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1. INTRODUCTION 

     Monte Carlo (MC) method is a numerical 

method for solving mathematical problems by 

the simulation of random numbers. The most 

common applications of MC method are the 

evaluation of integrals, mathematical finance, 

tree search, and simulation in several branches 

of science (Landau & Binder 2005) (Levy 

2010).  

In numerical integral application, integrals 

are sometimes not solved analytically. Whereas 

some numerical approximations can be 

obtained for such integrals using MC methods. 

The MC methods are based on computer 

generation sequences of pseudo-random 

numbers. These sequences behave as if they are 

truly random although they are produced by 

deterministic algorithms. The convergence rate 

of approximating an integral with MC methods 
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         Halton and Sobol sequences are two of the most popular number sets 

used in quasi-Monte Carlo methods.  These sequences are effectively used instead 

of pseudo random numbers in the evaluation of integrals. In this paper, the two 

sequences are compared in terms of the size of the number sets and 

dimensionality. The comparison is implemented with matlab programming for 

evaluating numerical integrals. The absolute error, which is the absolute 

difference between the exact and estimated errors, is plotted against dimensions 

for different functions. The practical results show that, except the first dimension, 

Sobol sequence is better than Halton sequence. The results also show that Sobol 

sequence outputs are more stable. 
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using a set of random samples of size n is 

O(n
−1/2

) (Serre 2010). 

Quasi-Monte Carlo (QMC) methods, also 

called low-discrepancy methods, use 

algorithms that reduce the discrepancy of 

generated random numbers. The low-

discrepancy sequences cover the space better 

than pseudo-random sequences by reducing 

gaps between the points. In computer 

programming, the generated sequences are 

matrices of size n-by-s, where n is the number 

of points and s is the dimension of the 

hypercube being sampled. In Figure 1, 

dimension 1 is   plotted against dimension 2 for 

both MC and QMC to show the discrepancy of 

generated random sequences. Quasi-random 

numbers appear to cover the area more 

uniformly than a pseudo-random numbers. The 

advantage of using low-discrepancy sequences 

is a faster rate of convergence, it achieves a 

convergence rate of O(n
−1

(log n)
s
) (Serre 

2010). There are several high-dimensional 

sequences for use in QMC:  Halton, Faure, and 

Sobol sequences. Other important sequences 

are Niederreiter and generalized Faure  

sequences (Krykova 2003).  

There are several publications that compare 

MC and QMC methods (Owen 2008). QMC 

method have been successfully used for 

multivariate integration of high dimensions, 

and were significantly more efficient than MC 

method (Sloan & Woźniakowski 1998) (Kuo & 

Sloan 2013). One disadvantage of QMC 

integration is that its error is difficult to be 

estimated, unlike MC integration (Tuffin 2008) 

(Jank 2005). Also it is stated that the problem 

of QMC methods is that their convergence is 

not independent of dimensionality (Frey 2008). 

Therefore, the accuracy of high-dimensional 

computations will not be guaranteed to be 

better than the MC. Lemieux mentioned within 

the drawbacks of QMC that the dimension 

needs to be small and the number of elements  

needs to be large in order to enhance the 

efficiency of QMC over the regular MC 

(Lemieux 2009). Morokoff  and Caflisch 

remark that the advantage of the QMC method 

is greater if the integrand is smooth, and the 

number of dimensions s of the integral is small 

(Morokoff & Caflisch 1995). 

The aim of this paper is to implement a 

practical comparison between two of the most 

popular sequences used in QMC methods, 

Halton and Sobol sequences. The comparison 

concentrates on the effect of the size of random 

number sets and the number of dimensions on 

the accuracy of the integral evaluation. The 

approach is to use the two matlab functions, 

haltonset and sobolset, with some of more 

general parameters for generating the two 

sequences and apply them on the simulation of 

mathematical integrals. To show the 

contribution of the dimensions in the error of 

the numerical integration, 60 dimensions are 

used separately in evaluating one-dimensional 

integral functions. The integral is applied on 

Figure 1: Two dimensional plot of pseudo-random numbers (left) and quasi-random numbers (right) 
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two different functions and the absolute errors 

are depicted to be investigated visually.  

The rest of the paper is organized as 

follows. Section 2, and section 3 give the 

mathematical background for Halton and Sobol 

sequences. Section 4 explains the method of 

integral evaluation using sample technique and 

shows the error calculations. Section 5 presents 

the algorithms and programs used to achieve 

the goal of this paper. Section 6 presents the 

results and discusses the outputs of the 

programs. Section 6 concludes the paper.   

2. HALTON SEQUENCES 

The theoretical frameworks of Halton and 

Sobol sequences are presented in several 

references. The interested reader can cosult 

(Caflisch 1998), (Dalal et al. 2008), and 

(McLeish 2011). The following short 

description is based on (Veach 1997). Halton 

low-discrepancy sequences are inspired by Van 

der Corput sequence introduced originally for 

one dimension and using the binary number 

system. The main contribution of Van der 

Corput in low-discrepancy sequences is that the 

coefficients of the digit expansion of an 

increasing integer k in base b can be used to 

define a low-discrepancy sequence. The Halton 

sequence is a generalization of the one-

dimensional Van der Corput sequence to higher 

dimensions. Each dimension is represented in a 

different prime base b (e.g., 2, 3, 5, 7, . . .). In 

one dimension, the radical inverse sequence 

 is obtained by first writing the base-

b expansion of k: 

, 

where . Reflecting the digits 

around the decimal point gives: 

  

The special case when b = 2 is the sequence: 

 

To obtain a low-discrepancy sequence in 

several dimensions, we use a different radical 

inverse sequence in each dimension: 

, 

where the bases bi are all relatively prime. To 

get Halton sequence, bi are chosen to be the 

first s primes: 

 

Even though standard Halton sequences 

perform very well in low dimensions, 

correlation problems have been noted between 

sequences generated from higher primes.  

3. SOBOL SEQUENCES 

Sobol sequences (Sobol’ 1967) also inspired by 

Van der Corput sequence with different 

approach. Here, we give a short description of 

generating Sobol sequences based on (Dalal et 

al. 2008) and (Bratley & Fox 1988). To 

generate one sequence (i.e., one dimension) of 

N-bit low-discrepancy Sobol numbers, we 

choose positive odd integers mi, where i=0, 1, 

…, N-1 and define N direction vectors ci: 

 

where cij denote the binary expansion of ci. 

Now, construct a primitive polynomial of 

degree d with coefficients ai chosen from {0, 

1}: 

 

These coefficients ai are used to calculate each 

direction vector ci as: 

 

 

where  is bitwise exclusive-or (XOR), and 

the last term is  right-shifted by d bits. 
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A one-dimensional N-bit wide Sobol 

sequence x1, x2, x3, … can be generated based 

on this set of direction vectors. The n
th

 term of 

this sequence is generated with n = bNbN-1 … 

b2b1 in binary. Then, 

 

To generalize this procedure to s 

dimensions, it is sufficient to choose any s 

different primitive polynomials and calculate s 

different sets of direction vectors as explained 

above, and then generate each xn using the 

corresponding set of direction vectors. 

4. INTEGRAL EVALUATION 

Monte Carlo approximation transforms the 

problem of integration into numerical method 

by calculating the average of the functions over 

random numbers. This is one of the MC 

methods for evaluating integrals which is 

called sample-mean method. To find the 

integral of a function over an s-dimensional 

unit cube, this method approximates the 

solution to the average of the function at a 

randomly set of points x1, ..., xn: 

, 

where each xi is a vector of s elements. In 

matlab, the QMC functions, haltonset and 

sobolset, can be used to produce quasi random 

sequences in the form of n-by-s matrices, 

where n is the number of points in each 

dimension s of the hypercube being sampled. 

Many trials are implemented for testing these 

functions with different integrals and different 

sets of n and s. To explain the results, the 

integrals are evaluated with n=10000 and 

n=100000 with each value of s, where s=1, 2, 

…, 60. The functions which are used for the 

following explanations are:  

 

 

The general form of the integral is 

 

With sample-mean method, the n random 

numbers are taken from  and the 

integral is estimated as 

  

If the interval of integration is taken between 

a=0 and b=1, the integral is simplified to 

  

To illustrate the results of evaluating the 

integrals, matlab programming is used to 

simulate the MC sample-mean method. The 

two functions, haltonset and sobolset, are used 

to generate 60 dimensions used to evaluate the 

one-dimensional integrals of functions (1) and 

(2) in the interval [0, 1]. With each dimension, 

the one-dimensional integral is evaluated and 

the absolute error is found for the sake of 

accuracy comparison. The absolute error is the 

absolute difference between the exact solution 

of the integral Iexc, and Iest. The integral 

evaluation is implemented for n=10000 and 

n=100000 to show the effect of changing the 

size of random number sets on the results of 

the integral evaluation.  

      The mean absolute error (MAE) is used to 

illustrate the effect of increasing the number of 

samples used for evaluating the integrals on 

decreasing the error of evaluation. The mean 

absolute error is the average of the absolute 

differences between the exact and estimated 

integrals. It is given by: 

  

 



36                                                     Mohammed   N. /ZJPAS: 2019, 31(1): 32-39 

 
 

 

5. ALGORITHMS AND PROGRAMS  

Algorithm 1 shows a general method for 

estimating the absolute error for the function 

f(x) in the interval [a, b] for any of Halton or 

Sobol sequences with different values of 

dimensions. Program 1 uses the a matlab 

program to plot the relation between the 

absolute error and the dimensions for the 

function sin(2x) in the interval [0, 1]. 

Algorithm 2 lists the steps of calculating MAE 

for different values of samples for a selected 

dimension. Program 2 applies the algorithm to 

plot the relation between the number of 

samples and the MAE for the function exp(-x) 

in the interval [0, 1]  

Alogorithm 1: Absolute error for interval [a,b] 

1- SET n to the number of samples  

2- SET s to number of dimensions 

3- SET Iexc to the exact solution of the integral 

4- Use haltonset or sobolset to generate n×s 

matrix 

5- FOR dim=1 to s 

FOR i=1 to n 

y[i]=f(xi)  

       END FOR  

       Iest=(b-a)*AVERAGE(y) 

                   Error[dim]=| Iest - Iexc| 

6- END FOR 

       

Program 1: Plotting absolute error vs dimensions 

for interval=[0,1] 

% function y=sin(2x) 

% a=0, b=1, therefore interval is ignored  

exact=0.70807; 

dim=60; % for 60 dimensions 

n=100000; % number of samples  

rng default 

h=haltonset(dim); 

halt=net(h, n); 

s=sobolset(dim); 

sobol=net(s, n); 

for d=1:dim 

xHalton=halt(:, d); % get x vector  

yHalton=sin(2*xHalton); % find f(x) 

    xSobol=sobol(:, d);% get x vector 

    ySobol=sin(2*xSobol); % find f(x) 

    yyHalton(d)=mean(yHalton);   

    yySobol(d)=mean(ySobol);  

end 

errorHalton=abs(yyHalton-exact); % absolute 

                            % error for Halton sequence 

errorSobol=abs(yySobol-exact); % absolute 

                           % error for Sobol sequence 

plot(1:dim, errorHalton, ':.k','linewidth',1) 

hold all 

plot(1:dim, errorSobol, '-k','linewidth',1) 

axis([0 dim 0 0.0004]) 

grid ON 

xlabel('Dimension') 

ylabel('Absolute Error') 

  

Alogorithm 2: Mean absolute error for interval 

[a,b] 

1- SET s to a selected dimension 

2- SET Iexc to the exact solution of the integral 

3- SET k=1 

4- FOR n=10000 to 100000, steps of 10000 

Use haltonset or sobolset to generate 

n×s matrix 

FOR d=1 to s 

 FOR i=1 to n 

      y[i]=f(xi)  

              END FOR  

  yy[d]=AVERAGE(y) 

       END FOR  

       Iest=(b-a)*AVERAGE(yy) 

                   Error[k]=| Iest - Iexc| 

       k=k+1 

5- END FOR 

 

Program 2: Plotting MAE vs number of samples 

for interval [0,1] 

% function y=exp(-x) 

% a=0, b=1, therefore interval is ignored  

exact=0.63212;  % exact solution of the function 

dim=3;  % dimension=3  

rng default  

for n=10000:10000:100000  % samples 

      h=haltonset(dim); 

      halt=net(h, n); 

      s=sobolset(dim); 

      sobol=net(s, n); 

      for d=1:dim 

            xHalton=halt(:, d);   % get x vector  

            xSobol=sobol(:, d);  % get x vector  

            yHalton=exp(-xHalton);  % find f(x)       

            ySobol=exp(-xSobol);  % find f(x)   

            yyHalton(d)=mean(yHalton);  

            yySobol(d)=mean(ySobol); 

    end 
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Figure 3: Absolute error of integral (2) with n=10000 (left) and n=100000 (right) 

    maeHalton(n/10000)=mean(abs(yyHalton- 

    exact));  % MAE for Halton sequence 

    maeSobol(n/10000)=mean(abs(yySobol-exact));  

                  % MAE for Sobol sequence 

end 

plot(1:10,maeHalton, ':k', 'linewidth', 2) 

hold all 

plot(1:10, maeSobol, '-r', 'linewidth', 1) 

axis([1 10 0 0.001]) 

grid ON 

xlabel('Nx1000') 

ylabel('MAE') 

6. RESULTS AND DISCUSSION 

The results of evaluating integrals of 

functions (1) and (2) are shown in Figure 2 and 

Figure 3 respectively. The figures show the 

plot of absolute error of estimated integrals 

using Halton and Sobol sequences as a function 

to the dimension of the sequences. 

Visual inspection of the outputs shows that 

the absolute errors are same when s=1 for the 

two sequences. For s>1, the performance of 

Sobol sequence is better than that of Halton 

sequence for all the values of the dimensions. 

The outputs show that the average of the 

absolute error increases with the increasing of 

the dimension for Halton sequence, while it is 

stable with Sobol sequence. The outputs also 

show that when n is changed from 10000 to 

100000, the absolute error is decreased in both 

sequences. 

The number of samples used for the 

evaluation affects the accuracy of integral. To 

show that, Program 2, listed in the previous 

section, is executed with different values of 

samples n. The values of n are taken as 10000, 

Figure 2: Absolute error of integral (1) with n=10000 (left) and n=100000 (right)  
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20000, …, 100000 with two values of the 

dimension, 3 and 60.   These values are 

sufficient for revealing the effect of increasing 

n on the error with small and large values of 

the dimension. Figure 4 is the output of the 

program for integral (2) and it shows that the 

absolute error is decreased in both sequences 

with increasing n. The figure also shows that 

when d=3, the difference of MAE in the two 

sequences is much less than that when d is 

increased to 60. The MAE of Halton sequence 

produces very bad performance with large 

values of d and low values of n. 

To find the reasons of the difference in 

accuracy of the results, it is important to see 

how the discrepancy is changed with changing 

dimension values in both sequences. To do so, 

the sequence numbers of several pairs of 

dimensions are plotted and investigated. All the 

testing of outputs show that Sobol sequence fill 

the space better than Halton sequence, leading 

to improve the results of integral estimation.  

Figure 5 shows examples of the relation 

between pair of dimensions of the two 

sequences. In high dimensions, Halton 

sequence tends to be uniform in diagonal 

arrangement leaving large spaces in the square 

unit. This bad distribution will increase the 

error in estimating the value of the integral. 

Sobol sequences maintains good distribution of 

the random number on all dimensions.  

It is worth mentioning that there are other 

Figure 5: Discrepancy plot of Halton sequences (left) and Sobol sequences (right) 

Figure 4: Mean absolute error for d=3 (left) and d=60 (right) 
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parameters, such as ‘leap’ and ‘skip’, which 

can be used with haltonset and sobolset in 

matlab to change the properties of the produced 

sets of the numbers (Kocis & Whiten 1997). 

These parameters are not used in this work. 

7. CONCLUSIONS  

Halton and Sobol sets are used in matlab 

for the generation of quasi-Monte Carlo 

sequences. These sequences are compared with 

different size of set numbers and different 

dimensions. The comparison is based on 

evaluating numerical integrals for one-

dimensional functions by matlab programming. 

The results show that the performance of Sobol 

sequence is better and more stable than Halton 

sequence. The results also show that Sobol 

sequence maintains the feature of low-

discrepancy while this feature is deteriorated 

with Halton sequence when the dimension 

value is increased. These differences in 

discrepancy affect the results of integral 

evaluations by increasing the absolute error 

with increasing d of Halton sequence. In the 

future work, the properties that change the 

sequences, such as ‘skip’ and ‘leap’, which are 

available in matlab, can be used for further 

analysis. 
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