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In ecological landscapes, species tend to migrate between nearby patches in search

of a better survivability condition. By this dispersal process, they form connectivity

between the patches and thereby may develop various correlated or partially correlated

population dynamics among species living in the patches. We explore various possible

emergent collective population patterns using a simple ecological network model of

all-to-all connected patches where we use a particular type of dispersal process that

is controlled by a weighted mean-field diffusion to include the failed migration between

the interacting patches. We represent the population dynamics of both the predator

and prey in each patch by a modified Rosenzweig-MacArthur (mRM) model that

incorporates an additional effect of habitat complexity. Our theoretical investigations

on the network dynamics, using numerical and to some extent, analytical techniques,

show various complex patterns, namely, 2-cluster, 3-cluster and multicluster states, and

chimera states, besides synchrony (1-cluster) and homogeneous steady states (HSS) in a

migrating metapopulation. An important observation is that addition of habitat complexity

in the Rosenzweig-MacArthur (RM) model makes qualitative changes in the collective

behaviors. Especially to mention that it shrinks the region of synchrony and broadens the

region of HSS, in parameter space and, thereby leads to better survival probabilities and

increased population persistence in a natural ecosystem.

Keywords: ecological network, habitat complexity, weighted mean-field diffusion, homogeneous steady states,

synchrony, clustering, amplitude mediated chimera

1. INTRODUCTION

Dispersal is a natural tendency of species in search of a better survival condition against scarcity
of food, high population density, intense grazing, or extreme climate changes. An important
question in ecology is how dispersal between patches can influence the intrinsic as well as the
collective behavior of the interacting species, and therebymake a balance and control of populations
[1]. Earlier studies [2–6] showed that dispersal can lower the burden of high population density and
reduce the chances of global extinction [7, 8], as species can migrate from over-populated patches
to empty or sparsely populated patches. Population migration in fragmented patches is described
as metapopulation dynamics [9, 10]. In isolated patches, species may survive in a non-equilibrium
state, namely, in a state of stable limit cycle oscillation [11–13]. In an ecological landscape, dispersal
or migration-driven spatial synchrony is a most likely event [14–18] as usually seen in dynamical
networks, in general, when many agents or oscillatory units interact via diffusion [19]. Examples
of spatial synchrony are abundant in population dynamics [18]. In a synchronous state, species
in all patches of a metapopulation fluctuate in a common rhythm; then if one goes extinct,
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all others are likely to follow the same fate. Synchrony may
thus deteriorate the chances of survivability in a situation of an
imminent crisis [10, 20–22]. Dispersal driven population stability
is another expected and well-known possibility in ecological
patches. Such diffusion induced stabilization of oscillation by
breaking a synchrony is an established phenomenon [23–28]
in dynamical networks as well when a homogeneous steady
state (HSS) or inhomogeneous steady states (IHSS) may emerge.
Species may develop more persistence or less chances of
extinction [29] when populations stop oscillating and stabilized
to a constant size. This fact may be explained from the experience
of dynamical system studies that a stable steady state as an
analog of population stability is robust to external perturbation.
Besides synchrony and population stability, many long-lived
transient complex patterns, spiral waves, chaos may emerge
[30] in a spatially extended ecosystem; stable complex spatial
patterns such as spots, stripes, and holes are also seen in natural
vegetations [31]. In dynamical networks, partial synchrony such
as clustered states [32–34] and chimera patterns [35–37] are well-
known transient or stable patterns. This encourages theoretical
studies by the ecological community to search for such complex
patterns in a metapopulation, if they exists at all, which may
be undertaken as possible strategies to enhance survivability of
species from the edge of extinction through a recolonization
process. We treat here a migration-driven ecological network
model as a dynamical network and use the known theoretical
techniques to explore various possible collective states using
the globally connected network structure and a special type of
migration process as explained below.

We focus on clustered states and chimera states in our
investigation. Existence of clustered states and chimera states
are not reported so far in experiments in ecology, to the
best of our knowledge. However, chimera states were first
observed in a network of non-locally coupled phase oscillators
in 2002 [35, 36], but later reported in networks of limit cycle
systems [38, 39], and then, most surprisingly, in networks of
globally coupled oscillators [40–42]. Synchrony usually emerges
in both amplitude and phase of all identical oscillators in
a network above a critical coupling when all the oscillators
develop a common rhythm. In chimera states, the synchronous
population of identical oscillators splits into two subgroups
above a critical coupling when one subgroup is synchronized
completely while the other subgroup remains asynchronous.
It was an unexpected behavior for a homogeneous network
and more surprising in a globally coupled network whose all-
to-all connectivity structure is symmetric. Such a symmetry-
breaking partial synchrony was difficult to explain in the
beginning. The reason behind the emergence of such a coexisting
pattern of synchronous and asynchronous subpopulations in
a network is more or less understood very recently [33, 34].
Most importantly, such incongruous pattern really exists and
found in nature [43] that makes an expectation of such
complex patterns in dispersal-driven ecological network too.
Besides chimera patterns, clustered patterns may also emerge.
In clustered states, the whole ensemble of oscillators splits into
subgroups of oscillators [32–34], but in contrast to chimera
states, each subgroup is now synchronous. However, there

exists no synchrony between the subgroups. Moreover, the
number of oscillators in each subgroup may not be identical.
Usually species in ecological systems survive mostly in steady
states; the population may also oscillate and survive in a non-
equilibrium state although chances of extinction prevails. Quite
a few theoretical studies were reported on 2-clustered death and
multiclustered death states [46] and chimera states [44, 45, 47]
and also spiral chimera states [48] in ecological networks using
a variety of coupling, non-local, distance dependent power-law
coupling and a purely diffusive coupling. For non-local coupling
[44], an emergence of chimeralike states was seen where a
synchronous or coherent population splits into one coherent
subpopulation in oscillatory states and another subpopulation in
coexisting steady states and oscillatory states. For the distance
dependent power-law connectivity between the patches [45],
amplitude chimera (AC) states were reported. The amplitudes
of the oscillating incoherent subpopulation did not show any
amplitude variation, but showed a phase lag in oscillation of
population between the incoherent patches. Both the studies used
the RM prey-predator interaction model [49] to represent the
local dynamics of each connected patch. Alternatively, we explore
chimera states using a globally coupled network structure where
dynamics of each ecological patch is represented by the RM
model, but with additional effect of habitat complexity. We use
the weightedmean-field diffusion as amigration process to define
the links between the patches. Such a interactive diffusion process
was first introduced [50, 51] for quorum sensing of genetic
oscillators and also used [52] for dynamical networks, in general.
Recently, the weighted mean-field diffusion was interpreted [46,
53] as a very relevant migration process that explains nicely the
failed or misdirected migration of species in a dispersal-driven
metapopulation. Thereby the authors observed HSS, IHSS, and
multiclustered-death states in a RM model based ecological
network of smaller size. We extend the work in a similar
globally coupled network with larger number of patches, when
we observe additional complexity in population patterns, namely,
2-cluster, 3-cluster, multiclustered, and amplitude modulated
chimera (AMC) states for low to moderate migration rate. We
mainly focus in the low to moderate dispersal rates and low
strength of mean-field factor when such complexity arises. For
largemigration, we findHSS, in other words, population stability,
as usual. However, a significant region of synchronous oscillatory
state also exists between the clustered states and HSS for an
intermediate range of dispersal, in parameter space. Furthermore,
we introduce an additional effect of habitat complexity in the
local dynamics of patches that broadens the region of HSS, in
parameter space and, shrinks the region of parameter space
for synchrony, especially, for low migration of prey and high
migration of predator. We explain the ecological consequence of
our observed dynamical properties in the discussion.

2. GLOBALLY COUPLED NETWORK OF
PREDATOR-PREY SYSTEMS WITH
HABITAT COMPLEXITY

Habitat complexity is ubiquitous and found both in terrestrial
and aquatic ecosystem in variable degree. For example, presence
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of sea grass, salt marshes, coral reefs make marine habitat
complex and predator’s success is greatly determined by the
degree/strength of the physical and structural complexity of
habitat. There are plenty of laboratory and field experiments
[54–58] which confirm that structural complexity of the habitat
has significant influence on predator-prey interaction. The
common hypothesis is that habitat complexity reduces predation
rates by decreasing encounter rates between predator and prey,
thereby enhances persistence of the interacting species. The
physical structure of the habitat also reduces the available space
for the interacting species and thereby reduces the carrying
capacity of the environment [59]. Taking into account the effect
of habitat complexity on predation rate and environmental
carrying capacity in explicit way, the following model
was proposed [59]:

ẋ = rx(1−
x

(1− c1)K
)−

α(1− c2)xy

1+ α(1− c2)hx
,

ẏ =
θα(1− c2)xy

1+ α(1− c2)hx
− dy, (1)

where xi and yi represent, respectively, the prey and predator
population densities at time t. Here r is the intrinsic growth
rate of prey, K is the environmental carrying capacity, θ(0 <

θ < 1) is the conversion efficiency of the predator and d is
the food-independent death rate of predator. The parameters
α and h represent the prey attack rate and handling time,
respectively. The effect of habitat complexity on the carrying
capacity is represented by the parameter c1(0 < c1 < 1) and
the effect of habitat complexity on predator’s functional response
is represented by the parameter c2(0 < c2 < 1). We call this
model as a modified Rosenzweig-MacArthur (mRM) predator-
prey model. The model parameters can be easily rescaled so
as to retain the original form of the RM model [49]. In the
rescaled model, one will be unable to track the specific effect
of the habitat parameters hidden in the rescaled parameters
and hence we keep them distinctly visible here. Further
explanation and illustration of the model can be seen in Jana
and Bairagi [59]. All parameters are assumed positive from the
biological viewpoint.

We extend the one patch model to N all-to-all connected
network of patches, where the local dynamics of each patch
is governed by the mRM model. The network dynamics is
represented by

ẋi = rxi(1−
xi

(1− c1)K
)−

α(1− c2)xiyi

1+ α(1− c2)hxi
+ ǫ1(qx̄− xi),

ẏi =
θα(1− c2)xiyi

1+ α(1− c2)hxi
− dyi + ǫ2(qȳ− yi), (2)

where i = 1, 2, . . . ,N is the patch or node index. All
the patches are assumed identical meaning that individual
patches have identical intrinsic dynamics as decided by their
identical parameters. The weighted mean-field diffusion of
species between the patches is considered to control the
dispersal-guided diffusion process between the patches. In a
metapopulation ecology, the weighted mean-field coupling is
justifiable when the dispersal probability of a species from a

randomly selected patch is assumed to be a fraction of its mean
density. This type of dispersal of species has been interpreted
[44, 53] as failed, misdirected migration or a partial death of
species during a migration. The mean population densities of
prey and predators are defined as x̄ = 1

N

∑N
i=1 xi and ȳ =

1
N

∑N
i=1 yi, respectively. The dispersal of both prey and predator

between the patches follows a diffusion process governed by
their respective mean-field densities with a weight factor q
(0 < q < 1) that measures the dispersal fraction of the
mean population density. The parameters ǫ1 and ǫ2 represent
the dispersal rates of prey and predator population, respectively.
We investigate numerically and, to some extent, analytically the
emergent collective states of species in the network by varying the
dispersal rates (ǫ1, ǫ2) and the weighted mean-field parameter q.
There is no spatial identity of the patches in a global coupling
since all nodes have equal distance from each other and have
equal degree distribution and therefore each node has equal
priority, representing a symmetric and homogeneous network.
We emphasize on the role of habitat complexity parameters c1,2
and show that habitat complexities make qualitative changes in
the characteristic features of collective dynamics.

3. COLLECTIVE STATES: NUMERICAL
RESULTS

Numerical simulations are initiated with pseudo-randomly
generated initial conditions, where all prey and predator densities
are uniformly distributed, respectively, on the interval (100, 400)
and (20, 50) in all patches. The model parameters of the mRM
model are set [59] as r = 2.65, K = 898, h = 0.0437, θ = 0.215,
α = 0.045, c1 = 0.01, c2 = 0.1, d = 0.12 so that the dynamics of
an isolated patch exhibits relaxation type oscillation as shown in
Figure 1A; the oscillation never reaches a zero population. Our
choice of model parameters is guided by a notion [11] that slow-
fast time scale in variation of prey and predator populations is a
necessary condition for sptial synchrony in a metapopulation in
the weaker dispersal regime. In a similar study, the RMmodel was
considered earlier [46] in search of synchrony and population
stability where the model parameters of an isolated patch were
also chosen for relaxation type oscillation.

In this present study, a network ofN = 100 globally connected
patches is considered and migration of both the prey and
predators are allowed between the patches. To explore all the
possible collective states, several phase diagrams are plotted in
the 2-parameter planes using the following quantitative measures
to identify various collective states, HSS, synchrony, clusters
and chimera states. A steady state in the network is identified
by estimating the standard deviations of the predator and prey
populations in each patch and averaging them as

1ASD =
1

N

N
∑

i=1

√

1

2

[

(
〈

x2i
〉

− 〈xi〉2)+ (
〈

y2i
〉

−
〈

yi
〉2
)
]

. (3)

Here 〈.〉 denotes time average. A steady state is identified when
1ASD is zero and it has a finite non-zero value in oscillatory states.
Number of unique steady states in case of HSS is one.
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FIGURE 1 | (Color online) (A) Temporal dynamics of an isolated patch. It is governed by the mRM model where black and red lines denote prey and predator

populations, respectively. The intrinsic dynamics of an isolated patch is relaxation type (x > 0 and y > 0) for the choice of parameters r = 2.65, K = 898, h = 0.0437, θ

= 0.215, α = 0.045, c1 = 0.01, c2 = 0.1, and d = 0.12. (B) Phase diagram in a q− ǫ plane of the ecological network of N = 100 nodes where ǫ1=ǫ2=ǫ. Different colors

depict diverse collective states: light blue for HSS, orange for global synchrony (1-cluster), yellow for 2-cluster states; red indicates 3-cluster; green represents higher

cluster states; blue for chimera state. (C) R vs. ǫ plot (q = 0.02) shows global synchrony (R = 1, blue line) for 0.45 < ǫ ≤ 0.5, HSS for ǫ > 0.5 (R = 1, red line). For

ǫ < 0.45 (R < 1), partial synchronization, clustering, or chimera states are observed. (D) R vs. q plot shows effect of q on synchrony (ǫ = 0.31).

For global coherence (1-cluster) or synchronymeasure, we use
the complex Kuramoto order parameter (R) [60] defined by

Rej8 =
1

n

n
∑

i=1

ejφi , (4)

where j =
√
−1, φi is the instantaneous phase of the ith patch.

φi is determined by φi = arctan(
yi−y∗

xi−x∗ ), where (x∗, y∗) is the
non-zero fixed point of the system (2). When all patches are
synchronized, R = 1 and in an incoherent state R = 0, while
0 < R < 1 implies partial synchronization or clustering and even
chimera states, which are further classified by other measures as
described below.

For a more precise classification of clustered states (when
R 6= 1), we use a clustering index (CI) [61],

CI =
max(n)

N
u, (5)

where u = 1−9(σ−p), p = max(n)−n̄, and9(.) is theHeaviside
step function; σ is an arbitrary small number, n(t) is the number
of distinct states counted (using a standard numerical routine) at
every instant of time t in the time evolution of the network and
n̄ denotes the average in a long run. The max(n) is the largest
possible value of n(t). We calculate the number of cluster states
by rounding the value n̄. In clustered states, 0 < R < 1 and
CI = 0. In chimera states, however, these measures are given by
0 < CI < 1 and 0 < R < 1.

The chimera state is finally characterized by a local order
parameter (Li), which presents an overview about the local degree
of incoherency. The local order parameter of the ith oscillator is
defined as Bera et al. [62]

Li =

∣

∣

∣

∣

∣

∣

1

2δ

∑

|i−k|≤δ

ejφk

∣

∣

∣

∣

∣

∣

, i = 1, 2, . . . ,N, j =
√
−1, (6)

where δ is the nearest neighbor on both sides of the ith oscillator
(we choose δ = 5) and φi is the instantaneous phase of the
ith patch. Li ≈ 1 indicates that the ith oscillator belongs to
the coherent subgroup of the chimera state, i.e., Li = 1 means
maximum ordering or coherency. In contrary, Li ≈ 0 means
ith oscillator belongs to the incoherent neighbors. For each
oscillatory patch, the local order parameter Li is computed for
a long time interval. For a confirmation of the chimera states,
we employ a long time mean of phase velocity of each oscillatory
patch. For ith oscillator, it is given by Banerjee et al. [63]

�i =
2πMi

1t
, i = 1, 2, . . . ,N, (7)

where Mi is the number of periods of the ith oscillator in the
long time interval 1t. Basically, it gives an impression about
the distribution of oscillatory frequency of a group of oscillators.
In an AMC state, �i is identical for the coherent subgroup of
oscillators and scattered for the incoherent subgroup. In AC
states, �i shows no distribution for both the subgroups.
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To get a glimpse of a broader scenario of the collective
dynamics of the network, we first approximate a symmetric
case with identical dispersal rates (ǫ1 = ǫ2 = ǫ) of both
the predator and prey, without losing the essential dynamical
features.We consider an approximation of equal weightedmean-
field diffusion rates q for both the species. We consider an
asymmetry in dispersal rates (ǫ1 6= ǫ2), at a later stage. We
first draw a phase diagram in a q − ǫ plane in Figure 1B

that gives an overview of different collective states denoted by
colors. A unique state of complete coherence (1-cluster) is seen
(orange) in a large region of parameter space, where populations
of both species in all patches oscillate in a common rythm and
the population densities in all patches are identical in time.
The parameter region of complete coherence (orange) is seen
to form a typical arnold-toungue-like structure [64], which has
a tip at a very small q value, but the region broadens with
increasing dispersal rate ǫ and for increasingly larger q values.
This coherent state (1-cluster) represents a globally synchronous
state. From the ecological viewpoint, both prey and predator
species follow a coherent oscillation in their temporal behavior.
In such a coherent state, the network becomes vulnerable to
external attack or perturbation. If population in any one of the
patches goes extinct at any arbitrary instant of time then all
other patches will follow the same trend, and thus enhances
the possibility of a global extinction. For larger dispersal ǫ, the
coherent region (orange) changes to a globally stable steady
state or HSS (light blue region), as shown in the right side of
the phase diagram. The transition to HSS occurs via reverse
Hopf bifurcation: the analytically drawn Hopf line (black line)
closely matches with the numerically drawn line of separation
that delineates the HSS region (light blue) from the coherent
region (orange). In the HSS region, both species reach a constant
density in all the patches; they coexist with non-zero identical
population density in each patch and they are safe. In dynamical
sense, a stable steady state has the ability to return to its original
stable state after a transient time under a perturbation and thus
HSS signifies robustness of a population to external attacks.
Besides these coherent oscillatory state (synchrony) and the
HSS, we find regions of 2-cluster (yellow), 3-cluster (red), and
multi-cluster (green) states. A symmetry-breaking line (black
circles) delineates the regions of synchrony and 2-cluster states
as obtained from numerical simulations of a reduced 2-patch
system (see Appendix in Supplementary Material) and it closely
fits to the separating line (boundary of orange and yellow regions)
as designated by numerical simulations of the full system. In
clustered states, all the patches split into coherent subgroups. In
a coherent subgroup or a cluster, species oscillate coherently with
almost identical population density at any time instant, however,
the subgroups remain incoherent between themselves. We notice
complex patterns such as chimera states (blue) for low q and a
range of ǫ values. The complexity in collective behavior is clearly
visible in the lower range of q values, and hence we focus on this
range of q values, in the next section. Before that we elaborate
the nature of transition to synchrony from an initial state of
incoherence. For this, we plot the order parameter R (Figure 1C)
against ǫ that decreases first, indicating a decreasing level of
coherence with higher clusters and emergence of chimera states.

Then R increases for increasing ǫ, indicating a decrease in cluster
size, but finally R = 1 when the network transits to synchrony
(blue line) at ǫ = 0.45 and it continues until ǫ = 0.5. The
HSS (red line) is reached (where R = 1) for ǫ > 0.50. The
transition to synchrony is also checked with a variation of q for
a fixed dispersal rate ǫ = 0.31 as shown in Figure 1D. It follows
a monotonic increase to R = 1, indicating existence of clustered
and chimera states before reaching synchrony.

A globally coupled network based on the RM model using
the weighted mean-field controlled dispersal was investigated
earlier [44, 46], in exhaustive details, numerically as well as
analytically, in two coupled patches to establish the evolution of
spatial synchrony and population stability, HSS and two regions
of transcritical bifurcation, in parameter space. They made an
extension to a 16-patch network to present two more emergent
IHSS states, 2-clustered death and multiclustered-death states
[28, 46]. We reproduce some of the previous results, mainly,
synchrony, HSS and two additional transcritical bifurcations (see
Appendix in Supplementary Material) for larger values of ǫ1,2,
which we do not focus here. Taking earlier experience [46] into
consideration, we rather focus our investigations on the lower
range of q values and weaker dispersal rates where complex
patterns (green, red, blue regions) really evolve as shown in
Figure 1B and as detailed in Figures 2A,B. Existence of complex
patterns, clustered states, multiclustered states and chimera
states, in non-equilibrium states, is absent in the earlier study
[46]. In a metapopulation, emergence of such complex oscillatory
patterns may play crucial role on the survival probability of
species. The main difference in our results lies in the choice of
low q and ǫ values.

Now we focus on the lower range of q in search of complexity
of collective behaviors. Selecting a lower value of q (0.02), as an
example, and varying both the dispersal rates ǫ1,2, two separate
phase diagrams (Figure 2) are drawn in the ǫ1 − ǫ2 plane using
the quantitative measures defined above. Figure 2A presents
collective dynamical scenarios of the network of predatory-
prey interactions represented by the original RM model; a
comparative picture of the collective states in the network
represented by the mRM patches is presented in Figure 2B.
In both the cases, we obtain regions of HSS (light blue),
spatial synchrony (orange) and 2-cluster (yellow), multiclustered
(green) and chimera patterns (blue) by numerically simulating
the full system of N = 100 patches. We attempt an analytical
stability analysis of the full system to derive the separating
boundaries of different complex patterns in the phase diagrams.
So far we are unable to do the stability analysis of the full
system (N = 100), however, we are able to reduce the network
to a 2-dimensional 1-patch system at HSS and then do the
stability analysis of equilibrium points of the reduced system.
Thereby we draw (see Appendix in Supplementary Material)
the Hopf bifurcation lines (black lines) in Figures 2A,B that
almost match the border of HSS and synchrony as obtained from
simulation of the full system. Similarly, we check the separating
line of synchrony and 2-cluster states, in parameter space, by
reducing the full system to a 2-cluster system (see Appendix

in Supplementary Material). We numerically simulate the 4-
dimensional reduced system to put a demarcation boundary
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FIGURE 2 | (Color online) Collective dynamical states in ǫ1-ǫ2 parameter plane. (A) Original RM network model (c1 = c2 = 0), (B) modified RM network model (c1 =

0.01, c2 = 0.1). Different colors depict various collective states: HSS (light blue), global synchrony (orange), 2-cluster (yellow), 3-cluster (red dots), higher cluster

(green), and chimera states (blue). Black circles on both phase diagrams denote the symmetry-breaking line from synchrony (1-cluster) to 2-cluster state as obtained

from numerical simulations of a reduced 2-patch mode. Other system parameters are same for both the models: r = 2.65, K = 898, h = 0.0437, θ = 0.215, α = 0.045,

d = 0.12, q = 0.02, and N = 100.

FIGURE 3 | (Color online) Temporal dynamics of prey and predator in presence of habitat complexity for different dispersal rates: (A) HSS for ǫ1 = 0.71, ǫ2 = 0.63, (B)

synchronous state for ǫ1 = 0.66, ǫ2 = 0.3, (C) 2-cluster states for ǫ1 = 0.3, ǫ2 = 0.11, and (D) 3-cluster states for ǫ1 = 0.4 ǫ2 = 0.44. Other parameters are chosen as

per in Figure 2B for the mRM based network.

between synchrony and 2-cluster state (black circles), which
shows an almost matching with the separating line obtained from
a simulation of the full system. Using the reduced system, we
depict a similar demarcation boundary of synchrony (orange
region) and 2-cluster state by putting a border of black circles at
the top left of Figure 2A.

Now we draw an attention to significant changes in our results
by the addition of habitat complexity. Figures 2A,B apparently
look similar since both the plots show large regions of HSS
(light blue) and regions of synchrony (orange) and 2-cluster
(yellow) states. A closer inspection, however, reveals noticeable
qualitative changes in collective dynamics in presence of habitat
complexity. Figure 2B clearly shows a larger area of HSS in the
ǫ1−ǫ2 parameter plane compared to Figure 2A. Changes in other
regions of clustered states (yellow, red dots, green) and chimera
states (blue) are also noticed. In the HSS region, both prey and
predator population densities become stable at a non-zero steady
state in all patches, as confirmed by their temporal dynamics in
Figure 3A, although isolated patches were in oscillatory states.
This represents a globally stable steady state (cf. R = 1, red line
in Figure 1C). The weighted mean-field-controlled dispersal of
species plays an important role in the emergence of this HSS

state. The non-zero fixed point explains its ecological relevance
as a coexistence of both prey and predator populations with
non-zero constant densities. This leads to a better survivability
condition of both the species in HSS since it is a robust state
against external or environmental perturbations. Obviously, the
presence of habitat complexity enhances persistence of species
by increasing the region of HSS in parameter space and thereby
supports the experimental results [54–58]. In the lower range
of dispersal rates, all patches are driven out of the HSS state
and enter into an oscillatory state (orange color), yet they
maintain a coherent state. A transition from the HSS state (light
blue) to the globally synchronous oscillatory state (orange) is
seen immediately below the HSS region via Hopf bifurcation
in Figure 2. Both the prey and predators start oscillating in a
globally synchronous state (orange), where all patches oscillate
in one common rhythm, as illustrated in the temporal dynamics
of the patches in Figure 3B. The oscillation in all the N = 100
patches show a single period limit cycle. As mentioned above,
extinction probability is higher in case of coherent oscillatory
populations as population may go extinct due to additional
environmental perturbation when population density is at the
nadir of a cycle [5, 6, 20]. If population in one patch goes
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FIGURE 4 | (Color online) Collective dynamics of predators in all N(=100) patches. Left and right panels show, respectively, snapshots and spatio-temporal

asymptotic dynamics of predators in 100 patches. (A,B) show snapshot and spatio-temporal of 1-cluster state for ǫ1 = 0.66, ǫ2 = 0.3. (C,D) represent snapshot and

spatio-temporal of 2-cluster states for ǫ1 = 0.3, ǫ2 =0.11. (E,F) represent snapshot and spatio-temporal of 3-cluster states for ǫ1 = 0.4, ǫ2 = 0.44. System

parameters are as chosen in Figure 2B with q = 0.02 for the mRM based network.

extinct for some external perturbations, it will be followed by
the populations of all other patches in the network, causing
global extinction of the species. In this sense, synchrony is always
a curse for ecological systems. A reasonably large region of
globally synchronous state also exists in the lower range of prey
dispersal rate and larger predator movement as seen (top left)
in Figure 2A. This synchronous state is almost vanished in the
same parameter region in Figure 2B. The presence of habitat
complexity thus incurs another qualitative change and thereby
improves the survivability condition by breaking the synchrony
and inducing multi-clustered states (green) and chimera states
(blue) in this region of the ǫ1 − ǫ2 parameter plane.

For weaker dispersal rates, below the synchronous state
(orange), regions of 2-cluster states (yellow), 3-clustered
(scattered red dots), multi-clustered (green) states and chimera
states (blue) are seen in both the phase diagrams in Figure 2.

For further illustration of collective states, we select dispersal
parameters from different colored regions of the phase diagram
Figure 2B, representing the mRM based network, and present
their respective temporal dynamics, snapshots, spatio-temporal
dynamics and also plots of local order parameter Li and
mean phase velocity �i. The temporal dynamics of both
predator and prey populations in all patches are plotted in
Figures 3C,D for 2-cluster and 3-cluster states, respectively,
which are quasiperiodic in nature in both the states. Snapshots
of predator population in all patches (indicated by node indices)
are plotted in Figures 4A,C,E, showing 1-cluster (synchrony),
2-cluster and 3-cluster states, respectively, for different choices
of (ǫ1, ǫ2). One coherent group (1-cluster) splits into 2- and 3-
coherent subgroups of unequal number of patches (node indices);
each subgroup have identical population density (yi level), in the
snapshot, but there exist different levels of densities for different
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FIGURE 5 | (Color online) Chimera states for the dispersal rates ǫ1 = 0.29, ǫ2 = 0.22. (A) Spatio-temporal plots and (B) snap shot of predator population. (C) Local

order parameter Li and (D) mean phase velocity �i . (E) Temporal dynamics of coherent patches and (F) the same for incoherent patches. Other parameters are as

chosen in Figure 2B for the mRM network.

subgroups. Corresponding spatio-temporal plots presented in
Figures 4B,D,F also confirm the collective states of 1-cluster,
2-cluster, and 3-cluster, respectively. Clearly, the subgroups in
each 2-, 3-cluster states have no coherence.

Multi-clustered states (green color) and chimera states (blue
color) are present in smaller islands, but clearly noticeable
in parameter space as shown in Figure 2 for both the cases.
A spatio-temporal plot of yi population in all the patches in
Figure 5A shows chimera pattern with two subgroups: one
coherently oscillating and another oscillating incoherently. The
spatio-temporal plot of the local order parameter Li (node
index) presented in Figure 5C is in agreement with Figure 5A.
This chimera pattern is further confirmed by a snapshot in
Figure 5B that shows coherence in predator densities yi in all
the patches, while a smaller subgroup of patches show random
distribution. The mean phase velocity is plotted in Figure 5D

that shows a distribution for the incoherent patches in the same
subgroup while they are identical for the coherent patches. This
identifies the chimera states as amplitude mediated, i.e., as a
case of AMC. The temporal dynamics of all the coherent and
incoherent patches are presented in Figures 5E,F, respectively.

The coherent patches show identical oscillation, while oscillation
in the incoherent patches have varying amplitude, but both are of
quasiperiodic nature.We have checked the quasiperiodicity using
a Poincáre plot, which we do not present here.

4. DISCUSSION

A globally connected network structure is considered here as
an approximate model for studies of metapopulation dynamics
in ecological networks [14, 65]. Although a number of
complex natural processes is involved in ecological systems,
a deterministic model approach, as proposed here, can still
be used to extract reliable information on the complexity of
population dynamics [65]. Here we assume that all the patches
in the network have all-to-all connectivity by the process of
dispersal of species and the predator-prey interaction in each
patch is governed by the mRM model, where the local dynamics
exhibits stable limit cycle oscillation in isolation. Both the
prey and predator species have freedom to migrate within the
patches [11–13] and the migration of both species depends
upon its average or mean population density. The diffusion or
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the migration process between the patches is controlled by the
weighted mean-field density of each species [50, 53, 66]. Such
a weighted mean-field guided diffusion process was initiated in
quorum sensing of synthetic genetic oscillators [50, 51] and later
on, it has been applied to other generic dynamical models to
realize HSS in coupled oscillatory systems [52, 67]. We used the
weighted mean-field diffusion process to describe a dispersal-
drivenmetapopulation since it is more realistic in a perspective of
partial loss of population duringmigration of species as suggested
earlier [46, 53], however, extended their results [46] in a search of
complex patterns.

A basic question in ecological network study is—how such
a diffusion process of dispersal of species can influence the
collective dynamics of the network and if it can originate
complex spatio-temporal patterns? Another important question
is how does complexity in collective spatio-temporal pattern
help an ecological landscape and most importantly, if it can, at
all, improve the survivability and persistence of species when
such complex collective states may emerge? To address the
questions, we first plotted a two parameter phase diagram in
the dispersal rate and weighted mean-field parameter plane
under an approximation of identical dispersal rates of both
species. The phase diagram gave an overview of the collective
dynamics of the ecological network as shown by different
colors under varying weighted mean-field diffusion and dispersal
rate. A spatial synchrony prevailed in a large region of the
parameter space along with a significantly large region of 2-
cluster and HSS. However, we observed smaller regions of
complex collective patterns such as 2-cluster, 3-cluster, multi-
cluster, and chimera states in the lower range of weighted mean-
field diffusion constant. To have a closer look on the complex
dynamics for lower values of the weighted mean-field diffusion
constant, another phase diagram was plotted with respect to
the dispersal rates of prey and predator species for a low value
of weighted mean-field constant. It showed prominent regions
of complex patterns in a parameter plane of dispersal rates:
2-cluster, 3-cluster, multi-clustered, and chimera states in the
region of lowweightedmean-field constant. Existence of complex
collective patterns were identified using several quantitative
measures, namely, Kuramoto order parameter, clustering index,
local order parameter and mean phase velocity. Spatio-temporal
plots, snapshots of predator, and prey population dynamics of
all patches gave us confirmation of our claims of the variety of
collective states, especially, information about clustered states
and chimera states. A transition from synchronous oscillatory
state to HSS occurred via reverse Hopf bifurcation for higher
dispersal rates as confirmed by a stability analysis of the
reduced system at HSS (Appendix in Supplementary Material).
A representative example of emergent complex patterns for a low
q value is presented here, however, it has been found true for a
range of q values.

Another important question that we tried to address is
the role of habitat complexity on the emergence of complex
patterns. For a comparative understanding of the collective
dynamics in presence and absence of habitat complexity, a
phase diagram in the same parameter plane of dispersal rates
was added using the ecological network where each node was

represented by the original RM model without having habitat
complexity parameter. The region of HSS had been enlarged
significantly, in parameter space, by the addition of habitat
complexity in our proposedmRMmodel, indicating an increased
parameter region of dispersal rates that provided an improved
condition of persistence. Furthermore, in the absence of habitat
complexity, a region of synchrony that existed for lower rates of
dispersal of prey and higher dispersal of predator, disseminated
into larger varieties of complex patterns in presence of habitat
complexity. By decreasing the parameter space for spatial
synchrony, species in an ecological landscape were allowed to a
large variety of dispersal possibilities that may reduce the risk
of extinction.

Habitat complexity has no specific role in the origin of
complex patterns. In fact, we showed in a comparative study
that complex patterns originate for both cases: in absence and
presence of habitat complexity. Complexity in collective states
may be attributed to the choice of low q and ǫ values. Finally,
we mention that all the complex patterns emerge, in non-
equilibrium states, in our globally coupled ecological network.
How complex oscillatory patterns help improving survivability
or persistence of species is a future question of investigation
to address.
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