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The uniqueness of bacteriophages plays an important role in bioinformatics research.

In real applications, the function of the bacteriophage virion proteins is the main area

of interest. Therefore, it is very important to classify bacteriophage virion proteins

and non-phage virion proteins accurately. Extracting comprehensive and effective

sequence features from proteins plays a vital role in protein classification. In order

to more fully represent protein information, this paper is more comprehensive and

effective by combining the features extracted by the feature information representation

algorithm based on sequence information (CCPA) and the feature representation

algorithm based on sequence and structure information. After extracting features,

the Max-Relevance-Max-Distance (MRMD) algorithm is used to select the optimal

feature set with the strongest correlation between class labels and low redundancy

between features. Given the randomness of the samples selected by the random

forest classification algorithm and the randomness features for producing each node

variable, a random forest method is employed to perform 10-fold cross-validation on

the bacteriophage protein classification. The accuracy of this model is as high as 93.5%

in the classification of phage proteins in this study. This study also found that, among

the eight physicochemical properties considered, the charge property has the greatest

impact on the classification of bacteriophage proteins These results indicate that the

model discussed in this paper is an important tool in bacteriophage protein research.

Keywords: phage virion proteins, machine learning, feature extraction, feature selection, hybrid sequence features

INTRODUCTION

In the biological world, bacteriophages are ubiquitous, with different genomes and lifestyles.
According to their morphology, they can be classified as either tail, tailless, or filamentous
bacteriophages. According to morphology and nucleic acid, phages are classified as infect bacteria
and infect archaea. The bacteriophage must be attached to a host cell for growth and reproduction
(Seguritan et al., 2012), and directly affects the host population by lysing host cells. In addition,
each bacteriophage is specific and greatly reduces the damage to host cells (Haq et al., 2012).
Identification and classification of various bacteria can be performed based on the universality,
diversity, dependence, and specificity of bacteriophages (Marks and Sharp, 2015).The structure
of bacteriophages is simple, consisting of only a protein shell and genetic material (DNA
or RNA) (Haq et al., 2012), making them important substances for simplifying experimental
research in bioinformatics. As a bacteriophage can insert genes into host cells (Ding et al., 2014),
it is an important tool for studying genetics (Cheng et al., 2018; Hu et al., 2018). Hershey
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(Hershey and Chase, 1952) performed biological experiments
using the T2 bacteriophage and bacteria in 1952, and finally
confirmed that DNA is the genetic material of bacteriophages
and other organisms. The significance of this research in
the development of biological science earned Hershey and
coworkers the Nobel Prize in Physiology. Bacteriophage provide
experimental systems and tools for the molecular biological
science revolution. The bacteriophage rapid development has led
to dection of basic principles of ecology and evolution. Besides,
it is relatively easy to synthesize and has modular characteristic,
which cater to the needs of synthetic biologists and carry out
engineering research and implementation of biological function.

Bacteriophage proteins are classified into virion and non-
viron proteins (Zhang et al., 2015), with most practical interest
focusing on the function of bacteriophage virion proteins
(Feng et al., 2013b). Therefore, bacteriophage proteins must be
accurately classified and identified so that researchers can further
study the structure and function of a particular bacteriophage.
After the human genome project was officially launched in
1990, the number of bacteriophage protein sequences with
unknown functions increased dramatically (Seguritan et al.,
2012; Chen et al., 2018a). Faced with a large volume of
data, traditional biological experimental methods could no
longer keep up with the post-gene era (Chen W. et al., 2016;
Cheng et al., 2019; Mrozek et al., 2016; Hu et al., 2018). For
this reason, researchers introduced different machine learning
algorithms into bacteriophage classification and prediction
research. For example, Li et al. (2007) developed a support
vector machine system called SynFPS that uses the gene–gene
distance determined by k-means clustering to identify closely
related genomes and perform gene function prediction. Using the
protein appearance frequency of amino acids and information of
isoelectric points, Seguritan et al. (2012) developed an artificial
neural network method to classify viral structures. Feng et al.
(2013b) used the main amino acid and dipeptide components
as an encoding scheme, and modified a naive Bayes classifier
to identify bacteriophage proteins. Ding et al. (2014) used
g-gap dipeptide composition to represent protein sequence
information, incremental feature selection to analyze the variance
and identify the optimal feature set, and a support vectormachine
for classification. Zhang et al. (2015) obtained sequence feature
vectors with various techniques, and then used the incremental
feature selection algorithm to select the optimal feature subsets.
Finally, the prediction results of individual classifiers trained
in different feature spaces were integrated to produce the final
classification effect. Machine learning algorithm (Robert, 2012;
Stephenson et al., 2018) automatically analyze and obtain rules
from data and use them to predict unknown data (Chen and
Yan, 2013; Yu et al., 2015, 2016a; Chen and Huang, 2017; Chen
et al., 2018h; Wang et al., 2018). This saves time and money, but
the results from such algorithms are not as convincing as those
from biological experiments. Therefore, it is especially important
to choose an appropriate machine learning algorithm to ensure
the most accurate classification results (Liu, 2017; Yao et al.,
2017; Yu et al., 2017a). In a protein classification experiment, the
classification effect depends largely on the feature set extracted
(Zou et al., 2013; Bin et al., 2015; Mrozek et al., 2015; Jia et al.,

2016; Yu et al., 2016b, 2018; Zhang et al., 2016; Huang et al.,
2017; Qu et al., 2017; Jiang et al., 2018; Qiao et al., 2018; Xiong
et al., 2018; Xu et al., 2018b). To date, feature extraction methods
are divided into sequence-based and structure-based approaches
(Huang et al., 2017; Qu et al., 2017) The feature set extraction part
of this study is obtained by combining the features extracted by
the two feature extraction methods.

In this study, we examined the final classification effect of
the selected methods and the stability of the dataset when
the feature dimension was reduced. First, to remove the
imbalance in the reference dataset, CD-Hit was used to remove
redundant data, resulting in a balanced dataset that contains
comprehensive information and less redundancy. Pearson’s
correlation coefficient and three distance functions (Euclidean
and cosine distances and the Tanimoto coefficient) (Zou et al.,
2016) were then used to calculate the correlation between features
and class labels and the redundancy between features. Finally,
the optimal feature subset with the strongest correlation between
features and class labels and low redundancy between features
was selected. According to some recent studies(Wu et al., 2009;
Yi et al., 2011; Chen and Lin, 2012; Yang et al., 2015; Yu et al.,
2017b; Zhang and Liu, 2017; Xu et al., 2018a; Liu et al., 2019),
the best algorithms for protein classification are support vector
machines and random forest algorithms. However, support
vector machines are more suitable for small sample sets in
which the number of dimensions is greater than the number
of samples. Thus, the random forest algorithm was used in this
study. The random forest algorithm (Breiman, 2001; Yao et al.,
2017) combines multiple weak classifiers to produce a final result
that has higher accuracy and better generalization performance.
It can achieve good results, mainly because of the random nature
of the “forest,” which makes the algorithm resistant to overfitting
and more precise. Finally, in terms of bacteriophage protein
classification, the data set extracted by combining the features
and the feature selection of the feature set have a positive impact
on the protein classification effect. Our results also show that,
among the eight physicochemical properties of amino acids, the
charge property has the greatest influence on the classification
of bacteriophage proteins. To evaluate the performance of the
models used in this study, the results were compared with those
given by the methods introduced in (Feng et al., 2013b; Ding
et al., 2014; Zhang et al., 2015). Figure 1 shows the workflow of
this study.

METHODS

Dataset Processing
Source: UniProt (Rolf, 2004; Consortium, 2012) is a widely
used protein sequence database that offers low protein sequence
redundancy and complete protein function interpretation (Cao
and Cheng, 2016a; Jiang et al., 2016). As this website is free and
open, researchers can download the desired protein sequence
for free. The original positive samples used in this study (a
total of 15,765 data), e.g., the number of bacteriophage virion
proteins, were downloaded from this database. After obtaining
the bacteriophage virion protein (positive) sample set, the PFAM
family of positive samples was excluded from all PFAM families,
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FIGURE 1 | Outline flowchart of this study.

such that the remaining samples were families of non-phage
virion proteins. Finally, the longest protein sequence of the
remaining families was extracted to form a negative sample
set. The positive and counterexample datasets obtained as
described above may all contain homologous sequences. Using
such sample sets would result in the classification accuracy being
overestimated, which is not conducive to the establishment of
predictionmodels. Therefore, we used the CD-Hit tool to remove
redundant positive and negative samples from the datasets.

Data integration: The CD-Hit (Li et al., 2001; Li and Godzik,
2006; Huang et al., 2010; Fu et al., 2012; Chen et al., 2017)
redundancy tool effectively clusters similar sequences. The basic
principle is to sort protein sequences in the dataset in descending
order. The longest sequence is taken as the first class, and then
this is compared with the second-longest protein sequence in
terms of their similarity. If the similarity between the two is
greater than some threshold, they are deemed to belong to
the same class. Otherwise, the second-longest sequence forms a
new class. Because the bacteriophage virion protein sequences
were downloaded from UniProt, which ensures relatively low
redundancy, the interrupt threshold was set to 0.8. The non-
phage virion proteins had a higher degree of redundancy, so
their interrupt threshold was set to 0.4. Thus, 6,251 bacteriophage
virion protein sequences and 9,514 non-phage virion protein
sequences were obtained. The union of the resulting positive
and negative sample datasets gives the total dataset, and the
intersection of the two is empty.

Feature Extraction
Representation Algorithms for Amino Acid

Composition and Eight Physicochemical Properties
In this study, a feature set containing 188 dimensions
was extracted based on amino acid composition and eight
physicochemical properties. The amino acid composition is one
of the most basic features of proteins (Zhang et al., 2015;
Cao and Cheng, 2016b). Eight physicochemical properties of

amino acids also play a role in the functional properties of
bacteriophage proteins. In 1988, Coia et al. (1988) found that
amino acids having lighter side chain groups are more likely
to constitute bacteriophage virion sequences. In 1994, Marvin
et al. (1994) proposed that hydrophilicity, hydrophobicity, and
charge have a greater impact on the function of bacteriophage
virion proteins. In 2008, Shen and Chou (2008) identified the
vital role that the hydrophilicity and hydrophobicity of amino
acids play in the folding of proteins. In 2014, Ting et al. (2014)
used logistic regression to integrate several biological features,
including physicochemical properties for predicting lysine
acetylation, thus demonstrating the effect of physicochemical
properties on protein structure and function. Therefore, the
amino acid composition and its eight physicochemical properties
are used to extract features that reflect the characteristics of
bacteriophage proteins.

The 20 most common amino acids are as follows:

CAA = {A,C,D,E, F,G,H, I,K, L,M,N, P,Q,R, S,T,V ,W,Y}
(1)

The occurrence frequency of each amino acid in a protein
sequence can be expressed as:

f1i =
{ni

L
|1 ≤ i ≤ 20

}

(2)

Where ni is the frequency with which amino acid i occurs in the
protein sequence and L is the length of the protein sequence.

In addition, these 20 amino acids can be classified into three
types according to their physicochemical properties (Chou and
Com, 2010), as shown in Figure 2.

The composition, transformation, and distribution of amino
acids were determined by Dubchak et al. (1995) based on a global
description of protein sequences. The feature extraction methods
for the eight physicochemical properties of a protein sequence
are as follows. Taking the electrode polarity as an example
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FIGURE 2 | Eight physicochemical properties of amino acids.

(expressed by p), the 20 amino acids are divided into high-,
medium-, and low-charged polarity groups, which are expressed
by ph, pp, pl, respectively. The composition, transformation, and
distribution of the amino acids at this time can be represented by
equations (3)–(7).

Composition features (Dubchak et al., 1995) (frequency of
each charged electrode group in a sequence):

(

f21, f22, f23
)

=
[

n1ph

L
,
n2pp

L
,
n3pl

L

]

(3)

where f21, f22, f23 denote the content of the high-, medium-, and
low-charged polarity groups in a sequence, respectively,L is the
length of the protein sequence,n1, n2, n3 are the frequencies with
which the three electrode groups appear in the sequence.

Conversion feature (Dubchak et al., 1995) (frequency of
occurrence of bigeminal sequences):

(

f31, f32, f33
)

=
[

m1phl

L− 1
,
m2php

L− 1
,
m3ppl

L− 1

]

(4)

Where f31, f32, f33 denote the content of the three bigeminal
groups phl, php, ppl, and m1,m2,m3 are the frequencies of these
three bigeminal groups appearing in sequence. There are
three possible sequences of the charged polarity: phl, php, ppl In
addition, in a protein sequence of length L, assuming that any
two adjacent amino acids constitute a pair, the protein sequence
contains L− 1 paired sequences (Zou et al., 2013).

Distribution features (Dubchak et al., 1995) (amino
acid distribution of the high-, medium-, and low-charged

polarity groups):

(

f411, f412, f413, f414, f415
)T = [a1%, a25%, a50%, a75%, a100%]

T (5)
(

f421, f422, f423, f424, f425
)T =

[

b1%, b25%, b50%, b75%, b100%
]T

(6)
(

f431, f432, f433, f434, f435
)T = [c1%, c25%, c50%, c75%, c100%]

T (7)

Where a1%, a25%, a50%a75%a100% represent the positions of the
first, 25, 50, 75, and 100% high-charged polarity groups in a
sequence, b1%, b25%, b50%, b75%, b100% represent the positions of
the first, 25, 50, 75, and 100%medium-charged polarity groups in
a sequence and c1%, c25%, c50%, c75%, c100% represent the positions
of the first, 25, 50, 75, and 100% low-charged polarity groups in
a sequence.

In summary, (3 + 3 + 3 × 5) = 21-dimensional features
can be extracted from each physicochemical property, and so
8 × 21 = 168-dimensional features can be extracted from the
eight physicochemical properties. The 188-dimensional features
(20-dimensional + 168-dimensional) are used to express the
characteristics of bacteriophage proteins, and are extracted based
on the content ratio of each of the 20 amino acids in the sequence
and the eight physicochemical properties.

Adaptive k-skip-n-Gram Algorithm
A feature set containing 400 dimensions is extracted based on
the adaptive k-skip-n-grammethod (Feng et al., 2013c; Cao et al.,
2017; Wei et al., 2017a; Tang et al., 2018) . In this study, the value
of n was set to 2 (202 = 400).

The K value represents the separation distance between
two amino acids. For example, in the protein sequence S =
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A1A2A3 · · ·AL (where L is the length of the sequence),

K = i− j− 1 (8)

And Ai,Aj are the ith and jth amino acids of S.
In a bacteriophage protein dataset, the sequences have very

different lengths. If the parameter K is fixed to a specific value,
the sequence information cannot be properly represented, which
will affect the final classification effect. Therefore, the value of k
was set to be adaptive so that K could vary with the length of
the sequence.

For n = 2, the combinations of the 20 most common amino
acids and the number of occurrences of each combination in the
sample datasets are as shown in Figure 3.

This process is similar to full connection in a neural network.
Among the 20 common amino acids, anyone can combine with
another amino acid (or itself) in pairs, and the combination
is random. In the same way as full connection, this leads to
overfitting when there are too many data. Therefore, n should
not be too high when using an adaptive k-skip-n-gram method.
When n = 1, we have the traditional n-gram model proposed
by Guthrie et al. (2006), which does not apply to shorter protein
sequences. Therefore, n was set to 2 in this study.

In this feature extraction method, the combination set of two
specified interval amino acids (Wei et al., 2017a) is given by:



















skip (K = 0) = {A1A2,A2A3, · · · , AL−1AL}
skip (K = 1) = {A1A3,A2A4, · · · , AL−2AL}

...
skip

(

K = k
)

=
{

A1A2+k,A2A3+k, · · · , AL−k+1AL

}

(9)

In addition, C is used to represent a set of two amino acids
that are combined at all intervals in a sequence (Wei et al.,
2017a).Namely:

Cskipgram =
{

⋃k

d=0
skip(K = d)|d = 1, 2, 3, · · · k

}

(10)

Finally, the feature extraction formula (Wei et al., 2017a) is:

FV =

{

N(am1am2 · · · amn)

N(Cskipgram)
|1 ≤ mi ≤ 20, 1 ≤ i ≤ n

}

(11)

Where N(Cskipgram) is the total number of elements in set
C,am1am2 · · · amn are the 20n kinds of amino acid combinations
of length n, N(am1am2 · · · amn) is the frequency that the two-two
combination in am1am2 · · · amn occurs in Cskipgram

Mixed Representation Algorithm (Seq-Str)
Some researchers have combined different feature extraction
methods and achieved very good classification results (Dehzangi
et al., 2013; Zou et al., 2014; Leyi et al., 2015, 2018; Chen X.
et al., 2016; Ding et al., 2016, 2017a,b; Li et al., 2016; Chen
et al., 2017,a,b, 2018c,d,e; Su et al., 2018 Shen et al., 2019; Wei
et al., 2019; Zhu et al., 2019). Wei et al. (2015) proposed a
novel feature extraction method that uses both the profile of

PSI-BLAST (Altschul et al., 1997) and the profile of PSI-PRED
(Jones, 1999), which contain rich evolutionary information and
secondary structure information, respectively. In this way, the
473-dimensional feature can be extracted.

1) Extract 20-dimensional features based on PSI-BLAST
as follows:

FV =
{

Si =
1

L

∑L

z=1
Sz,i| i = 1, 2, . . . 20

}

(12)

Sz,iindicates that during the evolution process, the residue at
the “z” position in the sequence S is mutated to the fraction of

the “i” species, and “i” is one of the 20 common residues. Si
indicates that during the evolution, the residue in sequence S
is mutated to the average score of the ith residue.

2) Extracting 420-dimensional features based on n-gram: The
Adaptive k-skip-n-gram algorithm that does not consider the
k value is the n-gram method. Here, take n equal to 1 and n
equal to 2

3) Based on the secondary structure sequence, the following
six features are extracted (Wei et al., 2015): Three feature
extraction formulas for spatial arrangement

CMVH =
∑nH

z=1
PHz/L(L− 1) (13)

Where PHz represents the position index of the zth H in the
secondary structure of the sequence S. nH represents the
total number of occurrences of H in the secondary structure
of sequence.

Two feature extraction formulas for the percentage of the
maximum continuous length (Wei et al., 2015).

RmaxCH = max {CH}/L (14)

CH represents the length of the fragment in which H appears
consecutively in the sequence of the secondary structure.

A new feature for distinguishing between two structural
classes, α + β and α

β
: (Wei et al., 2015)

fβαβ = nβαβ/Lseg − 2 (15)

This formula calculates the frequency at which βαβ appears in
the fragmented sequence Sseg , nβαβ represents the number of
times βαβ appears in Sseg , Lseg indicates the length of Sseg .

4) Extracting 27 features based on structural probability
matrices: Three features from the overall information and 24
features from local information

Feature Selection
Based on the feature extraction methods described in section
Feature extraction, We extracted a 188-dimensional, 400-
dimensional feature set based on sequence information, and
a 473-dimensional data set based on sequence and secondary
structure information representing the entire bacteriophage
protein sequence dataset. Some redundant or irrelevant cases
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FIGURE 3 | Two-two combination process of amino acids. (A) Two-two combination of residues. (B) Three-dimensional heat map of amino acid frequency. (C) Heat

map of amino acid frequency.

TABLE 1 | Classification results of three data sets under different classification

algorithms.

Feature_

extraction

Feature_

selection

number

of D

LibSVM

(%)

Naive

Bayes (%)

Random

forest (%)

CCPA 188D 68.5 78.3 91.3

MRMD 185D 68.5 78.3 91.5

AKSNG 400D 60.3 71.8 88.7

MRMD 252D 60.3 72.8 89.0

Seq-Str 473D 80.6 80.9 92.6

MRMD 189D 82.0 83.1 93.2

were still present in these features. The existence of invalid
features wastes time and computational resources, and affects
the classification accuracy of the model (Chen et al., 2018b,f,g;
Dao et al., 2018; Yang et al., 2018; Zhu et al., 2018a,b). In this
paper, the Max-Relevance-Max-Distance (MRMD) (Zou et al.,
2016) method was used to select features and identify higher-
quality feature sets, i.e., the optimal feature subset. In this
method, Pearson’s correlation coefficient is used to calculate
the correlation between features and class labels (MR), thus
enabling the selection of features with strong correlation to
the target class. Three distance functions (Euclidean and cosine

TABLE 2 | Classification performance under different feature extraction methods.

Extraction

method

Number of D SN (%) SP (%) ACC (%) MCC (%)

Seq based 188D 87.4 93.6 91.3 81.5

400D 82.8 92.4 88.7 76.1

Seq and str based 473D 86.2 97.2 92.6 85.1

Com based 588D 87.1 93.2 91.2 80.7

661D 87.5 96.5 93.1 85.3

distances and the Tanimoto coefficient) are used to calculate the
redundancy between features (MD) and identify features with
low redundancy.

Taking the two eigenvectors (X,Y) as an example,
Pearson’s correlation coefficient (Pearson, 1909) expressed
as follows:

ρX,Y = corr (X,Y) =
cov (X,Y)

σXσY
(16)

Where σX and σY denote the standard deviation of the two
vectors, cov(X,Y) is the covariance, which is used to measure
the relationship between two random variables. The covariance
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formula is as follows:

cov (X,Y) =

∑n
i=1

(

Xi −
−
X

) (

Yi −
−
Y

)

n− 1
(17)

Where
−
X and

−
Y denote the mean of the respective vectors.

The formula for the Euclidean distance (Larson and Edwards,
1991; Deza and Deza, 2009) is:

EDi =
1

M − 1

∑

√

∑n

q=1
(xq − yq)2 (18)

Where M is the number of feature vectors,n is the total number
of elements in each vector, and xq, yq are the q-th elements in
X,Y , respectively.

The cosine distance formula (Tan et al., 2005) is:

COSi =
1

M − 1

∑

(

X · Y
||X|| · ||Y||

)

(19)

Where

‖X‖ =
√

∑n

q=1
xq2 (20)

The Tanimoto coefficient (Rogers and Tanimoto, 1960) is
given by:

TCi =
1

M − 1

∑

(

X · Y
||X||2 + ||Y||2 − X · Y

)

(21)

Using these distance metrics, we identified the features with the
strongest correlation and minimum redundancy with respect
to the class labels. In different scenarios, we can increase the
weights of MR and MD (max

(

wr ×MRi + wd ×MDi

)

)
to ensure the acquired features are suitable for the
classification task.

EXPERIMENTS

Performance Evaluation Criteria
A 10-fold cross-validation method was employed to evaluate
the models. There are four common evaluation indicators,
namely the accuracy (ACC), sensitivity (SN), specificity (SP), and
Matthews’ correlation coefficient (MCC) (Feng et al., 2013a, 2018;

TABLE 3 | Classification performance under each model.

Model Feature_extraction SN (%) SP (%) ACC (%) MCC (%)

Mode l CCPA (188) 87.5 93.4 91.5 81.4

Mode 2 AKSNG (400) 82.9 92.2 89.0 76.0

Mode 3 Seq-Str (473) 86.7 96.6 93.2 84.8

Mode 4 Combine (588) 87.6 93.5 91.5 81.5

Mode 5 Combine (661) 87.9 96.3 93.5 85.3

Chen W. et al., 2016; Wei et al., 2017b,c; Xu et al., 2017; Jingjing
et al., 2018). These are expressed as follows (Zou et al., 2013; Chen
et al., 2014; Qu et al., 2017):

SN =
TP

TP + FN
(22)

SP =
TN

TN + FP
(23)

ACC =
TP + TN

TP + TN + FP + FN
(24)

MCC =
TP × TN − FP × FN

√
(TP + FN) (TP + FP) (TN + FP) (TN + FN)

(25)

Where TP denotes true positive, i.e., the number of positive
samples that are predicted to be positive samples, TN denotes
true negative, i.e., the number of negative samples that are
predicted to be negative samples, FP denotes false positive, i.e.,
the number of negative samples that are predicted to be positive
samples, and FN denotes false negative, i.e., the number of
positive samples that are predicted to be negative samples.

Classification Effects of
Different Classifiers
Experiment 1: This part of the experiment is based on the feature
sets of 188, 400, and 473 dimensions extracted by the method in
Feature extraction. The accuracy of each classification algorithm
before and after using the MRMD feature selection algorithm is
presented in Table 1.

The data in Table 1 indicate that, for the classification of
bacteriophage proteins, no matter which feature extraction
algorithm is used, whether or not feature selection is performed,
the random forest algorithm is the best classification effect.

Performance of Different Feature
Extraction Methods
Experiment 2: Experiment 1 showed that the random forest
algorithm produces the best classification of bacteriophage
proteins. In this second experiment, the 188-dimensional
and 400-dimensional datasets extracted based on sequence
information (Seq Based), a 473-dimensional dataset extracted
based on structure (Seq and stru Based), and two combined
feature sets (Com Based) were integrated into the random forest
algorithm, and the resulting performance was compared. The
experimental results are presented in Table 2.

TABLE 4 | Performance comparison against recent methods.

Model SN (%) SP (%) ACC (%) MCC (%)

Feng et al. (2013b) 75.7 80.7 79.1 54.9

Ding et al. (2014) 75.7 89.4 85.0 65.5

Zhang et al. (2015) 87.0 83.0 85.0 70.1

This search 87.9 96.3 93.5 85.3
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TABLE 5 | Impact of physicochemical properties on classification.

NO. Fea name Score Implication

1 Fea 120 1.0 Position of the 100%th neutral electrical storage amino acid in a sequence

2 Fea 157 0.9968696407744475 Position of the 100%th helical amino acid in a sequence

3 Fea 178 0.9950260206126923 Position of the 100%th soluble amino acid in a sequence

4 Fea 99 0.9949600329187752 Position of the 100%th neutral polarizability amino acid in a sequence

5 Fea 136 0.9948079966447566 Position of the 100%th large tensile amino acid in a sequence

6 Fea 83 0.994509178771573 Position of the 100%th high-electrode amino acid in a sequence

7 Fea 52 0.994137797849692 Position of the 100%th small van der Waals volume amino acid in a sequence

8 Fea 31 0.9937317569946658 Position of the 100%th hydrophilic amino acid in a sequence

Feature fusion can boost the recognition performance by
combining the complementary information of different features
(Zhu et al., 2016, 2018c). A 588-dimensional feature set was
obtained by combining the features of the 188- and 400-
dimensional feature sets, and a 661-dimensional feature set
was obtained by combining the features of the 188- and
473-dimensional feature sets. According to the experimental
results, the 188-, 473-, 588-, and 661-dimensional feature
set models give better bacteriophage protein classification
performance, However, based on the data of the other three
evaluation indicators, the 661-dimensional feature set obtained
by combining the 188-dimensional feature set extracted based
on the sequence information and the features of the 473-
dimensional feature set extracted based on the sequence and the
secondary structure is the best. This indicates that the feature
set extracted by the feature representation algorithm containing
both sequence information and structural information in
phage protein classification has the best influence on the
classification effect, and also shows that combining some
feature sets in protein classification is effective for improving
classification performance.

Importance of Feature Selection
Experiment 3: This experiment used the random forest
classification algorithm to classify the feature sets after MRMD.
The results are given in Table 3.

The comparison of the data in Tables 2, 3 shows that after
using the feature selection algorithm (MRMD), the classification
effect does not change with the decrease of the dimension,
and even with the decrease of the dimension, the classification
effect becomes better. After removing the redundant features,
the best classification performance is still the data set obtained
by feature combination, that is, the 256-dimensional feature
set obtained by removing redundant features from the 661-
dimensional feature set.

Comparison With Recent Methods
Experiment 4: To provide an objective demonstration of
the performance of the model described in this paper,
this experiment compared the optimal proposed model with
bacteriophage protein classification models proposed in recent
years. The results are presented in Table 4.

It is clear from Table 4 that the bacteriophage classification
model proposed in this paper achieves a good classification effect,
with a classification accuracy of 93.5%. Compared with Feng, it
has increased by 14%, compared with Ding and Zhang by 8%.
In the other three evaluation indicators, there are also different
degrees of improvement, indicating that the model proposed in
this paper is an effective tool for phage protein classification.

Analyzing the Impact of Eight
Physicochemical Properties
This section summarizes the first eight dimensional features
that have a significant impact on the classification effect of
bacteriophage proteins. The top eight features are listed in
Table 5 in order of their impact.

According to the information in this table, the effects of eight
physicochemical properties of amino acids on the classification of
bacteriophage proteins are evenly distributed, and that which has
the greatest impact on the classification is the charge property of
amino acids.

CONCLUSION

Bacteriophage proteins are of special significance for cell typing
and pathological research. It is very important to correctly classify
virion and non-virion bacteriophage proteins. Therefore, this
paper has proposed the following classificationmodel: (1) higher-
quality feature datasets are extracted with extraction algorithms
based on feature combination; (2) the optimal feature subset is
selected using the MRMD algorithm for feature selection; and
(3) the random forest algorithm is applied to perform protein
classification. The model can achieve accuracy of up to 93.5% for
the classification of bacteriophage proteins. This demonstrates
that themodel developed in this paper is an important tool for the
classification of bacteriophage proteins. For the future direction,
link prediction paradigms, which have been successfully applied
in the prediction of disease genes (Zeng et al., 2017) and
miRNAs (Liu et al., 2016; Zeng et al., 2018), can be considered
for identification of bacteriophage proteins. It might also be
important to integrate evolutionary information using tools like
evolutionary trees and networks (Yang et al., 2013, 2014). Finally,
computational intelligence such as neural networks (Song et al.,
2018a,b) and evolutionary algorithms (Hang et al., 2018) can be
applied in this field.
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