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Endometrial cancer is the most commonly diagnosed gynecological cancer in developed

countries. Based on evidence from observational studies which suggest selenium inhibits

the development of several cancers (including lung and prostate cancer), selenium

supplementation has been touted as a potential cancer preventative agent. However,

randomized controlled trials have not reported benefit for selenium supplementation in

reducing cancer risk. For endometrial cancer, limited observational studies have been

conducted assessing whether selenium intake, or blood selenium levels, associated

with reduced risk, and no randomized controlled trials have been conducted. We

performed a two-sample Mendelian randomization analysis to examine the relationship

between selenium levels (using a composite measure of blood and toenail selenium) and

endometrial cancer risk, using summary statistics for four genetic variants associated

with selenium levels at genome-wide significance levels (P < 5 × 10−8), from a

study of 12,906 endometrial cancer cases and 108,979 controls, all of European

ancestry. Inverse variance weighted (IVW) analysis indicated no evidence of a causal

role for selenium levels in endometrial cancer development (OR per unit increase in

selenium levels Z-score = 0.99, 95% CI = 0.87–1.14). Similar results were observed for

sensitivity analyses robust to the presence of unknown pleiotropy (OR per unit increase

in selenium levels Z-score = 0.98, 95% CI 0.89–1.08 for weighted median; OR per

unit increase in selenium levels Z-score = 0.90, 95% CI = 0.53–1.50 for MR-Egger).

In conclusion, these results do not support the use of selenium supplementation to

prevent endometrial cancer.

Keywords: Mendelian randomization, endometrial cancer, toenail selenium, circulating selenium, genome-wide

association study

INTRODUCTION

Endometrial cancer is the most commonly diagnosed cancer of the female reproductive system
in developed countries (1). Unlike breast and cervical cancers where a screening program is
available to the general population, there is currently no available screening test for endometrial
cancer and diagnosis relies on biopsy in symptomatic patients (2). Furthermore, the incidence of
endometrial cancer is rising (3), highlighting the need for preventative measures. Selenium has
received considerable attention as a possible cancer preventive agent [reviewed in (4)]. While
randomized controlled trials have shown no benefit for selenium supplementation in reducing
cancer risk over a period of up to 8 years (5), some observational longitudinal studies assessing
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selenium intake or selenium levels, over a period up to 25
years, have shown an inverse association between selenium and
cancer risk [reviewed in (4)]. Thus, although findings from
the longitudinal studies have been inconsistent (4), they may
provide insight into the longer term effects of selenium exposure.
A recent meta-analysis examining the association between
selenium intake (dietary and supplemental) and overall cancer
risk, has suggested that there was a reduction in cancer incidence
among people consuming more than the recommended daily
allowance of selenium (55 µg/day; RR = 0.96, 95% CI = 0.92–
0.99) (6).

Very few studies have assessed the effects of selenium on
endometrial cancer. In terms of cellular studies, it has been
shown that a selenium metabolite can inhibit endometrial
cancer cell proliferation, potentially through disruption of
estrogen signaling (7). Findings from human studies, however,
have been more equivocal. A population-based, case-control
observational study of 417 endometrial cancer cases and 395
controls specifically assessed the role of dietary and supplemental
selenium intake (as measured by questionnaire in the 6 months
prior to diagnosis or enrolment as a control) in endometrial
cancer development (8). In a comparison of the highest (≥103.2
µg) and lowest (<72.4 µg) selenium quartiles, this study did not
support an association between selenium intake and endometrial
cancer risk (OR= 0.74, 95% CI= 0.47–1.17) (8). Two small case-
control studies (n < 100) have assessed serum selenium levels
in endometrial cancer cases and controls. Sundstrom et al. (9)
reported lower blood selenium levels in 64 cases as compared to
61 non-cancer controls, with an average of 1.01 ± 0.05 v 1.40 ±
0.08 µmol/L blood selenium in cases and controls, respectively
(P < 0.001). A subsequent study of 35 endometrial cancer cases
and 32 non-cancer controls reported a similar finding (average
of 1.14 ± 0.04 vs. 1.26 ± 0.03 µmol/L blood selenium in
cases and controls, respectively, P < 0.01) (10). Inconsistent
results from these observational studies may be due to small
sample sizes (8–10), reverse causation bias (9, 10), recall bias and
measurement error in the dietary assessment (8). No prospective
studies have examined the association of pre-diagnostic selenium
levels with endometrial cancer risk. Thus, the role of selenium in
endometrial cancer development remains inconclusive.

As no intervention study has yet been performed to explore
the role of selenium in endometrial cancer risk, we employed
a two-sample Mendelian randomization approach which uses
germline genetic variants associated with selenium levels to proxy
for selenium exposure (11). These germline genetic variants are
largely independent from environment or lifestyle factors, and
are established prior to disease onset, thus analyses using these
genetic variants as instrumental variables are less susceptible to
biases from confounding and reverse causation. Further, genetic
effects on exposure of interest are lifelong, and hence it is
comparable to a lifelong randomized controlled trial.

MATERIALS AND METHODS

Summary statistics for 12 genetic variants associated with
selenium levels at genome-wide significance (P < 5 × 10−8)
were extracted from a genome-wide association study (GWAS)
meta-analysis of circulating selenium levels [n= 5,477; (12)] and

toenail selenium levels [n = 4,162; (13)] in European-ancestry
individuals. These variants were at two separate genetic loci;
5q14 (9 variants) and 21q22 (3 variants). To analyze the effect of
selenium exposure on endometrial cancer risk, we used summary
statistics from the Endometrial Cancer Association Consortium
(ECAC) GWAS of 12,906 endometrial cancer cases and 108,979
controls of European descent (14). One of the 5q14 selenium-
associated genetic variants, rs558133, was excluded because it was
not assessed by the ECACGWAS (it does not appear on the 1,000
Genomes v3 reference panel) and no proxy with r2 > 0.8 could
be found. These potential instrumental variables were pruned
for linkage disequilibrium (LD; r2 < 0.05) and four selenium-
associated genetic variants (two independent variants per locus)
remained as instrumental variables. We used PhenoScanner v2
(15) to explore the possibility of horizontal pleiotropy among
the instrumental variables and their highly correlated variants
(r2 > 0.8). Specifically, we examined traits associated with known
risk factors of endometrial cancer (i.e., body mass index, age at
menarche, age at menopause, postmenopausal serum estradiol
levels, nulliparity, infertility, and insulin levels) in the published
literature at P < 7.14 × 10−3 (i.e., 0.05/number of known risk
factors explored, n = 7); none of these instrumental variables
were associated with these traits.

The reported effect for circulating and toenail selenium
instrumental variables was expressed in Z-score units per effect
allele. For the purpose of Mendelian randomization analysis, Z-
scores were converted to beta and standard error values using
the following equations, as per Taylor et al. (16), where N is
the sample size, eaf is the effect allele frequency, and SE is the
standard error of converted beta:

Beta =
Z − score

√
N

×
1

√

eaf
(

1− eaf
)

SE =
Beta

Z − score

Converted selenium level summary statistics for these
instrumental variables and their association with endometrial
cancer risk are shown in Table 1. Because summary statistics
were expressed in Z-scores, neither the converted beta values
for associations of genetic variants with selenium levels nor the
effect sizes from the Mendelian randomization analysis have
interpretable units, however they do provide the direction and
statistical strength of associations.

Individual Wald-type ratios for each of the instrumental
variables were determined as a ratio of instrumental variable-
endometrial cancer regression over the instrumental variable-
selenium levels regression (17). Individual Wald-type ratios
were meta-analyzed using the inverse variance weighted (IVW)
approach. A random effect model was used to account for
heterogeneity. The IVW approach assumes that instrumental
variables do not exhibit horizontal pleiotropy (where a single
genetic variant has simultaneous effects on other phenotypes that
affect the outcome independently of the exposure of interest) or, if
this is violated, that the horizontal pleiotropy is “balanced” across
all instrumental variables. Thus, we implemented sensitivity
analyses that are more robust to pleiotropy when it is
“unbalanced” (i.e., exhibiting directional pleiotropy): (i) weighted
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TABLE 1 | Genetic associations with selenium levels and endometrial cancer risk.

Instrumental variables Chr:Pos* R2† EA OA EAFSe Z-score BetaSe SESe PSe EAFEC BetaEC SEEC PEC

rs1789953 chr21:44482936 0.04 T C 0.14 5.52 0.16 0.03 3.4 × 10−8 0.13 −0.04 0.02 0.12

rs6586282 chr21:44478497 T C 0.17 −5.89 −0.16 0.03 3.96 × 10−9 0.17 −0.04 0.02 0.04

rs6859667 chr5:78745042 0.03 T C 0.96 −6.92 −0.36 0.05 4.4 × 10−12 0.96 0.02 0.04 0.54

rs921943 chr5:78316476 T C 0.29 13.14 0.29 0.02 1.9 × 10−39 0.29 0.00 0.02 0.90

*from hg19;
†
pairwise LD in Europeans (1000 Genomes) provided for instrumental variables at the same locus; Se, Selenium; EC, Endometrial cancer; EA, Effect allele; OA, Other allele;

EAF, Effect allele frequency from each GWAS; Beta, effect size; SE, Standard error; P, P-value. BetaEC and SEEC are the natural log odds ratio of endometrial cancer risk and associated

standard error, respectively. Estimates for Selenium levels have been taken from (13) and estimates for EC from (14).

TABLE 2 | F statistics and Individual Wald-type ratios for all instrumental variables.

Instrumental variables F statistic BetaSe-EC SESe-EC PSe-EC

rs1789953 34.07 −0.22 0.14 0.12

rs6586282 36.88 0.26 0.13 0.04

rs6859667 19.24 −0.07 0.11 0.54

rs921943 44.55 −0.01 0.06 0.89

Se, Selenium; EC, Endometrial cancer; Beta, effect size in standard deviation unit; SE,

Standard error; P, P value.

median analysis, which provides valid causal estimate even when
up to 50% of the weight comes from instrumental variables
with horizontal pleiotropic effects (18); and (ii) random effect
MR-Egger analysis, which provides valid pleiotropy-corrected
causal estimates even if all instrumental variables are invalid
(19). MR-Egger analysis corrects for the directional pleiotropy by
introducing an intercept which captures the average pleiotropic
effects of all included variants on the outcome. An exponentiated
MR-Egger intercept that deviates from 1 is an indicator of
directional pleiotropy. It should also be noted that the validity
of IVW and MR-Egger regression estimates rely on satisfaction
of the InSIDE (instrument strength independent of direct effect)
assumption where the instrument strength does not correlate
with the horizontal pleiotropic effects on the outcome (19).

To assess the strength of the instruments, F statistics and the
proportion of variance (R2) in circulating and toenail selenium
explained by instrumental variables were calculated as per Rees
et al. (20) and Yarmolinsky et al. (21). We used the I2GX (22)
statistic to assess weak instrument bias for MR-Egger analysis
using the “MendelianRandomization” package in R (23). This
statistic quantifies the regression dilution bias due to violation of
the NO Measurement Error (NOME; genetic associations with
exposure of interest are measured without error) assumption. An
I2GX statistic approaching 1 indicates that violation of the NOME
assumption does not substantially dilute the effect estimates of
MR-Egger analysis toward a null association. Unless otherwise
stated, Mendelian randomization analyses were performed using
the “TwoSampleMR” package in R (24).

RESULTS

The combined multi-allelic instrument explained 2.9% of the
variation in circulating and toenail selenium levels. Individual

Wald-type ratios and F statistics for instrumental variables are
presented in Table 2. F statistics for these instrumental variables
were all >10 (range 19.24–44.55) indicating instruments were
unlikely to suffer from weak instrument bias. Mendelian
randomization analysis did not support an association between
selenium levels and endometrial cancer risk using the IVW
method (OR per unit increase in selenium levels Z-score = 0.99,
95% CI = 0.87–1.14, P = 0.93). We found limited evidence
for heterogeneity amongst the individual causal estimates for
the included variants by Cochran’s Q statistic (25) (Cochrain’s
Q statistics = 7.22, P = 0.07). The exponentiated intercept
of MR-Egger regression was 1.03 (95% CI = 0.91–1.16,
P = 0.72) and therefore provided no evidence of directional
pleiotropy across the multi-allelic instrument. Further, the I2GX
statistic, quantifying weak instrument bias in the context of
MR-Egger, was minimal (I2GX= 92%). This suggests that any
potential bias toward a null association as a result of NOME
violation is ≤8%. Association estimates from sensitivity analyses
(MR-Egger regression and weighted median analysis) were
consistent with that reported by IVW analysis (OR per unit
increase in selenium levels Z-score = 0.90, 95% CI = 0.53–
1.50, P = 0.72 for MR-Egger; OR per unit increase in selenium
levels Z-score = 0.98, 95% CI = 0.89–1.08, P = 0.70 for
weighted median).

DISCUSSION

To our knowledge, this is the first Mendelian randomization
study evaluating the effect of selenium on endometrial cancer.
This analysis does not support a causal relationship between
selenium levels and endometrial cancer risk. However, given
the fact that the combined multi-allelic instrument explains
a small amount of the variance in circulating and toenail
selenium levels (<3%), the power to detect a causal association
in Mendelian randomization analysis may be limited and
thus, we cannot rule out the possibility that genetically
predicted selenium levels have some effect on endometrial cancer
risk. This analysis should be revisited when more genome-
wide significant selenium variants are identified from future,
larger GWAS studies. Further, statistical power for Mendelian
randomization analyses may also be increased through the
use of more precise effect estimates from larger GWAS of
endometrial cancer.

The validity of Mendelian randomization analysis holds under
the condition that three important assumptions are fulfilled.
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These assumptions require that genetic variants chosen as
instrumental variables are:

1. Strongly associated with the exposure of interest
2. Not associated with any confounder(s) that affects the

relationship between the exposure of interest and outcome
3. Not associated with outcome, independent of the exposure

(i.e., no horizontal pleiotropy).

Our instrumental variables have high F-statistics (>10), thus
fulfilling assumption 1. Assumptions 2 and 3 are difficult to
validate. We have attempted to minimize violation of assumption
2 by scanning associations of instrumental variables from
the literature, finding none of the instrumental variables to
be associated with known endometrial cancer risk factors.
However, we are limited in exploring this assumption by
the GWAS that have been conducted for these risk factors,
and we cannot discount the possibility that associations
between these variants and unknown endometrial cancer risk
factors may exist. Sensitivity testing (by MR-Egger regression
and weighted median analysis) has been used to address
assumption 3 and we have not found evidence that this
assumption has been violated. However, given the limitations
of these tests (e.g., the low statistical power of the MR-
Egger intercept test, discussed below), we cannot rule out
this possibility.

The strengths of our study include incorporation of multiple
selenium level-associated genetic variants as a multi-allelic
instrument to maximize the variation in selenium levels
explained; and use of the largest available GWAS datasets
to provide the greatest statistical power possible. Limitations
of this study include use of instrumental variables from
mixed gender GWAS which were assessed in female-only
endometrial cancer GWAS. Although both selenium GWASs
controlled for the effect of sex, we cannot not exclude the
possibility that there is a residual effect of this covariate which
may violate the assumption that instrumental variables are
strongly associated with the exposure. A potential limitation
of two-sample Mendelian randomization is that by using
two different GWAS sample sets to obtain the instrumental
variable-exposure and -outcome effect, population stratification
may have confounded the observed associations despite all
populations being of European descent. Weaknesses of the MR-
Egger regression sensitivity analysis performed in our study
include its relatively lower statistical power as compared to
the IVW and weighted median analysis methods, and its
vulnerability to weak instrument bias which may bias MR-
Egger regression toward the null (19). However, we assessed
the extent to which weak instrument bias may have affected
our MR-Egger results using the I2GX statistic, and found it to
be negligible.

The identification of preventative agents for cancer is an
attractive avenue of research because unlike other approaches
for disease prevention, such as lifestyle changes, taking a dietary
supplement (e.g., selenium) should be considerably easier to
implement. Candidate dietary supplements can be identified
by observational studies; however, moving these candidates

through to human use requires the establishment of expensive
randomized controlled trials. For example, a recent prostate
cancer prevention trial, examining the benefit of selenium and/or
vitamin E supplement on cancer risk, failed because of adverse
effects and lack of efficacy, at a cost of >US$110 million (26, 27);
whereas, a subsequent Mendelian randomization study was able
to recapitulate the results of this trial using publicly available
GWAS data (21).

In conclusion, Mendelian randomization analysis provided
no support for selenium supplementation in the prevention
of endometrial cancer. More generally, these findings further
highlight the value of Mendelian randomization for rapidly
excluding proposed interventions that are unlikely to be
successful, prior to the initiation of expensive and lengthy
trials. This approach could allow resources to be targeted
toward trials of alternative interventions with more promising
genetic evidence.
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