise suprema in unital archimedean ℓ-groups, J. Pure Appl. Algebra 219(11) (2015), 4793-4815.
[4] Banaschewski, B., On the function ring functor in pointfree topology, Appl. Categ. Structures 13 (2005), 305-328.
[5] Banaschewski, B., On the function rings of pointfree topology, Kyungpook Math. J. 48(2) (2008), 195-206.
[6] Banaschewski, B. On the characterization of the function rings in pointfree topology, Lecture in the conference: Aspects of Contemporary Topology V, Vrije Universiteit Brussels, September 2014.
[7] Engelking, R. "General Topology", Revised and completed edition, Sigma Series in Pure Mathematics 6, Heldermann Verlag, 1989.
[8] Gillman, L. and Jerison, M., "Rings of Continuous Functions", Graduate Texts in Mathematics 43, Springer-Verlag, 1976.
[9] Hager, A.W. Algebraic closures of ℓ-groups of continuous functions, In: "Rings of Continuous Functions" (C.E. Aull, eds.). Dekker Notes 95, 1985, 165-194.
[10] Hager, A.W. and Madden, J., Essential reflections versus minimal embeddings, J. Pure Appl. Algebra 37(1) (1985), 27-32.
[11] Hager, A.W. and Madden, J., The H-closed monoreflections, implicit operations, and countable composition, in archimedean lattice-ordered groups with weak unit, Appl. Categ. Structures 24(5) (2016), 605-617.
[12] Hager, A.W. and Robertson, L.C., Representing and ringifying a Riesz space, Symposia Mathematica XXI, Academic Press (1977), 411-431.
[13] Henriksen, M., Isbell, J., and Johnson, D., Residue class fields of lattice-ordered algebras, Fund. Math. 50 (1961), 107-117.
[14] Isbell, J., "Uniform Spaces", Math. Surveys 12, American Math. Society, 1964.
[15] Pasynkov, B.A., On the spectral decomposition of topological spaces, Mat. Sb . 66(108) (1965), 35-79, and Amer. Math. Soc. Translations Series 2 (74) (1968), 87-134.
[16] Sikorski, R. "Boolean Algebras", Third Edition, Springer, 1969.

Bernhard Banaschewski, Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario L85 4K1, Canada.

[^1]
[^0]: * Corresponding author

 Keywords: Archimedean ℓ-group, H-closed monoreflection, Yosida representation, countable composition, epicomplete, Baire functions.
 Mathematics Subject Classification[2010]: 06F20, 18A40, 46A40, 54F15.
 Received: 22 July 2017, Accepted: 26 December 2017
 ISSN Print: 2345-5853 Online: 2345-5861
 (C) Shahid Beheshti University

[^1]: Anthony W. Hager, Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06457, United States of America.
 Email: ahager@wesleyan.edu

