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Anticancer drug responses can be varied for individual patients. This difference is mainly

caused by genetic reasons, like mutations and RNA expression. Thus, these genetic

features are often used to construct classification models to predict the drug response.

This research focuses on the feature selection issue for the classification models.

Because of the vast dimensions of the feature space for predicting drug response,

the autoencoder network was first built, and a subset of inputs with the important

contribution was selected. Then by using the Boruta algorithm, a further small set

of features was determined for the random forest, which was used to predict drug

response. Two datasets, GDSC and CCLE, were used to illustrate the efficiency of the

proposed method.

Keywords: anticancer drug response, autoencoder, classification model, feature selection, random forest

1. INTRODUCTION

The prediction of drug responses for individual patients is an essential issue in the research
of precision medicine. It is known that the drug response for various patients can be different
(Wilkinson, 2005). Thus, there are different therapeutic effects when using the same anticancer
drug for a cohort of patients (Dong et al., 2015). It has been suggested that the patients with
similar response to an anticancer drug can have similar genetic features, like gene mutations and
expressions (Wang et al., 2017). These features can be used as the biomarkers to predict the drug
response (La Thangue and Kerr, 2011).

Because the clinical trials are of high time and economic costs, the researchers prefer to use the
cell lines obtained from the cancer patients for investigating drug responses. These investigations
lead to several drug response databases, like Genomics of Drug Sensitivity in Cancer (GDSC) (Yang
et al., 2012) and Cancer Cell Line Encyclopedia (CCLE) (Barretina et al., 2012). By using these
databases, constructing models for the prediction of drug response becomes feasible. Primarily,
researchers always use IC50 (Barretina et al., 2012; Garnett et al., 2012), which indicates the
concentration required for 50% inhibition in vitro, to measure the sensitivity of drug response.
Taking IC50 as the dependent variable, linear regression models, including ridge regression, lasso,
and elastic net, were developed to predict drug response (Barretina et al., 2012; Garnett et al.,
2012; Basu et al., 2013; Iorio et al., 2016). Further complex models, like support vector regression,
artificial neural network, and random forest (RF), were also constructed for this purpose (Riddick
et al., 2010; Menden et al., 2013; Ammad-Ud-Din et al., 2014; Ammad-ud din et al., 2016; Costello
et al., 2014; Ospina et al., 2014; Cichonska et al., 2015; Dong et al., 2015; Zhang et al., 2015). Neto
et al. (2014) proposed the STREAM algorithm that combined a Bayesian inference strategy with
ridge regression for the prediction of drug response. Besides the regressions, several network-based

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00233
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00233&domain=pdf&date_stamp=2019-03-27
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:wangjia77@hotmail.com
mailto:qp112cn@dlut.edu.cn
https://doi.org/10.3389/fgene.2019.00233
https://www.frontiersin.org/articles/10.3389/fgene.2019.00233/full
http://loop.frontiersin.org/people/634480/overview
http://loop.frontiersin.org/people/703448/overview
http://loop.frontiersin.org/people/703145/overview
http://loop.frontiersin.org/people/635358/overview


Xu et al. Autoencoder for Anticancer Drug Response

models were also proposed (Wang et al., 2014; Fey et al., 2015;
Zhang et al., 2015). Model ensembles have also been considered
by some works (Wan and Pal, 2014; Cortés-Ciriano et al., 2015).
Meanwhile, deciding whether an individual patient is sensitive
or not to the anticancer drugs is meaningful for treatment. By
setting a proper threshold value for IC50, drug response can be
divided into two categories: sensitivity and non-sensitivity. In
this case, classification models can be fitted for predicting drug
response. To this end, the recommender system, naive Bayes
classifier and support vector machine have been used (Barretina
et al., 2012; Dong et al., 2015; Suphavilai et al., 2018).

Nilsson et al. (2007) indicated that the appropriate selection
of small feature set gives the best possible classification results.
Thus, selecting an appropriate feature set from a large number
of genetic feature candidates is a crucial issue for classification
models for predicting drug response. In this paper, we developed
a drug response prediction model, called AutoBorutaRF, by using
autoencoder (Liou et al., 2008) and Boruta algorithm (Kursa
et al., 2010) for feature selection and RF for classification. We
first constructed the autoencoder network (Liou et al., 2008),
which is a type of artificial neural network, for the reduction of
genetic features. By using the Gedeonmethod (Gedeon, 1997), we
initially reduced the total number of features. We further selected
a smaller feature set feasible for RF by using the Boruta algorithm.
By applying AutoBorutaRF to GDSC and CCLE, we proved that
our proposed method is of excellent prediction accuracy. We
further analyzed the biomarkers obtained from the lung cell lines
in GDSC by the proposed feature selection method.

2. MATERIALS AND METHODS

2.1. Datasets and Preprocessing
In this research, we used two datasets, including GDSC (Garnett
et al., 2012) and CCLE (Barretina et al., 2012). The datasets were
downloaded by using R package PharmacoGx (Smirnov et al.,
2015). We used the sensitivity measure IC50 (Barretina et al.,
2012; Garnett et al., 2012) as the response variable (denoted by
yrs,c) for cell line c. We used three types of genetic features as
the explanatory variables, including the gene expression (denoted
by xrna,g), the single-nucleotide mutation (denoted by xsnv,g),
and the copy number alternation (denoted by xcna,g) for gene g.
Note that the elements in xrna,g and xcna,g are real-valued; the
elements in xsnv,g are binary-valued, i.e., “1” for mutation and
“0” for wild type. In the two datasets, some cell lines missed the
values of the response variable, the single-nucleotide mutation
features, and the copy number alteration features. There was no
missing value in the gene expression features. We first removed
the features with the cell lines missing values more than 50%.
Then, we removed the cell lines with more than 50% features
missing values from the datasets. For the remaining cell lines with
missing values, we used a weightmeanmethod to compensate the
missing values as follows:

1. Let z∗c,g denote the missing value for the cell line c in the
response variable or the genetic feature g. Let xrna,c denote the
vector of gene expression features for the cell line c.

2. Assume the cell line k has no missing data for the features
involved in z∗c,g . The diversity between the cell lines c and k

is obtained by d(c, k) =
∥∥xrna,c − xrna,k

∥∥2
2
. Search K cell lines

nearest to g with respect to d(c, i).
3. If g is the response variable or the copy number alternation

feature, z∗c,g is compensated by

ẑ∗c,g =
K∑

k=1

d(c, k)
K∑

k=1

d(c, k)

zk,g

4. If g is the single-nucleotide mutation feature, zc,g is
compensated by

ẑ∗c,g =





1

K∑

k=1

1(zk,g = 1) >

K∑

k=1

1(zk,g = 0)

0 otherwise

where 1() = 1 for the true statement in the parenthesis and
1() = 0 for the negative statement in the parenthesis.

We set K = 10 for the preprocessing of GDSC and CCLE
datasets.

2.2. Label Assignment for Cell Lines
According to IC50
This research is to construct classification models for predicting
how the cell lines respond to the drugs under study. The
drug responses can be divided into two categories: “sensitivity"
and “non-sensitivity” (Liu et al., 2016). So far, several works
have used various threshold values of IC50 to classify the drug
responses (Brubaker et al., 2014; Li et al., 2015). Brubaker
et al. (2014) used a hard threshold 0.1 to label sensitivity for
IC50< 0.1 and to label non-sensitivity (i.e., resistance in this
work) for IC50≥ 0.1. However, by investigating the histograms
of IC50, we found that the statistics of drugs are various. It
can be supposed that the decision of labels should be driven
by the data of individual drugs. To this end, we adopted
the strategy introduced in Li et al. (2015), which used the
median of the observed IC50 values as a data-driven threshold.
We labeled a cell line as “sensitivity” if its IC50 is smaller
than the median overall the cell lines for an individual drug.
We labeled a cell line “non-sensitivity” if its IC50 is equal
to or larger than the median overall the cell lines for an
individual drug.

2.3. Classification Model and Feature
Selection for Predicting Drug Response
2.3.1. Classification Model
The drug response data are often of imbalanced classifications.
Because RF is outstanding for the imbalanced classification
problem, we used it as the classification model. In RF, we
used classification and regression trees (CART) algorithm as
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FIGURE 1 | Flowchart of AutoBorutaRF for predicting anticancer drug response, which includes three parts: (A) data preprocessing, (B) feature selection, and

(C) classifier constructing.

the basic classifier. RF randomly generalizes 1,000 CARTs. Each
CART is trained by using ⌈0.632 × Nsample⌉ bootstrapping
samples, where Nsample is a total of cell lines. The ultimate results
were determined through voting with the prediction results of
all CARTs.

2.3.2. Feature Selection With the Autoencoder and

Boruta Algorithm
Feature selection is crucial for improving the prediction
performance of the classification models. We used the Boruta
algorithm, which aims to the feature selection problem for RF
(Kursa et al., 2010) (Figure 1). The considerable cardinality of the
feature candidate set leads to the curse of dimensionality for the
Boruta algorithm. Thus, we first used the autoencoder network,
to roughly screen out the features to a proper dimension. The
detailed two-stepwise feature selection procedure is described
as follows:

Step 1: We trained two single-hidden-layer autoencoder
networks, with hyperbolic tangent being the activation
functions, for screening out the features of the gene
expression and the features of the copy number
alteration, respectively. Different from the straight
application of the hidden layers of the autoencoder, we
used Gedeon method (Gedeon, 1997) to calculate the
proportional contributions to select the significant genes.
The contribution of the ith input (gene) to the jth output

(gene) is calculated as

Qij =
K∑

k=1

(Pik × Pkj)

Here K denotes the total number of the neurons of the
hidden layer. Pik is the contribution of the ith input to the
kth neuron of the hidden layer calculated by

Pik =
|Wik|

G∑

i∗=1

|Wi∗k|

with G being the total number of the inputs and Wi∗ks
being the weights linking the corresponding neuron
couples. Pkj is the contribution of the kth neuron of the
hidden layer to the jth output, whose calculation is similar
to that of Pik. The total contribution of the ith input is
calculated by

qi =
G∑

j=1

Qij

G∑

i∗=1

Qi∗j

We ranked the inputs of the autoencoder in the
descending order with respect to qi and removed the last
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50% features.We also removed the features, whose means
of correlation coefficients with other features were more
than 0.95.

Step 2: From the features obtained by Step 2, the Boruta
algorithm was used to select features for RF as follows:

2-1. Extend the dataset by adding copies of all the
features obtained by Step 1.

2-2. Shuffle the values of the copied features, called
shadow features, to remove their correlations with
the response variable, i.e., IC50.

2-3. The shadow features are combined with the original
ones.

2-4. Run a random forest classifier on the combined
dataset and perform a variable importance measure,
in which the mean decrease accuracy (MDA) is used.

2-5. Z score is calculated by dividing MDA with the
standard deviation of accuracy loss.

2-6. Find themaximumZ score among shadow attributes
(MZSA).

2-7. The features with importance significantly lower
than MZSA are permanently removed from the
dataset. The features with importance significantly
higher than MZSA are retained as important
features.

2-8. The shadow features are removed from the dataset.
2-9. Repeat the above steps until for the prefixed

iterations (200 was prefixed in our study), or all the
retained features are important features.

2.4. EasyEnsemble for Imbalanced
Datasets
The total number of cell lines sensitive to drugs is much smaller
than that of cell lines non-sensitive to drugs. Thus, the datasets
in this research are the class imbalance. Let N and R denote
the sample set of majority class (non-sensitivity) and that of
minority class (sensitivity), respectively. The imbalance ratio
IR = |N |/|R| is used to measure the class imbalance, with
| · | being the cardinality of a set. For the various drugs under
study, the values of IR are different. In this research, for the drugs
with IR≤ 2, the feature selection and classification method were
directly used; for the drugs with IR> 2, we used EasyEnsemble
(Liu et al., 2009) resampling strategy to deal with the imbalance
class problem. The core procedure of EasyEnsemble used here is
described as follows:

1. Equally divide N into T subsets {Ni|i = 1, 2, · · · ,T}, with
T = ⌊IR⌋. Such that |Ni| ≈ |R|.

2. The RF classifier Fi(x) is constructed on each training subsets
{Ni,R} for i = 1, 2, · · · ,T.

3. Take the majority vote according to the T predictions of
{Fi(x)|i = 1, 2, · · · ,T}.

2.5. Evaluation Criteria
We used the following metrics to evaluate the performance of the
classification models:

Accuracy: ACC =
TP + TN

TP + FP + TN + FN

Recall: REC =
TP

TP + FN

Specificity: SPC =
TN

TN + FP

F1 score: F1 =
2TP

2TP + FP + FN

Matthews correlation coefficient:

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(FP + TN)(FN + TN)

where

1. TP (true positive) is the number of cell lines labeled with
sensitivity and predicted as sensitivity;

2. FP (false positive) is the number of cell lines labeled with
resistance and predicted as sensitivity;

3. FN (false negative) is the number of cell lines labeled with
sensitivity and predicted as non-sensivity;

4. TN (true negative) is the number of cell lines labeled with
resistance and predicted as non-sensivity.

Besides the metrics above, AUC was also obtained.
Because the total number of samples was much smaller than

that of the features, the above evaluation criteria were obtained by
using 10-fold cross validation (CV). The dataset was randomly
partitioned into 10 equal sized subsets. Of the ten subsets, a
single subset was used as the test set to calculate the evaluation
criteria of the models trained by the remaining nine subsets. The
above process was then repeated 10 times, and the mean of the
evaluation criteria obtained in the 10 times was used as the
final criteria. In this way, the test datasets can be ensured to be
independent of the training datasets.

3. RESULTS

3.1. Data Description
There are missing data in both datasets. These missing data were
compensated by using the weighted mean method described in
the sectionMaterials andMethods. The total numbers of samples
for each variable are listed in Table 1.

According to their histograms, the most of distributions of
drug responses of cell lines in two datasets can be approximated
by the Gauss distribution (Figure 2). t-hypothesis test showed
that the significance of two groups divided by median of IC50
in GDSC is of p-values from 4.27 × 10−160 to 6.89 × 10−46;
such significance in CCLE is of p-value from 7.14 × 10−95 to
4.05× 10−4.

3.2. Prediction Performance of
AutoBorutaRF
To illustrate the effectiveness of our AutoBorutaRF method, we
demonstrated its prediction performance on GDSC and CCLE
datasets. Meanwhile, we compared it with other four algorithms,
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TABLE 1 | Total numbers of samples for three features.

Dataset State Drugs Cell lines xrna xsnv xcna

GDSC Raw 139 1,124 11,833 (789) 70 (778) 24,960 (936)

Preprocessed 98 555 11,712 (555) 54 (555) 24,959 (555)

CCLE Raw 24 1,061 20,049 (1,028) 1,667 (1,044) 24,960 (742)

Preprocessed 24 363 19,389 (363) 1,667 (363) 24,960 (363)

The number in the parenthesis means a total of cell lines corresponding to the features.

FIGURE 2 | Histograms of drug responses for 12 drugs in GDSC. The distributions of drug responses were different for various drugs.

including naive Bayes classifier (Barretina et al., 2012), SVM-
RFE (Dong et al., 2015), FSelector for k-nearest-neighbors (KNN)
algorithm (Soufan et al., 2015), and AutoHidden. The naive
Bayes method first selected the top 30 features using either non-
parametric Wilcoxon Sum Rank Test (for the gene expression
features) or Fisher Exact Test (for the gene mutations). Then,
the remaining significant features (p< 0.25) were clustered using
a message-passing algorithm for each type of features. Then,
they combined these two-part features and used a naive Bayes
classifier for the drug response classification prediction. SVM-
RFE is a wrapper method using a recursive feature selection
and SVM classifier. The parameters of feature number, gamma
and cost were set to be 10, 0.5, and 10, which were the optimal
parameters selected by SVM-RFE. FSelector selected features
using FSelector based on the information entropy and applied to
the KNN algorithm. In AutoHidden, we directly use the hidden
layer of the autoencoder constructed in our AutoBorutaRF, as
the features.

TABLE 2 | Mean values of six evaluation metrics obtained from GDSC.

Method AUC ACC REC SPC F_1 MCC

AutoBorutaRF 0.7116 0.6534 0.6527 0.6542 0.6501 0.3109

Naive Bayes 0.6792 0.6109 0.4242 0.7969 0.4947 0.2475

SVM-RFE 0.5159 0.5945 0.5797 0.6092 0.5855 0.1915

FSelector 0.6477 0.6061 0.6171 0.5952 0.6068 0.2155

AutoHidden 0.6095 0.5780 0.5576 0.5984 0.5651 0.1584

The bold number indicates the best result.

The overall prediction performance of the five methods for
the two datasets is illustrated in Tables 2, 3 and Figure 3. All
the metrics in the figure were obtained by using 10-fold CV.
Figure 3 showed that our method was of the best performance
with respect to AUC, accuracy, recall, specificity, F1 score, and
Matthews correlation coefficient.
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Among the 98 drugs in GDSC, ABT-888 presented the worst
prediction with AUC being 0.5935, and the best prediction is
for RDEA119 with AUC being 0.8282. Meanwhile, RDEA119,
PD-0325901, 17-AAG, and Vorinostat were the only four drugs
with AUC >0.8. However, there were 59 drugs, whose AUCs
were higher than 0.7. Among the 24 drugs in CCLE, the worst
prediction is for AEW541 with AUC being 0.6509. The best
three predictions are for Nutlin-3, LBW242, and AZD6244, with
AUC being 0.9633, 0.9300, and 0.9079, respectively. The AUCs
of Irinotecan, Panobinostat, PD-0332991, PD-0325901, PHA-
665752, PLX4720, and Topotecan are higher than 0.85. The
receiver operating characteristic (ROC ) curves are listed in
Supplementary File 1.

3.3. Identified Biomarkers Are Associated
With Cancer and Drug Target Pathway
We used 95 lung cell lines in the GDSC database to illustrate the
biological significance of the identified biomarkers. Figure 4A

TABLE 3 | Mean values of six evaluation metrics obtained from CCLE.

Method AUC ACC REC SPC F_1 MCC

AutoBorutaRF 0.8210 0.7638 0.6560 0.8137 0.6248 0.4520

Naive Bayes 0.7793 0.6838 0.3325 0.9194 0.3662 0.2759

SVM-RFE 0.5516 0.7287 0.4286 0.8129 0.5239 0.2961

FSelector 0.7372 0.7430 0.5061 0.8058 0.5639 0.3535

AutoHidden 0.7063 0.6970 0.1338 0.9501 0.3567 0.2198

The bold number indicates the best result.

shows the prediction performance of AutoBorutaRF for the
lung cell lines. AutoBorutaRF showed satisfying prediction
performance for predicting the drug responses for the lung
cell lines. We used the non-parametric Wilcoxon sum rank
test for the genetic features of gene expression and copy
number alternation and a Fisher exact test for the genetic
feature of single-nucleotide mutation, to test the significant
difference of the genetic features between the sensitive and non-
sensitive populations. Among all the identified 1,087 features
(Supplementary File 2), a total of features with p < 0.05 was
1029, shown by Figure 4B. These results showed that most of the
identified features were of significantly different genetic profiles
between two classes (Supplementary File 3).

We further use PLX4720 and BIBW2992 as two examples
to illustrate the biological significance of the features selected
for the lung cell lines. Prediction metrics of these two drugs
are shown in Figure 5. PLX4720 is the inhibitor for B-raf and
targets at MAPK signaling pathway (Michaelis et al., 2014). The
selected significant features for PLX4720 were CCL19, CCRL2,
CST7, GPR143, HDAC5, and IDO1. CCRL2 inhibits p38 MAPK
phosphorylation and up-regulates the expression of E-cadherin
(Wang et al., 2015). Besides, CCR7, CST7, GPR143, HDAC5, and
IDO1 are also related to lung cancer or the MAPK pathway
(Liu et al., 2014, 2018; Li and Seto, 2016; Matthews et al., 2016;
Rose et al., 2016).

BIBW2992 inhibits ERBB2 and EGFR and targets at EGFR
signaling pathway (Iorio et al., 2016) and has been widely
investigated for cancers, like lung cancer and melanoma
(Rinehart et al., 2004; Nehs et al., 2010; Varmeh et al., 2016). The
selected significant features were FYN, KCNH2, REST, CDH12,

FIGURE 3 | Box plots of the six evaluation metrics overall the cell lines in the (A) GDSC and (B) CCLE datasets. Our method was of the best performance with

respect to AUC, accuracy, recall, specificity, F1 score, and Matthews correlation coefficient. The naive Bayes classifier and SVM-RFE outperformed at specificity.
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FIGURE 4 | Prediction performance for the lung cell lines in GDSC. (A) Box plots of six metrics overall the lung cells showed the satisfying prediction performance.

(B) Histogram of p-values obtained by the statistical significance test for the identified features proved that most of the identified features were of significantly different

genetic profiles between the sensitive and non-sensitive populations.

FIGURE 5 | Performance metrics of AutoBorutaRF overall the lung cell lines in GDSC for PLX4720 and BIBW2992.

LRRC8E, SCG2, PHF8, PCSK1, ANXA2, and MIR6730. FYN
was an authentic Effector of oncogenic EGFR signaling, by
limiting EGFR tumor cell motility (Lu et al., 2009). CDH12
plays an important role in non-small-cell lung cancer(NSCLC)
geneses, resulting from that the mutations of CDH12 and
other PRAME family members were equally distributed among
tumors of different grades and stages (Bankovic et al., 2010).
SCG2 is in connection with the alteration of miRNA profiles
in A549 human non-small-cell lung cancer cells (Shin et al.,
2009). KCNH2, REST, LRRC8E, PHF8, PCSK1, ANXA2, and
MIR6730 have been also proved to be related to signaling pathway

EGFR and lung cancer (Bonilla and Geha, 2006; de Castro
et al., 2006; Kreisler et al., 2010; Wang et al., 2012; Demidyuk
et al., 2013; Shen et al., 2014; Díaz-Rodríguez et al., 2018).
The function descriptions and interaction networks of the
identified features for PLX4720 and BIBW2992 are included in
Supplementary File 4.

DISCUSSION

The prediction of anticancer drug response is crucial for many
applications, like the preclinical setting and clinical trial design.
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The prediction models for drug response include regression
models and classification models. This research developed
AutoBorutaRF for predicting the drug response for a two-
fold aim: achieving proper features for RF and investigating
biologically significant biomarkers for the explaining drug
response. Because the genetic feature candidates are a vast set,
we cannot directly apply the well developed Boruta algorithm
for feature selection. We first drastically reduced the dimension
by constructing the autoencoder network. Different from the
typical application of a hidden layer of the autoencoder, we
extracted the inputs with large contributions evaluated by the
Gedeon method.

Considering AUC= 0.7 as a passmark, 22 of 24 drugs in CCLE
were of qualified prediction performance; 59 of 98 drugs in GDSC
were of qualified prediction performance. Further analysis should
be conducted to investigate the reasons leading to the prediction
difference between two datasets.

We further investigated the biological significance.We proved
that most of the identified genetic features between the sensitive
and non-sensitive cell lines were significantly different. By using
PLX4720 and BIBW2992 as two examples, we illustrated that
many genes identified by AutoBorutaRF were reported to have
close relationship with tumorigenesis or cancer progression.
The detailed function explanations and interaction networks of
the selected features can be referred to Supplementary File 4.
Thus, AutoBorutaRF can be considered to be a capable machine
learning method for determining the biomarkers for predicting
the drug response for the preclinical and clinical purposes.

Note that our proposed method used no prior information
to obtain the optimal feature set in the sense of prediction
performance. In future research, the pre-determined
information, like pathway knowledge, and the prior distribution
describing the uncertainties of anticancer drugs can be
considered to be embedded in our method.
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