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Analysis of developmental brain networks is fundamentally important for basic

developmental neuroscience. In this paper, we focus on the temporally-covarying

connection patterns, called meta-networks, and develop a new mathematical

model for meta-network decomposition. With the proposed model, we decompose

the developmental structural correlation networks of cortical thickness into five

meta-networks. Each meta-network exhibits a distinctive spatial connection pattern,

and its covarying trajectory highlights the temporal contribution of the meta-network

along development. Systematic analysis of the meta-networks and covarying trajectories

provides insights into three important aspects of brain network development.

Keywords: brain network development, cortical thickness,meta-network analysis, low rank, temporal smoothness

INTRODUCTION

Over the past decade, the neuroscience community has reached the consensus that human brain
development is a structurally and functionally non-linear process (Gogtay et al., 2004). The
understanding of normal brain development is essential for understanding the neurodevelopmental
disorders, such as autism spectrum disorder (Bray, 2017), schizophrenia (Fan et al., 2008; Franke
et al., 2016), and attention deficit hyperactivity disorder (ADHD) (Kuntsi et al., 2005).

In recent years, studies on the development of brain networks have gained increasing attention.
Rapidly evolving technologies, such as Magnetic Resonance Imaging (MRI), Diffusion Tensor
Imaging (DTI), and functional MRI (fMRI), have made it progressively easier to build structural
(Alexander-Bloch and Giedd, 2013) or functional (Mancini et al., 2016) brain networks. Among
the various types of brain networks, the structural correlation network is built by computing
the Pearson’s correlation coefficient of structural features (e.g., cortical thickness) between each
pair of ROIs across subjects. Its difference from the structural covariance network (SCN), which
is often used synonymously, lies in that correlation is normalized by the variance of individual
datasets. Therefore, correlations are comparable between datasets of different scales (Alexander-
Bloch and Giedd, 2013). Extensive cross-disciplinary precedents suggest that inter-regional
structural covariance may result from coordinated neurodevelopment (Raznahan et al., 2011).
These synchronized developmental relationships are in turn influenced by physical white matter
connections and functional neuronal co-activation, and probably also by other genetic and
environmental factors (Alexander-Bloch and Giedd, 2013). Some researchers argued that the
structural correlation network may be more akin to the functional network than the white matter
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fiber structure network (Honey et al., 2010), because the white
matter may not be the only source of inter-regional interactions.
A longitudinal study of children after birth to 2 years old (Geng
X. et al., 2017) shows that functional networks are in place prior
to structural networks, hence regional co-activation in functional
networks may guide and refine the maturation of SCNs
over childhood development. Prominent changes of topological
properties take place in the structural covariance/correlation
networks since the neonatal stage. Modularity, local efficiency
and global efficiency all increase during the first 2 years of life
(Fan et al., 2011). After that, development (between the ages
of 5 and 18 years) appears to be non-linear, with a substantial
but transient shift toward greater integration and less local
segregation in late childhood (8–11 years) (Khundrakpam et al.,
2013). Primary sensory and motor networks are well-developed
in early childhood but expand in early adolescence before
pruning, while language, social-emotional, and other cognitive
networks are relatively undeveloped in younger age groups
and show increasingly distributed topology in older children
(Zielinski et al., 2010; Khundrakpam et al., 2013). During the
ages of 12–30 years, the network integration continues to increase
in the white matter structural connectivity networks (Dennis
et al., 2013). The frontal cortex has a disproportionate number
of decreases while the temporal cortex has a disproportionate
number of increases in fiber density. The lifespan changes of
both decreased segregation (within-module connectivity) and
increased integration (between-module connectivity) have also
been replicated in functional connectivity networks (Chan et al.,
2014;Wen et al., 2019; Zhang et al., 2019). A study of SCNs across
participants at ages of 8–85 years demonstrates that healthy
age-related brain degeneration mirrors development, with the
areas of the brain that develop later also degenerating earlier
(Douaud et al., 2014). This is supported by another research of
eight SCNs corresponding to the well-known functional intrinsic
connectivity networks that all the SCNs, except the primary
motor network, have distributed topology at young ages (18–
23 years), a sharply localized topology at middle ages (30–58
years), and are relatively stable at older ages (61–89 years) (Li
et al., 2013). Nevertheless, declines in functional connectivity
occur notably later in life than what is reported in the structural
connectivity (Lindenberger, 2014). This may suggest that the
brain actively maintains patterns of functional interactions for as
long as possible (Zuo et al., 2017).

Prior works on the analysis of developmental brain networks
generally fall into three categories. (1) The first category
(Honey et al., 2010; Vértes and Bullmore, 2015) depicts the
developmental curves of network characteristics using different
graph-theoretic metrics, such as small-world properties and
network efficiency (He and Evans, 2010). This group of methods
represents each brain network with one or more topological
attributes. (2) The second category investigates the dynamic
modular organization along development (Nie et al., 2011; Betzel
and Bassett, 2016; Zhang et al., 2018, 2019). Each module is
defined as a group of brain regions with dense intra-modular
connections and is often related to specific functions. The
methods in this category analyze the networks from the respect
of intra- or inter-modular connections, but cannot reveal the
composition of each connectivity, i.e., the different factors that

contribute to the formation of each connectivity. (3) The third
category employs many matrix decomposition methods, such as
principal component analysis (PCA), independent component
analysis (ICA), and non-negative matrix factorization (NMF), to
identify the intrinsic components (Ghanbari et al., 2014; Sotiras
et al., 2017) or connectivity states (Leonardi et al., 2013; Calhoun
et al., 2014; Kopell et al., 2014). Those methods represent each
network with either a centroid network or a linear combination
of subnetworks. The subnetwork representation is advantageous
in preserving detailed connectivity information so that it can
reconstruct the developmental networks.

Among the various matrix decomposition methods, NMF
is highlighted with its non-negativity constraint on both
of the factor matrices (Lee and Seung, 1999). This is an
important constraint because it leads to sparse, parts-based
representations, which are more interpretable than the non-
sparse and global features. Under the NMF framework, we
may interpret the decomposed basis matrix as meta-networks,
where the non-negative elements indicate the strength of
connections. Meanwhile, we may interpret the decomposed
coefficient matrix of NMF as covarying trajectories, whose
non-negative elements suggest the contribution of the meta-
networks along development. However, although the standard
NMF method makes the decomposition results interpretable,
there are still at least three other challenges to be addressed in
the developmental network analysis.

• Noise: Noise contamination is a common problem in brain
neuroimaging. Many factors contribute to noise in MRI, such
as scanner noise and subject noise. Despite the preprocessing
of neuroimages, the constructed developmental structural
correlation networks are inevitably affected by noise to some
extent. A good developmental network analysis method is
expected to exclude, or at least reduce, the impact of noise.
• Temporal smoothness: In the existing neural network models,

nervous systems can change smoothly by slowly adjusting
connectivity strength (Enquist and Ghirlanda, 2005). If the
developmental brain networks change smoothly with the
elapsing of time, the covarying trajectories of the underlying
meta-networks are also expected to evolve smoothly along
development. Besides, it is beneficial to enhance the model
robustness by considering temporal smoothness.
• Non-overlapped connections: Prior works on brain network

analysis often produce non-overlapped regions in each
subnetwork. However, every brain region evolves, grows and
adapts within the whole brain context. It could be misleading
if researchers overemphasize the evolution of brain network
organization in a modular fashion (Krasnegor, 2013). Instead,
since each connection develops in a unique way, it would be
biologically more meaningful to produce meta-networks with
non-overlapped connections.

In this study, we develop a new mathematical model to deal
with all the above challenges. With this model, we decompose
five meta-networks and their covarying trajectories from the
developmental structural correlation networks across subjects at
3–20 years of age. Analysis of the meta-networks reveals the
dynamic negotiation among different factors in brain network
development. In particular, three important aspects of normal
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TABLE 1 | Summary of the basic demographic information of the participants.

Male Female Total

Participants 214 231 445

Sessions 437 496 933

Session Age (years) 11.4 ± 4.3 11.5 ± 4.3 11.5 ± 4.3

Age range (years) 3∼20 3∼20 3∼20

brain network development are highlighted as follows: (1) two
types of indirect connections are gradually replaced by direct
connections, (2) the connections with some language-related hub
regions (bilateral IFGoperc, see full name in Table 2) peak at the
age of ∼7 years, (3) the connections with some emotion-related
hub regions (ACG.R andMCG.R) peak at the age of 12∼13 years.

MATERIALS AND METHODS

Participants
Data used in this article are from the Pediatric MRI Data
Repository1 released by the NIH MRI Study of Normal Brain
Development (Evans and Group, 2006), which is a multi-site
study that aims at investigating brain maturation in a normal
sample. In this study, we adopt 933 sessions of 445 subjects aging
from 3 to 20 years old. No participant had prior history ofmedical
illnesses with CNS implications, IQb70, or intra-uterine exposure
to substances known or highly suspected to alter brain structure
or functions (Evans and Group, 2006). Several participants are
scanned in two or more MRI sessions over a 5–6 year period.
In this study, we do not utilize the longitudinal information
of the same subject but treat all the sessions independently.
To obtain the developmental structural correlation networks,
we partition the 933 sessions into 18 groups according to their
ages (3∼20 years). The age in years are obtained by subtracting
the date of birth from the date of visit. Table 1 provides the
basic demographic information of the participants and sessions.
More detailed gender distribution at each age can be found in
Figure S1. As shown in Table 1 and Figure S1, males and females
have close distribution at each age.

Data Preprocessing
For each T1-weighted MR image, we first perform skull stripping
to remove non-cerebral tissues, the cerebellum and brain stem
with BET (Smith, 2002) in FSL (version 4.3). Then, each brain
image is segmented into gray matter (GM), white matter (WM),
and cerebrospinal fluid (CSF) regions (Zhang et al., 2001) with
FAST in FSL (version 4.3). Next, we reconstruct inner and outer
cortical surfaces represented by triangular meshes (Liu et al.,
2008). After registration with a high-dimensional non-linear
hybrid volumetric/surface registration method (Liu et al., 2004),
we have each cortical surface parcellated into 78 regions based on
the automated anatomical labeling template (Tzourio-Mazoyer
et al., 2002). Table 2 summarizes the 78 cortical surface regions
of interest.

1https://pediatricmri.nih.gov/nihpd/info/index.html

The cortical thickness is measured in the native space using
the shortest distance at each vertex (Fischl and Dale, 2000; Li
et al., 2012). The regional cortical thickness is computed as
the average thickness of all the vertices belonging to the same
ROI. To remove the effects of multiple confounding variables
(including gender and the whole-brain mean cortical thickness),
a linear regression analysis is performed at every cortical region
for each age (He et al., 2007). Then, the residual of regression is
taken as the final cortical thickness value. We treat the sessions
of the same age equally, and compute the pairwise similarity
of cortical regions with the inter-regional Pearson’s correlation
across subjects at each age (Alexander-Bloch and Giedd, 2013).
Take age 9 for example; there are 76 different subjects of 9 years of
age, then each ROI is represented with a cortical thickness vector
of length 76. By computing the pairwise Pearson’s correlation
coefficient among different ROI vectors, we build a 78× 78 inter-
regional correlation network for age 9. This study is performed
on the basis of our previous work (Nie et al., 2013). For more
detailed information about network construction, please refer to
the literature (Nie et al., 2013). We use the absolute values in each
network (Khundrakpam et al., 2013) so that each entry represents
the strength of the pairwise inter-regional correlation. In this
way, we obtain 18 non-negative cortical thickness correlation
networks with equal size (78 × 78) from the 3 year-old children
to the 20 year-old adults (Figure S2).

Mathematical Model for
Meta-Network Analysis
Suppose X = [x1, x2, · · · , xT] is the sequence of developmental
brain networks from age 3 to 20 years, xi ∈ R

n is the ith vectorized
network of length n=78×(78–1)/2, and T is the number of
time points (or networks). Meta-network decomposition aims at
uncovering the intrinsic meta-networksU= [u1, u2, · · · , ur] and
their corresponding covarying trajectories V=[v1, v2, · · · , vr]
(Figure 1). Here uj ∈ R

n is the jth vectorized meta-network, r is

the number of meta-networks, vj ∈ R
T is the covarying trajectory

of uj, indicating the contribution of uj over time.
To deal with the first challenge of noise interference, we

assume that the observed networks (X) are composed of the true
brain networks (X0) and arbitrary noise (E) two parts. Since true
signals are often of, or can be well approximated by, a low rank
structure (Markovsky, 2011), we impose the low rank constraint
on X0. Formally written,

X = X0 + E, rank( X0) ≤ r (1)

Meanwhile, we incorporate the non-negativity constraints of the
NMF model to ensure the interpretability of results, leading to
the following objective function.

minU,V≥0

∥

∥

∥
X− UVT

∥

∥

∥

2

F
+ 2λ

∥

∥

∥
UVT

∥

∥

∥

∗
(2)

The first term of Equation (2) is the approximation error of
‖X− X0‖, the second term is a regularization term that penalizes
the rank of X0. Since it has been proved (Srebro and Shraibman,
2005) that minimizing the nuclear norm of two non-negative
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TABLE 2 | Seventy eight cortical regions of automated anatomical labeling template.

Abbreviation Region Abbreviation Region

Precentral gyrus left PreCG.L Precentral gyrus right PreCG.R

Superior frontal gyrus left, dorsolateral SFGdor.L Superior frontal gyrus right, dorsolateral SFGdor.R

Superior frontal gyrus left, orbital part ORBsup.L Superior frontal gyrus right, orbital part ORBsup.R

Middle frontal gyrus left MFG.L Middle frontal gyrus right MFG.R

Middle frontal gyrus left, orbital part ORBmid.L Middle frontal gyrus right, orbital part ORBmid.R

Inferior frontal gyrus left, opercular part IFGoperc.L Inferior frontal gyrus right, opercular part IFGoperc.R

Inferior frontal gyrus left, triangular part IFGtriang.L Inferior frontal gyrus right, triangular part IFGtriang.R

Inferior frontal gyrus left, orbital part ORBinf.L Inferior frontal gyrus right, orbital part ORBinf.R

Rolandic operculum left ROL.L Rolandic operculum right ROL.R

Supplementary motor area left SMA.L Supplementary motor area right SMA.R

Olfactory cortex left OLF.L Olfactory cortex right OLF.R

Superior frontal gyrus left, medial SFGmed.L Superior frontal gyrus right, medial SFGmed.R

Superior frontal gyrus left, medial orbital ORBsupmed.L Superior frontal gyrus right, medial orbital ORBsupmed.R

Gyrus rectus left REC.L Gyrus rectus right REC.R

Insula left INS.L Insula right INS.R

Anterior cingulate gyri left ACG.L Anterior cingulate gyri right ACG.R

Median cingulate gyri left MCG.L Median cingulate gyri right MCG.R

Posterior cingulate gyrus left PCG.L Posterior cingulate gyrus right PCG.R

Parahippocampal gyrus left PHG.L Parahippocampal gyrus right PHG.R

Calcarine cortex left CAL.L Calcarine cortex right CAL.R

Cuneus left CUN.L Cuneus right CUN.R

Lingual gyrus left LING.L Lingual gyrus right LING.R

Superior occipital gyrus left SOG.L Superior occipital gyrus right SOG.R

Middle occipital gyrus left MOG.L Middle occipital gyrus right MOG.R

Inferior occipital gyrus left IOG.L Inferior occipital gyrus right IOG.R

Fusiform gyrus left FFG.L Fusiform gyrus right FFG.R

Postcentral gyrus left PoCG.L Postcentral gyrus right PoCG.R

Superior parietal gyrus left SPG.L Superior parietal gyrus right SPG.R

Inferior parietal left IPL.L Inferior parietal right IPL.R

Supramarginal gyrus left SMG.L Supramarginal gyrus right SMG.R

Angular gyrus left ANG.L Angular gyrus right ANG.R

Precuneus left PCUN.L Precuneus right PCUN.R

Paracentral lobule left PCL.L Paracentral lobule right PCL.R

Heschl gyrus left HES.L Heschl gyrus right HES.R

Superior temporal gyrus left STG.L Superior temporal gyrus right STG.R

Temporal pole left superior gyrus TPOsup.L Temporal pole right superior gyrus TPOsup.R

Middle temporal gyrus left MTG.L Middle temporal gyrus right MTG.R

Temporal pole left middle gyrus TPOmid.L Temporal pole right middle gyrus TPOmid.R

Inferior temporal gyrus left ITG.L Inferior temporal gyrus right ITG.R

matrix products is equivalent to minimizing their Frobenius
norm, i.e., min 2λ

∥

∥ UVT
∥

∥

∗ = min λ
(

‖U‖2F + ‖V‖
2
F

)

,we can
replace the nuclear norm in Equation (2) and obtain the following
objective function.

minU,V≥0

∥

∥

∥
X− UVT

∥

∥

∥

2

F
+ λ(‖U‖2F + ‖V ‖

2
F) (3)

To address the second challenge of temporal smoothness, we
introduce a regularization term to evaluate the smoothness of the
covarying trajectories V.

minU,V≥0

∥

∥

∥
X− UVT

∥

∥

∥

2

F
+ λ

(

‖U‖2F + ‖V‖
2
F

)

+ βtr
(

VTLV
)

(4)

In Equation (4), the third term tr
(

VTLV
)

=
∑T

i,j=1 wij

∥

∥vi· − vj·
∥

∥

2
regularizes the temporal smoothness

of V, where L is the Laplacian matrix, wij = e−‖xi−xj‖/2σ 2

measures the similarity between the networks at the ith and jth

time points, vi = [vi1, vi2, · · · , vir ] is the ith row of V, which
records the weight of the meta-networks at the ith time point.
Hence, if the developmental networks change smoothly with the
passing of time, the decomposed covarying trajectories will also
move smoothly over time.

Finally, we enforce an orthogonality constraint on U to
produce non-overlapped meta-networks. With this constraint
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FIGURE 1 | Illustration of meta-network decomposition. The developmental networks X = [x1, x2, · · · , xT ] are a sequence of brain networks at different ages (indexed

from 1 to T ). The meta-network decomposition method decomposes X into a small number of non-overlapped meta-networks U = [u1,u2, · · · ], whose dynamic

weight over time is indicated by the covarying trajectories V = [v1, v2, · · · ]. Each meta-network (e.g., u1) represents a distinctive network connection pattern. Each

covarying trajectory (e.g., v1) reveals the dynamic contribution of the corresponding meta-network with the passing of time.

(UTU = I), each connection will be grouped with other
covarying connections into a unique meta-network.

minU,V≥0

∥

∥

∥
X− UVT

∥

∥

∥

2

F
+ λ

(

‖U‖2F + ‖V‖
2
F

)

+ βtr
(

VTLV
)

s.t. UTU = Ir

(5)

Note that in Equation (5), the Frobenius norm of U is fixed
under the orthogonality constraint (‖U‖2F = tr

(

UTU
)

= r).
Therefore, the final objective function can be written in the
following concise form.

minU,V≥0

∥

∥

∥
X− UVT

∥

∥

∥

2

F
+ λ

(

‖V‖2F
)

+ βtr
(

VTLV
)

(6)

s.t. UTU = Ir

It can be proved that the multiplicative updating rules for U and
V are, respectively, as follows.

U← U⊙
XV

UUTXV
(7)

V← V⊙
XTU+ βWV

VUTU+ λV+ βDV
(8)

The symbol ⊙ represents the element-wise product, and the
division symbol is also element-wise. The proof of convergence
of the multiplicative updating rule for U and V is similar
to that of Lee and Seung (1999). To avoid local minimum,
we adopt an initialization strategy on U and V similar to
that of the kmeans algorithm, i.e., repeating multiple (100)
times with random initializations and choosing the best one.
The proposed method is robust to a wide range of the
regularization parameters (Figure S3).

Model Selection
We determine the number of meta-networks by examining
the reproducibility of the decomposed meta-networks and

covarying trajectories in a split-age setting. First, we divide
the developmental brain networks into two halves with odd-
numbered ages (3, 5, 7, 9, 11, 13, 15, 17, and 19 years) and
even-numbered ages (4, 6, 8, 10, 12, 14, 16, 18, and 20 years).
Then we quantify the reproducibility by computing the cosine
similarity between the meta-networks (or covarying trajectories)
of the two splits after matching them with the Hungarian
algorithm (Kuhn, 2005), as done in Lange et al. (2004). The cosine
similarity is advantageous in evaluating the covarying trajectory
reproducibility, because it is a judgment of orientation instead
of magnitude.

To verify the reliability of the decomposition results, we also
examine the reconstruction error with the increase of meta-
network number. The evaluation criterion is root mean square
error (RMSE),

RMSE (r) =
∥

∥ X− UrV
T
r

∥

∥

F√
nT

,∀r = 1, · · · ,T (9)

where nT is the number of connections in X. On the
basis of RMSE, we further compute the improvement of
RMSE contributed by each meta-network, i.e., 1RMSE (r) =
RMSE (r)− RMSE(r − 1), where RMSE (0) = ‖ X ‖F√

nT
.

After the determination of the meta-network number, we
examine the ratios of the reconstructed networks (X0 = UVT)
and the noise networks (E) in the developmental networks (X).
For the jth(∀j ∈ [1,T]) age, we compute the ratios by dividing the
total connection weight of the reconstructed network and in the
noise network by that in the developmental network.

rX0

(

j
)

=
∑n

i=1 X0(i, j)
∑n

i=1 X(i, j)
, rE

(

j
)

=
∑n

i=1 E(i, j)
∑n

i=1 X(i, j)
(10)

In Equation (10), rX0 (j) and rE(j) respectively denote the ratios
of the reconstructed network and the noise network in the
developmental network at the jth age. Note that X = X0 + E,
hence rX0

(

j
)

+rE
(

j
)

= 1. We further compute the mean ratio of
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the reconstructed networks and the noise networks by averaging
rX0 (j) and rE(j) over different ages.

rX0 =
1

T

T
∑

j=1
rX0 (j), rE =

1

T

T
∑

j=1
rE(j) (11)

RESULTS

We apply ourmethod to the developmental structural correlation
networks at 3–20 years of age and obtain five meta-networks as
well as covarying trajectories.

Reproducibility and Reconstruction
The reproducibility of meta-networks and covarying trajectories
generally declines with the increase of meta-networks
(Figures 2A,B). Yet, there is a clear peak at the meta-network
number of 5, which achieves a good balance between model
expressiveness and result reproducibility. Therefore, in this study
we set the meta-network number as 5.

The reconstruction error curves of the decomposed meta-
networks and covarying trajectories verify the reliability of our
selected meta-network number (Figure 3A). On one side, the
RMSE curve gradually declines with the increase of meta-
networks. On the other side, the 1RMSE curve progressively
converges to 0, which indicates the decreasing contribution of
the meta-networks in network reconstruction. When there are
5 meta-networks, 1RMSE is already sufficiently small (≤0.002)
that introducing additional meta-networks can hardly make
significant improvement. Therefore, it is reasonable to set the
meta-network number to 5 in this study.

With 5 meta-networks, the reconstructed networks and the
noise networks, respectively, account for 96 and 4% of the
developmental networks on average (Figure 3B). As the age
grows, the ratios of the reconstructed networks first climb
(>98%) and then decline. In contrast, the ratios of the noise
networks change in the opposite direction. Moreover, a statistical
t-test demonstrates that the ratios of the noise networks are
negatively correlated with the session numbers at different ages
(Figure S1) (r = −0.66, p < 0.002, one tailed), which indicates
that a larger number of sessions leads to smaller noise.

Meta-Networks 1–3: Direct vs.
Indirect Connections
Among the five meta-networks, the first three meta-networks
show a tradeoff between the direct and indirect connection
patterns (Figure 4). While Meta-network 1 is dominant
with direct connections between homotopic regions of two
hemispheres (Figure 4A), Meta-network 3 is featured with
long-distance direct connections between the prefrontal and
occipital regions (Figures 4A,C). In contrast, Meta-network
2 is highlighted with the corresponding two types of indirect
connections. One is the indirect connections between homotopic
regions through prefrontal areas (shaped like “∧” in Figure 4A).
Another is the indirect connections between the prefrontal
and occipital regions through frontal/temporal areas (shaped
like . A typical example is the direct connection between

bilateral supramarginal gyri (SMG.L and SMG.R) in Meta-
network 1 vs. the corresponding indirect connection through
the orbital part of the left superior frontal gyrus (ORBsup.L)
in Meta-network 2 (Figure 4A). The quantitative validation of
the connection patterns in the first three meta-networks are
illustrated in Figures S4A–D.

Combined with the covarying trajectories of the first three
meta-networks (Figure 4B), we find that the indirect connection
patterns are gradually replaced by the direct connection patterns
with the growth of age. On one side, the weight of the direct
connection patterns either stays high (in Meta-network 1) or
increases progressively (in Meta-network 3). On the other side,
the weight of the indirect connection patterns (in Meta-network
2), although starting from the highest value at the age of 3 years,
declines continuously until 13 years of age and remains stable
afterward. This observation is also quantitatively validated in the
developmental networks (Figures 5A,B).

Meta-Networks 4–5: Hub Structure
Different from the previous three meta-networks, the fourth
and fifth meta-networks are characterized with distinctive hub
structures (Figure 4A). Seven significant hubs are identified from
the five meta-networks depicted in a box plot (Figure 6). Three
of them lie in Meta-network 4, including the bilateral opercular
inferior frontal gyrus (IFGoperc.R and IFGoperc.L) and left
middle occipital gyrus (MOG.L) (Figure 4A). Meta-network 5
contains the other four significant hub regions, including the
right anterior cingulate gyrus (ACG.R), right middle cingulate
gyrus (MCG.R), left paracentral lobule (PCL.L), and right inferior
occipital gyrus (IOG.R) (Figure 4A). The quantitative validation
of the connection patterns in the fourth and fifth meta-networks
are illustrated in Figures S4E,F. We also note that the hub
regions in the fourth and fifth meta-networks are densely
connected with each other. The quantitative analysis of weighted
rich club coefficients (see Supplementary Method Rich-Club
Structure) statistically demonstrates the significance of rich clubs
(Van Den Heuvel and Sporns, 2011) in the fourth and fifth
meta-networks (Figure S6).

The (weighted) covarying trajectories of the fourth and
fifth meta-networks reveal the degree ratio development
of their hub regions in the developmental networks (see
Supplementary Method Covarying Trajectory and Degree
Ratio). For the fourth meta-network, its covarying trajectory
quickly climbs up until 7 years of age and then drops sharply.
As to the fifth meta-network, its covarying trajectory starts to
rise from the age of 3 years, reaches its peak at the age of 12∼13
years and then declines gradually. The quantitative analysis of
the developmental networks demonstrates that the development
trajectories of the identified hub regions (Figures 5C,D) are very
similar to the (weighted) covarying trajectories of the fourth and
fifth meta-networks (Figure S5).

DISCUSSION

We develop a novel meta-network decomposition method
to provide a dynamic view of how the different underlying
meta-network patterns negotiate with each other during the
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FIGURE 2 | (A) Reproducibility of meta-networks with the increase of meta-networks. The meta-networks decomposed from the odd-number aged developmental

networks (in upper row) are similar to the meta-networks from the even-number aged developmental networks (in lower row). The maximal reproducibility is 1, the

minimal reproducibility is 0. (B) Reproducibility of covarying trajectories with the increase of meta-networks. The covarying trajectories of the odd-number aged

developmental networks (in upper row) are similar to the covarying trajectories of the even-number aged developmental networks (in lower row).

development of brain networks. Compared with the existing
developmental brain network analysis methods, such as graph-
theoretical approaches (Honey et al., 2010; Vértes and Bullmore,
2015), modular organization methods (Nie et al., 2011; Betzel
and Bassett, 2016) and matrix decomposition methods (Leonardi
et al., 2013; Calhoun et al., 2014; Ghanbari et al., 2014; Kopell
et al., 2014; Sotiras et al., 2017), our proposed method is
advantageous in several ways. First, it is not only interpretable
with non-negative decomposition results, but also robust to noise
interference due to the low rank constraint. Second, it produces
smooth covarying trajectories according to the smoothness of the
evolution of the developmental networks. This agrees with the
existing neural network models that nervous systems can change
smoothly by slowly changing connectivity strength (Enquist and
Ghirlanda, 2005). Third, it views connections, instead of regions,
as the basic elements of a network and groups the covarying

connections into non-overlapped meta-networks. Therefore,
all the inter-regional brain connections are well-preserved for
unbiased analysis. Except from the developmental structural
correlation brain networks, our method is also applicable to
other imaging modalities, such as fMRI (Calhoun et al., 2001;
Beckmann and Smith, 2005; Esposito et al., 2005; Wu et al., 2017)
and fNIRS (functional near-infrared spectroscopy) (Geng S. et al.,
2017). As long as the spatiotemporal imaging features can be
organized into longitudinal brain networks (e.g., by computing
pairwise correlations within a time bin), the proposed method
can be universally applied to uncover the underlying meta-
networks and quantify the change in their contribution with the
passing of time.

In this study, we use the proposed method to uncover five
distinctive meta-networks from the cortical-thickness correlation
networks for 3–20 years of age. These five meta-networks
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FIGURE 3 | The reconstruction of the developmental structural correlation networks. (A) Root mean square error of increasing number of meta-networks. The left Y

axis for blue circles represents the root mean square error (RMSE), the right Y axis for red triangles represents the improvement of RMSE (1RMSE) introduced by each

meta-network. (B) When the number of meta-networks is 5, the ratios of the reconstructed networks (blue line) and the noise networks (red line) in the developmental

networks change with ages. The gray line indicates the mean ratio of the reconstructed networks (in the left blue axis) and the noise networks (in the right red axis)

over different ages.

are generally categorized into two groups. The first group,
composed of the first three meta-networks, reflect the gradual
replacement of two types of indirect connections by direct ones
along development. The direct correlation of cortical thickness
across participants may indicate the direct synaptic connections,
while the indirect correlation may indicate the polysynaptic
connections between spatially distributed regions that are
separated by the same physical distance. Since direct neural
connections are generally believed to use less time for signal
transmission than the polysynaptic connections (Grossenbacher,
2001), the replacement of indirect connections by direct ones
may suggest the increase of network global efficiency in the
normal brain development (Achard and Bullmore, 2007; Vogel
et al., 2010; Bullmore and Sporns, 2012). This agrees with the
research of Vogel et al. (2010) that regional interactions change
from being predominantly anatomically local in children to
interactions spanning longer cortical distances in young adults.

The second group of meta-networks, including the fourth
and fifth meta-networks, are characterized with significant hub
regions and rich club structures. The hubs of the fourth
meta-network include bilateral IFGoperc. and MOG.L. It has
been widely accepted that the opercular inferior frontal gyri
play a crucial role in language production, such as speech
intonation, word generation, linguistic fluency, grammar and
sentence comprehension (Friederici et al., 2003; Amunts et al.,
2004). The degree ratio of bilateral IFGoperc. in the fourth
meta-network is about a factor of eight of their degree ratio
(2 × 1/78) in a random network with the same number of
nodes (Figure S4E). MOG.R, as the secondary visual cortex, is
associated with visual-related functions, such as visuo-spatial
information processing (Lamm et al., 2001; Waberski et al., 2008)
and visual priming (Slotnick and Schacter, 2004). In recent years,
MOG.R has also been observed to be active in confrontation
naming, which involves word retrieval processes (Ghosh et al.,
2010). Therefore, the fourth meta-network may suggest the
connection patterns related with some language functions. The

covarying trajectory of the fourth meta-network peaks at the
age of ∼7 years, which is consistent with the critical period
for language acquisition by environment exposure (Hurford,
1991; Purves et al., 2001). We note that in the previous studies,
researchers found expanded distribution of structural covariance
(Zielinski et al., 2010) and functional connectivity (Koyama et al.,
2011) relevant to the language development. Nevertheless, they
are not contradictory to our findings, because our study reveals
the change of degree ratio of the language-related regions in
the developmental structural correlation networks. It is possible
when the connections with IFGoperc. increase, the connections
with other brain regions may increase more. Therefore, our study
to some extent reveals the specialization of the brain network
during development.

On the other hand, the hubs of the fifth meta-network include
ACG.R, MCG.R, PCL.L, and IOG.R. Among them, ACG.R and
MCG.R at the right cingulate gyrus both belong to the limbic
system. They are believed to be involved in emotion formation
and processing, decision-making, socially-driven interactions
and learning (Bush et al., 2000; Hadland et al., 2003; Apps et al.,
2013). The degree ratio of ACG.R and MCG.R in the fifth meta-
network is about a factor of five of their degree ratio (2 ×
1/78) in a random network with the same number of nodes
(Figure S4F). Executive control is also found to be related to the
anterior cingulate gyrus to suppress inappropriate unconscious
priming (Lavin et al., 2013). That may explain why PCL.L, whose
neurons are concerned with motor and sensory innervations
(Arslan, 2014), is the third hub of the fifth meta-network, because
PCL.L may provide auxiliary coordination with the cingulate
gyrus in behavior control (Sarkheil et al., 2013). Additionally, the
fourth hub IOG.R is important in visual information processing
(Rossion et al., 2003; Slotnick and Schacter, 2004; Waberski et al.,
2008), which may also provide auxiliary coordination. Therefore,
the fifth meta-network may suggest the connection patterns
related with emotion function. The corresponding covarying
trajectory of the fifth meta-network reaches its peak during
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FIGURE 4 | (A) Axial view of the five meta-networks depicted with BrainNet Viewer (Xia et al., 2013). The size of each node (i.e., ROI) is proportional to its degree in

the meta-network. The width of the edge is proportional to its correlation strength. Different ROIs are rendered with different colors according to their anatomical

locations as suggested by previous studies (Wang et al., 2007). The intra-modular edges are assigned with the same colors as their linked nodes, while the

inter-modular edges are colored in gray. The featured connections in each meta-network are highlighted in red/black lines and circles. Specifically, the red lines in the

first and second meta-networks illustrate the direct vs. indirect connections between homotopic regions in the two hemispheres. The black lines in the second and

third meta-networks illustrate the indirect vs. direct connections between the prefrontal and occipital regions. The black circles in the fourth and fifth meta-networks

highlight their significant hub regions. (B) The covarying trajectories of the five meta-networks move smoothly with the growth of age. (C) The medium view of

Meta-network 3 presents a clearer illustration of the direct connections between prefrontal and occipital regions within the same hemispheres.

adolescence (at the age of 12∼13 years). This is supported
by the neurobehavioral research that, around the age of 12
years, adolescents begin to show the capacity for visualization of
potential outcomes and logical understanding of cause and effect
(Steinberg, 2005; Arain et al., 2013).

To show the consistency among the decomposition results
on different cortical measures, we further apply the proposed
method onto the developmental cortical-curvature correlation
networks of the same subjects at 3–20 years of age (Nie et al.,
2013). Five cortical-curvature correlation meta-network as well
as their corresponding covarying trajectories (Figure S7) are
decomposed in comparison with the same number of cortical-
thickness correlation meta-networks and their covarying
trajectories (Figure 4). Despite of the difference in the two sets
of decomposition results due to the different developmental

networks, they both show a trend of gradual replacement
of indirect connections by direct ones. Therefore, the
decomposition results on the developmental cortical-curvature
correlation networks further validate the increase of network
global efficiency in normal brain development (Achard and
Bullmore, 2007; Vogel et al., 2010),(Bullmore and Sporns, 2012).

Compared with other matrix decomposition methods such
as the state-of-the-art PCA method, our model imposes
additional constraints, especially the non-negativity constraints,
on the meta-networks and covarying trajectories. As a result,
the proposed model is advantageous in interpreting the
covarying trajectories as the dynamic weight of meta-networks
along development. Nevertheless, the non-negativity constraints
also lead to the loss of negative correlation patterns in
meta-networks, but only preserve their strength instead. In
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FIGURE 5 | Quantitative validation of the major findings in the developmental networks. (A) The indirect/direct connection ratio between the homotopic parietal

regions in two hemispheres generally declines with the growth of age. The network cost refers to the ratio of the number of reserved edges in a network to the

maximum possible number of pair-wise connections (78×77/2). Lower network cost leads to stronger reserved correlations. (B) The indirect/direct connection ratio

between the prefrontal and occipital regions generally declines with the growth of age. (C) The degree ratios of the language-related regions (IFGoperc.L, IFGoperc.R,

and MOG.L) increase from the age of 3 years to the age of 7 years and then declines quickly. The developmental trajectories of those identified hub regions are very

similar to the covarying trajectory of the fourth meta-network. (D) The degree ratios of the emotion-related regions (ACG.R, MCG.R, PCL.L, and IOG.R) reach their

peaks at the age of ∼12 years and decrease slowly after that. The developmental trajectories of those emotion-related hub regions are very similar to the covarying

trajectory of the fifth meta-network.

respect of reproducibility, our proposed model produces more
reproducible meta-networks (or components) than PCA when
the meta-network number is between 3 and 5 (Figure S8A).
Meanwhile, it also produces more reproducible covarying
trajectories (or coefficients) than PCA despite of the change of
meta-network number (Figure S8B). Another advantage of our
method lies in its smoother covarying trajectories (Figure S8C).
Even without the temporal smoothness constraint (β = 0),
the covarying trajectories of our proposed method are still
much smoother than those of PCA. That may indicate higher
robustness of the proposed method against the influence of noise
than PCA.

Last but not least, since the meta-networks are determined
based on the covarying development of the connections between
ROIs, they are actually more complex than the dominant

connection patterns. For instance, except from the long direct
connections between the prefrontal and occipital regions, there
are also some indirect connections in the third meta-network
(Figure 4A). Aside from the emotion-related hub regions, there
are also some regions underlying different functions in the fifth
meta-network. This is reasonable because not all the indirect
connections are replaced by the direct connections, and the
enhancement of emotion function may require the coordination
from auxiliary brain regions. Our interpretation of the discovered
meta-networks only reflects the general trend of the underlying
tradeoff (Figure 5), but they may mean more than that.

Clearly, one can apply this method to group comparison.
The most intuitive way is to directly compare the meta-
network patterns between the normal control and patient
groups. Alternatively, we can also set the meta-networks as
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FIGURE 6 | Identification of the significant hub regions from the five meta-networks. (A) The box plot of all the degree ratios of the 78 ROIs in the five meta-networks.

Seven significant hub regions are identified as outliers (beyond the whiskers) from the five meta-networks. (B) The degree ratio distribution of the 78 ROIs in the five

meta-networks. The black circles highlight the identified seven hub regions, which have significantly higher degree ratios than the others. Among them, three hub

regions including IFGoperc.L, IFGoperc.R, and MOG.L are in Meta-network 4, while the other four hub regions, including ACG.R, MCG.R, IOG.R, and PCL.L, are in

Meta-network 5.

those of the normal control group, and then find out the
difference in the covarying trajectories between the normal
control and patient groups. The critical time neurodevelopmental
diseases, such as autism spectrum disorder (ASD), can be
identified in this way. In addition, with the progressively
easier collection of DTI or fMRI data, one can also apply the
proposed method to analyze the longitudinal brain networks
for different subjects. The comparison of the meta-networks
(and covarying trajectories) among different subjects may
help to improve the understanding of personalized brain
network development.

LIMITATIONS AND FUTURE WORK

In this study, we assume that all the non-overlapped meta-
networks remain unchanged throughout the developmental
process. However, it would be more realistic to take into account
the temporal impact on the meta-networks. In other words,
the meta-networks may evolve through different developmental
stages (e.g., childhood, adolescence, and adulthood). Besides,
we will compare the non-overlapped meta-networks with the
overlapped ones and discuss the influence of the age group
number in our future investigation. The current method can only
deal with full developmental networks without any missing data.
In fact, it would be more practical to extend the current method
to handle incomplete within-subject longitudinal networks,
because it is often the case that subjects only visit at a few time
points. Additionally, we anticipate that a voxel-wise calculation
could achieve a better result in terms of the meta-networks and
covarying trajectories in a fine granularity. However, there will
be a huge increase in computational load as there are millions
of vertices. In the future, we will develop a more efficient way to

deal with this problem. Moreover, different cortical atlases and
more different cortical features would provide a broader view for
the consistency of decomposition results. Therefore, in our future
work, we plan to improve the meta-network decomposition
method from the above respects and apply it to different types
of neurodevelopmental network analysis.

CONCLUSIONS

Our study provides insight into the developmental patterns
of brain structural network from early childhood through
early adulthood. To this aim, we develop a novel meta-
network decomposition method that can give a consistent and
compact representation for developmental brain networks. We
demonstrate that the development of brain structural network is
a smooth process that integrates multiple spatially heterogeneous
meta-networks, which are dynamically weighted with their
covarying trajectories. The intrinsic meta-networks reveal the
underlying connection patterns that contribute to the dynamic
change of brain network organization. Their corresponding
covarying trajectories quantify the development of each meta-
network, thus providing a benchmark for the development of
healthy brain networks.
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