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Pointfree topology version of image of
real-valued continuous functions

A. Karimi Feizabadi∗, A.A. Estaji, and M. Robat Sarpoushi

Abstract. Let RL be the ring of real-valued continuous functions on a
frame L as the pointfree version of C(X), the ring of all real-valued contin-
uous functions on a topological space X. Since Cc(X) is the largest subring
of C(X) whose elements have countable image, this motivates us to present
the pointfree version of Cc(X). The main aim of this paper is to present the
pointfree version of image of real-valued continuous functions in RL. In par-
ticular, we will introduce the pointfree version of the ring Cc(X). We define
a relation from RL into the power set of R, namely overlap. Fundamental
properties of this relation are studied. The relation overlap is a pointfree
version of the relation defined as Im(f) ⊆ S for every continuous function
f : X → R and S ⊆ R.

1 Introduction

As is well known, C(X) denotes the ring of all real-valued continuous func-
tions on a topological space X. Undoubtedly, the book Rings of Continuous
Functions written by Gillman and Jerison is the best reference to study the
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rings of continuous functions [14]. In [13], Cc(X), the subalgebra of C(X),
consisting of functions with countable image is studied. It turns out that
Cc(X), although not isomorphic to any C(Y ) in general, enjoys most of the
important properties of C(X). This subalgebra has recently received some
attention, see [6, 16–18].

The concept of a frame, or pointfree topology, is a generalization of the
classical topology. The ring of real-valued continuous functions on a frame,
that is, RL, as the pointfree version of the ring C(X), has been studied
prior to 1996 by some authors such as R.N. Ball and A.W. Hager in [1].
A systematic and indepth study of the ring of real continuous functions in
pointfree topology was undertaken by B. Banaschewski in 1997 (see [2, 4, 5]).
Also, [3, 7, 15, 19] are valuable references on the subject of frames and the
ring RL.

In this paper, we introduce the pointfree version of image of real-valued
continuous functions in the ring of real-valued continuous functions on a
frame, namely, RλL. In particular, we will haveRcL as the pointfree version
of the ring Cc(X). For this, we use the subsets of R. One may think that
we should use the sublocales of the frame L(R) instead of the subsets of R.
In reply, we say that countability image of a continuous function by its very
nature deals with number of points of its range, and is not a topological
concept. In other words, the countability image of a continuous function
does not seem to lend itself to localic interpretation because it is about the
number of points in a set.

This paper is organized as follows. In Section 2, we review some basic
notions and properties of frames and the pointfree version of the ring of
real-valued continuous functions.

In Section 3, we define the concept of overlap for α ∈ RL (Definition
3.1). To do this, we introduce an onto (quotient) frame map i : L(R)→ OS
given by i(p, q) = {s ∈ S : p < s < q}, where S ⊆ R is taken as a subspace
of R with usual topology and OS is the frame of open subsets of S. For
every α ∈ RL and S ⊆ R, we show that α is an overlap of S if and only
if ᾰ is a frame map, where ᾰ : OS → L is given by ᾰ(U) =

∨{α(v) : v ∈
L(R), i(v) ⊆ U} (see Theorem 3.8). Also, for every continuous function
f : X → R and S ⊆ R, we show that fτ : L(R) → OX is an overlap of
S if and only if Im(f) ⊆ S if and only if there exists a continuous function
g : X → S such that f(x) = g(x) for every x ∈ X (see Proposition 3.11).
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In Section 4, we introduce the ring RλL as the pointfree version of the
image of real-valued continuous functions.

2 Preliminaries

Here, we recall some definitions and results from the literature on frames and
the pointfree topology version of the ring of continuous real-valued functions.
Our references for frames are [15] and [19].

A frame is a complete lattice L in which the distributive law

x ∧
∨
S =

∨
{x ∧ s : s ∈ S}

holds for all x ∈ L and S ⊆ L. We denote the top element and the bottom
element of L by > and ⊥, respectively. The frame of open subsets of a
topological space X is denoted by OX.

A frame homomorphism (or frame map) is a map between frames which
preserves finite meets, including the top element, and arbitrary joins, in-
cluding the bottom element.

An element p ∈ L is said to be prime if p < > and a∧b ≤ p implies a ≤ p
or b ≤ p. A lattice ordered ring A is called an f -ring, if (f ∧ g)h = fh ∧ gh
for every f, g ∈ A and every 0 ≤ h ∈ A.

Recall the contravariant functor Σ from Frm to the category Top of
topological spaces which assigns to each frame L its spectrum ΣL of prime
elements with Σa = {p ∈ ΣL : a 6≤ p} (a ∈ L) as its open sets.

An element a of a frame L is said to be completely below b, written
a ≺≺ b, if there exists a sequence {cq}, q ∈ Q ∩ [0, 1], where c0 = a, c1 = b,
and cp ≺ cq if p < q where u ≺ v means that u∗∨v = >. A frame L is called
completely regular if each a ∈ L is the join of elements completely below it.

Regarding the frame of reals L(R) and the f -ring RL of continuous real
functions on L, we use the notations of [4] (see also [2]).

For every pair (p, q) ∈ Q2, put

〈p, q〉 := {x ∈ Q : p < x < q} and Kp, qJ:= {x ∈ R : p < x < q}.
Corresponding to every continuous operation � : Q2 → Q (in particular

+, .,∧,∨) we have an operation on RL, denoted by the same symbol �,
defined by

α � β(p, q) =
∨
{α(r, s) ∧ β(u,w) :< r, s > � < u,w >≤< p, q >},
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where < r, s > � < u,w >≤< p, q > means that for each r < x < s and
u < y < w we have p < x�y < q. For every r ∈ R, define the constant frame
map r ∈ RL by r(p, q) = >, whenever p < r < q, and otherwise r(p, q) = ⊥.

Recall that a frame L is called spatial if there exists a topological space
X such that L ∼= OX. We have the next proposition.

Proposition 2.1. [10] A frame L is spatial if and only if η : L→ OΣL by
η(a) = Σa, for every a ∈ L, is an isomorphism in Frm.

Here we recall the necessary notations, definitions, and results form [9].
Let a ∈ L and α ∈ RL. The sets {r ∈ Q : α(−, r) ≤ a} and {s ∈ Q :
α(s,−) ≤ a} are denoted by L(a, α) and U(a, α), respectively. For a 6= > it
is obvious that for each r ∈ L(a, α) and s ∈ U(a, α), r ≤ s. In fact, we have

Proposition 2.2. [9] If p ∈ ΣL and α ∈ RL, then (L(p, α), U(p, α)) is a
Dedekind cut for a real number which is denoted by p̃(α).

Proposition 2.3. [9] If p is a prime element of a frame L, then there exists
a unique map p̃ : RL −→ R such that for each α ∈ RL, r ∈ L(p, α) and
s ∈ U(p, α) we have r ≤ p̃(α) ≤ s.

Let p be a prime element of L. Throughout this paper, for every α ∈
RL we define α[p] = p̃(α) (see [11]). For every α : L(R) → L, we define
α : ΣL→ R by α(p) = α[p], for p ∈ ΣL.

It is well known that the homomorphism τ : L(R) → OR taking (p, q)
to Kp, qJ is an isomorphism (see [4, Proposition 2]).

3 Overlap and its properties

For a topological space X, to say the image of a continuous function f :
X → R is contained in the set S ⊆ R is to say there is a morphism X

g−→ S
in Top such that the triangle

X
g

��

f

  
S

j // R

commutes, where j is the inclusion map. Our aim is to extend this notion
to pointfree function rings, so that, for instance, we can have an analogue of
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the R-subalgebra Cc(X) of C(X) whose elements are those functions with
countable range.

Regarding the latter, the obvious hurdle is that “countability” is not a
topological notion. It is thus not clear how one should define a function
α ∈ RL to have “countable range”. So to obviate this, we, in effect, apply
the open-set functor

O : Top→ Frm

to the triangle above to obtain the commutative diagram

L(R)
τ // OR

Of ""

Oj // OS

Og||
OX

in Frm, after adjoining the morphism L(R)
τ−→ OR which maps a generator

(p, q) to the open interval {x ∈ R : p < x < q}. Now, starting with an
arbitrary α ∈ RL, we define the concept of “overlapping”. We then show
that, for any f ∈ C(X) and S ⊆ R,

Im(f) ⊆ S ⇐⇒ Of is an overlap of S;

thus justifying that this is a “correct” extension of the notion of image for
pointfree real-valued functions.

In what follows, L, S and i : L(R) → OS, denote a frame, a subspace
of R with usual topology, and the onto (quotient) frame map, such that for
every p, q ∈ Q, i(p, q) = τ(p, q) ∩ S, respectively.

Definition 3.1. For α ∈ RL and S ⊆ R, we say that α is an overlap of S
(denoted by α J S) if

i(u) ⊆ i(v) implies α(u) ≤ α(v),

for every u, v ∈ L(R).

Proposition 3.2. If α ∈ RL, then it is not an overlap of ∅.

Proof. Suppose that α J ∅. Now, we assume that p, q, r, s ∈ Q, p < q and
r < s. Since τ(p, q) ∩ ∅ = ∅ = τ(r, s) ∩ ∅, we conclude that α(p, q) = α(r, s).
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It follows that α(p, q) =
∨{α(r, s) : r, s ∈ Q} = >. Now, if p, q, r, s ∈ Q and

p < q < r < s, then

⊥ = α((p, q) ∧ (r, s)) = α(p, q) ∧ α(r, s) = >,

which is a contradiction.

Definition 3.3. For any α ∈ RL and any S ⊆ R, we say that α is a weakly
overlap of S (denoted by α� S) if

i(p, q) = i(r, s) implies α(p, q) = α(r, s),

for every p, q, r, s ∈ Q.

Example 3.4. Let Id : Q→ R be the identity map. Then α : OR→ OQ is
a frame map such that α(p, q) = τ(p, q)∩Q. Let S = R\{0}. Clearly, α�S.
Now, if 0 ∈ τ(p, q) and p, q ∈ Q, then

i(p, q) = τ(p, q) ∩ S ⊆ (τ(p, 0) ∪ τ(0, q)) ∩ S = i((p, 0) ∨ (0, q))

and α(p, q) 6≤ α((p, 0) ∨ (0, q)). Thus, α is not an overlap of S.

It is clear that α J S implies α � S, but the previous example shows
that the converse need not hold.

Lemma 3.5. For any α ∈ RL and any S ⊆ R, the following statements are
equivalent:

(1) α J S.
(2) i(u) = i(v) implies α(u) = α(v), for any u, v ∈ L(R).
(3) i(p, q) = i(v) implies α(p, q) = α(v), for every v ∈ L(R) and p, q ∈ Q.
(4) i(p, q) ⊆ i(v) implies α(p, q) ≤ α(v), for any v ∈ L(R) and any

p, q ∈ Q.

Proof. (1) ⇒ (2) ⇒ (3) are obviously.
For (3) ⇒ (4), suppose that i(p, q) ⊆ i(v). So

i(p, q) = i(p, q) ∩ i(v) = i((p, q) ∧ v).

By (3), α(p, q) = α((p, q) ∧ v), and hence α(p, q) ≤ α(v).
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Finally, to show (4) ⇒ (1), let u, v ∈ L(R) such that i(u) ⊆ i(v). Let
(p, q) ≤ u where p, q ∈ Q. Hence i(p, q) ⊆ i(u) ⊆ i(v), so, by (4), α(p, q) ≤
α(v). Therefore,

α(u) = α(
∨

(p,q)≤u
(p, q)) =

∨

(p,q)≤u
α(p, q) ≤ α(v).

Definition 3.6. For α ∈ RL and S ⊆ R, define ᾰ : OS → L by

ᾰ(U) =
∨
{α(v) : v ∈ L(R), i(v) ⊆ U}.

It is clear that ᾰ(U) =
∨{α(p, q) : τ(p, q) ∩ S ⊆ U}.

Lemma 3.7. For α ∈ RL and S ⊆ R,
(1) ᾰ is an order preserving map such that for every u ∈ L(R), α(u) ≤

ᾰ(i(u)).
(2) ᾰi = α if and only if α J S.

Proof. (1) is clear.
To show (2), first suppose that ᾰi = α and i(u) ⊆ i(v). So

α(u) = ᾰi(u) ≤ ᾰi(v) = α(v).

Therefore, α J S. Conversely, suppose that α J S. Let u ∈ L(R). We have

ᾰ(i(u)) =
∨{α(v) : v ∈ L(R), i(v) ⊆ i(u)}

≤ ∨{α(v) : v ∈ L(R), α(v) ≤ α(u)}
= α(u).

So, by (1), ᾰi = α.

In the proof of one of the implications in the upcoming theorem we will
use the fact that if M is a regular frame and f, g : M → L are frame maps
such that f(x) ≤ g(x) for all x ∈M , then f = g.

Theorem 3.8. For any α ∈ RL and any S ⊆ R, the following statements
are equivalent:

(1) α J S.
(2) ᾰi = α.
(3) ᾰ is a frame map.
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Proof. (1)⇔ (2). It follows from Lemma 3.7.
(2) ⇒ (3). This is because, i : L(R)→ OS is an onto frame map and ᾰ

is a well-defined function.
Finally, to see (3)⇒ (2), note that for every u ∈ L(R), by Lemma 3.7(1),

(ᾰi)(u) ≥ α(u). Since L(R) is a regular frame and ᾰi, α : L(R)→ L are two
frame maps, we conclude that ᾰi = α.

Corollary 3.9. For any α ∈ RL and any S ⊆ R, the following statements
are equivalent:

(1) α J S.
(2) For every {(pi, qi)}i∈I , {(rj , sj)}j∈J ⊆ Q×Q, if

⋃

i∈I
τ(pi, qi) ∩ S =

⋃

j∈J
τ(rj , sj) ∩ S,

then
∨
i∈I α(pi, qi) =

∨
j∈J α(rj , sj).

(3) There exists a unique frame map β : OS → L such that βi = α.

Proof. By Theorem 3.8, it is evident.

In what follows, for f ∈ C(X), the frame map

f−1 ◦ τ : L(R)→ OX

is denoted by fτ . Note that for p < q in Q,

fτ (p, q) = {x ∈ X : p < f(x) < q}.
Lemma 3.10. For every f ∈ C(X), if Im(f) ⊆ S ⊆ R, then fτ J S.
Proof. Let p, q ∈ Q and u ∈ L(R). If τ(p, q) ∩ S ⊆ i(u), then

x ∈ fτ (p, q) ⇒ f(x) ∈ τ(p, q) ∩ Im(f) ⊆ τ(u) ∩ S ∩ Im(f)

⇒ x ∈ fτ (u).

Therefore, fτ J S.

Proposition 3.11. Let S ⊆ R and f ∈ C(X). Then the following statements
are equivalent:

(1) fτ J S.
(2) There exists a continuous function g : X → S such that f(x) = g(x),

for every x ∈ X.
(3) Im(f) ⊆ S.
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Proof. (1) ⇒ (3). Suppose that Im(f) 6⊆ S. Then there exists x ∈ X such
that y = f(x) ∈ Im(f)\S. Let p, q ∈ Q and p < y < q. There exist sequences
{pn}n∈N, {qn}n∈N ⊆ Q such that pn −→ y, qn −→ y and for every n ∈ N,
p < pn < y < qn < q. Hence

τ(p, q) ∩ S =
⋃

n∈N
(τ(p, pn) ∪ τ(qn, q)) ∩ S.

By Corollary 3.9, x ∈ fτ (p, q) =
∨
n∈N(fτ (p, pn) ∪ fτ (qn, q)) and it follows

that there is n ∈ N such that x ∈ fτ (p, pn) ∪ fτ (qn, q), which is a contradic-
tion.

(3)⇒ (1). By Lemma 3.10, it is clear.
(3)⇔ (2). It is evident.

Lemma 3.12. Let p be a prime element of L. For α ∈ RL and t ∈ R,
α[p] 6= t if and only if

∨{α(−, r) ∨ α(s,−) : r, s ∈ Q, r < t < s} 6≤ p.

Proof. Suppose that α[p] 6= t, assume that α[p] > t. Hence, there is a rational
number r such that α[p] > r > t. Thus, by [9, Lemma 3.1], r ∈ L(p, α), and
so, by the definition of L(p, α), α(−, r) ≤ p. Now, if

∨
{α(−, r) ∨ α(s,−) : r, s ∈ Q, r < t < s} ≤ p,

we have

> = α(−, r) ∨
∨
{α(−, r) ∨ α(s,−) : r, s ∈ Q, r < t < s} ≤ p ∨ p = p,

which contradicts p being a prime element. Therefore,
∨
{α(−, r) ∨ α(s,−) : r, s ∈ Q} 6≤ p.

The case α[p] < t is proved similarly.
Conversely, suppose that α[p] = t. So, by [9, Lemma 3.1], for every

two rationals r < t < s, we have r ∈ L(p, α) and s ∈ U(p, α). Hence
α(−, r) ∨ α(s,−) ≤ p, by the definition of L(p, α) and U(p, α). Thus,

∨
{α(−, r) ∨ α(s,−) : r, s ∈ Q, r < t < s} ≤ p,

which contradicts the assumption.
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Proposition 3.13. For every α ∈ RL and S ⊆ R, if α J S, then Im(α) ⊆
S.

Proof. Suppose that Im(α) 6⊆ S. Then there exists p ∈ ΣL such that α(p) =
t ∈ Im(α) \ S. By Lemma 3.12,

∨
{α(−, r) ∨ α(s,−) : r, s ∈ Q, r < t < s} ≤ p.

Since t 6∈ S, we conclude that
⋃
{τ(r, s)∩S : r, s ∈ Q} = S =

⋃
{τ(−, r)∩S∨τ(s,−)∩S : r, s ∈ Q, r < t < s}.

By Corollary 3.9,

> =
∨
{α(r, s) : r, s ∈ Q} =

∨
{α(−, r) ∨ α(s,−) : r, s ∈ Q, r < t < s} ≤ p,

which is a contradiction.

Corollary 3.14. For any t ∈ R, the following statements are equivalent:
(1) t ∈ S.
(2) t J S, where t ∈ RL.

Proof. (1) ⇒ (2). Let t ∈ S and u, v ∈ L(R) with i(u) ⊆ i(v). If t ∈ i(u),
then t(u) = t(v) = > and if t 6∈ i(u), then t(u) = ⊥. Therefore, t(u) ≤ t(v),
which gives that t J S.

(2)⇒ (1). Suppose that t J S. So, by Proposition 3.13, Im(t) = {t} ⊆ S,
that is, t ∈ S.

Lemma 3.15. Let L be a spatial frame. For any α ∈ RL and the frame
isomorphism η : L→ O(ΣL) by η(a) = Σa, we have ηα = ατ .

Proof. Let (p, q) ∈ L(R). We have

ηα(p, q) = η(α(p, q)) = Σα(p,q) = {x ∈ ΣL : α(p, q) 6≤ x}

and ατ (p, q) = {x ∈ ΣL : p < α(x) < q}. We show that

Σα(p,q) = {x ∈ ΣL : p < α[x] < q}.

Let x ∈ Σα(p,q), then α(p, q) 6≤ x. So α(−, p) ≤ x and α(q,−) ≤ x, because
x is prime and α(p, q) ∧ α(−, p) = ⊥ ≤ x and α(p, q) ∧ α(q,−) = ⊥ ≤ x.
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So p ∈ L(x, α) and q ∈ U(x, α). Hence p < α[x] < q. Thus x ∈ ατ (p, q).
Therefore, ηα(p, q) ≤ ατ (p, q) for all p, q ∈ Q. Hence ηα = ατ , by the
regularity of L(R). Consequently, ηα = ατ and the following diagram is
commutative:

L(R)
ατ //

α

��

OΣL

L

η

;;

Proposition 3.16. Let L be a spatial frame. Then the converse of the
Proposition 3.13 holds.

Proof. Let L be a spatial frame and Im(α) ⊆ S. Then, by Proposition
3.11, ατ J S. Now, by Corollary 3.9, there exists a unique frame map
β : OS → OΣL such that βi = ατ . Also, since L is spatial, we have the
isomorphism η : L → OΣL with η(a) = Σa. Now, define α̈ : OS → L by
α̈ = η−1β. See the following diagram:

OS
β

,,

α̈

��

OΣL

L(R)

i

bb
ατ

;;

α

��
L

η

>>

By Corollary 3.9, it is sufficient to show that α̈i is a unique frame map
such that α̈i = α. To do this, let (p, q) ∈ L(R). So, by Lemma 3.15, we have

α̈i(p, q) = α̈(i(p, q))
= η−1β(i(p, q))
= η−1(βi)(p, q)
= η−1ατ (p, q)
= α(p, q).

Also, since the frame map β is unique, it follows that α̈ is unique.
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Remark 3.17. Recall from [8] that for an infinite cardinal number k, then
X is a (Tychonoff) space of weight at most k. This means that X has a basis
for its topology of cardinality at most k. Moreover, let I be a k+-complete
ideal of subsets of X. This means that I is an ideal of subsets of X which
has the following property: if A ⊆ I and |A| ≤ k, then

⋃A ∈ I. Now, let
L = OX. We define a relation v on L as follows: for U, V ∈ L we put

U v V if and only if U \ V ∈ I.

Next, an equivalence relation ∼ on L is defined by

U ∼ V if and only if U v V and V v U.

For U ∈ L, we let [U ] denote its ∼-equivalence class. Now, put M = L/ ∼,
and define a partial order ≤ on M by

[U ] ≤ [V ] if and only if U v V.

This definition is well defined and M is a completely regular frame with
bottom [∅] = {U ∈ OX : U ∈ I} and top [X] = {U ∈ OX : X \ U ∈ I}.
For more details see [8].

Let α ∈ RL and {Si : i ∈ I} be a family of subsets of R. In the following
example, we show that if α J Si, for all i ∈ I, then α may not be an overlap
of
⋂{Si : i ∈ I}.

Example 3.18. Consider X = [0, 1] and k = ℵ0. Let

I = {A ⊆ [0, 1] : the measure of A is zero}.

It is clear that I is a k+-complete ideal of subsets of X. Now, let α : X → R
be defined by α(x) = x. Consider the frame map ατ : L(R)→ OX defined by
ατ (p, q) = τ(p, q) ∩ [0, 1]. Now, let L = OX and put M = L/ ∼, where ∼ is
the equivalence relation on L defined in Remark 3.17. Define β : L(R)→M
by

β(u) = [ατ (u)] = [τ(u) ∩ [0, 1]].

Let c be an arbitrary element of I. Let Sc = [0, 1]\ c. We claim that β J Sc.
Let u, v ∈ L(R) and i(u) ⊆ i(v). Then

τ(u) ∩ [0, 1] ∩ Sc ⊆ τ(v) ∩ [0, 1] ∩ Sc,
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which follows that

τ(u) ∩ [0, 1] \ τ(v) ∩ [0, 1] ⊆ c.

Since c ∈ I, then

(τ(u) ∩ [0, 1]) \ (τ(v) ∩ [0, 1]) ∈ I.

Hence, by Remark 3.17,

τ(u) ∩ [0, 1] v τ(v) ∩ [0, 1],

which follows that
[τ(u) ∩ [0, 1]] ≤ [τ(v) ∩ [0, 1]].

Therefore, β(u) ≤ β(v). Thus, β J Sc. Also, we have
⋂
c∈I Sc = ∅. Hence,

by Proposition 3.2, β is not an overlap of
⋂{Sc : c ∈ I} = ∅.

Proposition 3.19. Let α : L(R)→ L and β : L→M be frame maps.
(1) If α J S then β ◦ α J S.
(2) If β is a monomorphism and β ◦ α J S, then α J S.

Proof. (1) Let u, v ∈ L(R) and i(u) ⊆ i(v), then α(u) ≤ α(v). Therefore,
β ◦ α(u) ≤ β ◦ α(v). Hence β ◦ α J S.
(2) Let u, v ∈ L(R) and i(u) = i(v), then β ◦ α(u) = β ◦ α(v). Since β is a
monomorphism, α(u) = α(v).

Remark 3.20. In Proposition 3.19 (2), the condition that β is a monomor-
phism is necessary.

Example 3.21. In Example 3.18, for every c ∈ I, β J Sc = [0, 1] \ c, but
ατ is not an overlap of Sc = [0, 1] \ c, because Im(α) = [0, 1].

4 The ring RλL

Let S1 and S2 be subsets of R. For the binary operations � = +, ·,∧,∨ :
R× R→ R, we define

S1 � S2 = {a � b : a ∈ S1, b ∈ S2}.
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Lemma 4.1. Let S1 and S2 be subsets of R and S� = S1 � S2, for any
� ∈ {+, ·,∧,∨}. Let r, s ∈ Q, u ∈ L(R) and � ∈ {+, ·,∧,∨}. If τ(r, s)∩S� ⊆
τ(u) ∩ S�, then

Ai :=
⋃
{τ(p, q)∩Si : p, q ∈ Q , τ(p, q) � τ(t, k) ⊆ τ(r, s), for some t, k ∈ Q}

is a subset of

Bi :=
⋃
{τ(a, b) ∩ Si : a, b ∈ Q , τ(a, b) � τ(c, d) ⊆ τ(u), for some c, d ∈ Q},

for i = 1, 2.

Proof. Let x ∈ A1. Then there exist p, q, t, k ∈ Q such that x ∈ τ(p, q) ∩ S1

and τ(p, q) � τ(t, k) ⊆ τ(r, s). Hence for every y ∈ τ(t, k) ∩ S2, x � y ∈
τ(r, s) ∩ S�. Thus, there exist sequences

{pn}n∈N, {qn}n∈N, {tn}n∈N, {kn}n∈N ⊆ Q

such that pn, qn −→ x, tn, kn −→ y and for every n ∈ N,
p < pn < pn+1 < x < qn+1 < qn < q and
t < tn < tn+1 < y < kn+1 < kn < k.

Since x � y ∈ τ(u), pn � tn −→ x � y and qn � kn −→ x � y, we conclude that
there exists n ∈ N such that

x � y ∈ τ(pn, qn) � τ(tn, kn) ⊆ τ(u)

and x ∈ τ(pn, qn) ∩ S1, which shows that x ∈ B1. The case for i = 2 is
proved similarly.

Proposition 4.2. Let S1 and S2 be subsets of R. If α, β ∈ RL such that
α J S1 and β J S2, then α � β J S1 � S2, where � = +, ·,∧,∨.
Proof. Let S� = S1 � S2, r, s ∈ Q and u ∈ L(R). If τ(r, s) ∩ S� ⊆ τ(u) ∩ S�,
then, by Lemma 4.1, we have

α � β(r, s) =
∨{α(p, q) ∧ β(t, k) :< p, q > � < t, k >⊆< r, s >}

≤ ∨{α(a, b) ∧ β(c, d) :< a, b > � < c, d >⊆ τ(u)}
= α � β(u).

Therefore, α � β J S�.
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Definition 4.3. Let λ be an infinite cardinal number and α ∈ RL. We say
that α has the pointfree λ-image if there exists a subset S ⊆ R such that
|S| < λ and α J S.

Corollary 4.4. For every α ∈ RL and S ⊆ R, if λ < ℵ1 (the first uncount-
able cardinal) and α has the pointfree λ-image, then Im(α) is countable.

Proof. It follows from Proposition 3.13.

Corollary 4.5. Let f ∈ C(X), then the following statements are equivalent:
(1) The frame map fτ has the pointfree λ-image.
(2) Im(f) is a subset of R with | Im(f)| < λ.

Proof. It follows from Lemma 3.10 and Proposition 3.11.

Remark 4.6. Let L be a frame such that ΣL = ∅. For every α ∈ RL, we
have Im(α) = ∅. By Proposition 3.2, countability of Im(α) does not imply
countability of pointfree image of α.

Definition 4.7. For every frame L, we put

RλL = {α ∈ RL : α has the pointfree λ-image}.

For every r ∈ R, if Sr = {r}, then r J Sr. Therefore,

{r : r ∈ R} ⊆ RλL.

Remark 4.8. If λ > ℵ1, then RλL = RL, because for every α ∈ RL,
α J R.

Corollary 4.9. Let L be a frame. Then the set RλL is a sub-f -ring of RL.

Proof. By Proposition 4.2, it is evident.

Remark 4.10. We have

RcL := {α ∈ RL : there exists a countable subset S such that α J S}

as the pointfree version of the ring Cc(X), the subalgebra of C(X), consisting
of functions with countable image.

A study of zc-ideals and prime ideals in the ring RcL is done in [12].
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