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Abstract. This paper deals with the analysis of boost
interleaved DC-DC converter with a coupled inductor
on the same magnetic core. The advantage of the cou-
pled inductor over the non-coupled case is investigated.
The ripple current equations as an input current for
the boost operation mode and the ripple current in in-
dividual phase of the interleaved converter using cou-
pled inductor are explained analytically, supported by
simulation and experimental results. The novelty of
the paper is an investigation of current ripples of in-
terleaved boost converter operated over 50 % of duty
ratio and utilization of the converter in the application
of electrically driven vehicle.
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1. Introduction

Nowadays, the interleaved topologies are widely used
due to their advantageous properties, such as lowered
current ripple and volume reduction [1], [2], [3], [4], [5],
[6], [7], [8] and [9].

For higher power applications, there are more possi-
bilities how to perform higher power density regarding
the efficiency of the converter. The first choice is to
utilize of the paralleling of power switches, as shown
in Fig. 1. This converter includes only one inductor
and two half-bridge legs connected in parallel. This
is done for reasons of obtaining higher current ratings,
thermal improvements, and sometimes for redundancy.
If losses are not equally shared, the thermal differences
among the devices will lead to other problems and pos-

sible failure of the transistors. Therefore, the thermal
coefficient of the Collector-Emitter Voltage VCE(SAT )

is an important parameter when paralleling IGBTs. It
must be positive to allow current sharing. On the other
hand, the higher positive thermal coefficient, the higher
losses arise, because at high temperature the VCE(SAT )

is increased.
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Fig. 1: Boost DC/DC converter for higher power application.

The second option how to share the current is to use
the interleaved topology, Fig. 2 [10], [11], [12] and [13].
The same problem as in the previous topology with
current sharing is eliminated because the current is di-
vided into two parallel boost converters. The benefits
are in improved power density, the interleaved effect re-
duces the total input and output current ripple, so this
means smaller input and output filters (bulk capaci-
tor), better distribution of power with lower current
stress for semiconductor devices [3], [4], [5], [6], [7] and
[8].

In the high current application, there are used in-
terleaved topologies even with the coupled inductors.
The advantage of the coupled inductor is in lowered
ripple current through the inductor not only in the
output or input current of the converters. The inter-
leaved buck converter with a coupled inductor is used in
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Fig. 2: Interleaved boost DC/DC converter for bat-
tery/ultracapacitor application.

VRM application where voltage about 1 V and current
of hundreds of amps are applied. On the other side,
utilization of coupled inductor in higher voltage appli-
cation does not have any limitation, as is seen in PFC
application [14], [15], [16], [17] and [18]. Therefore,
the advantageous features of the coupled inductor will
be analyzed for the converter, which serves for boost-
ing voltage from ultracapacitor/battery to DC bus for
driving traction motor.

The analysis includes investigation of current ripple
- on the input of the converter and change of the in-
ductor current ripple in case of the coupled inductor in
comparison with the non-coupled case.

2. Reduction of Current
Ripple

The intention of the current ripple reduction in case of
battery application is to prolong the battery service life
because it is sensitive to high dynamic current stress.
Therefore, the boost interleaved topology with reduced
input current ripple is proposed to solve this issue. The
input of the converter shown in Fig. 2 is connected to
battery/ultracapacitor pack and the output to the DC
BUS of a three-phase inverter.

This section is divided into two parts. Firstly, an
impact of the non-coupled inductor on boost topology
is investigated. Then, in some following subheads, the
advantage of coupled inductor is analyzed with empha-
sis on the reduced inductor current ripple.

In the two-phase interleaved converter, the four dif-
ferent operating modes occur, as shown in Fig. 3. The
first interval begins when the switches S1L and S2H

are closed, the second interval when S1H and S2H are
on. In the third interval, S2L and S1H are turn on. It
means that the curve of the current iL2 in the second
phase is same as the current iL1 in the first interval but
phase-shifted by 180◦. Therefore, the ripple of currents
in the third interval is same as in the first one (change
of current iL2 with iL1 and vice versa). It can be seen
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Fig. 3: Current ripples of interleaved non-coupled boost con-
verter.

from the Fig. 3 that ripples ∆IL1 and ∆IL2 are the
same. But, the input current ripple is dependent on
∆IL1 and ∆IL2pp, not ∆IL2. Then, appropriate equa-
tions for inductor current ripples in the first interval
can be obtained, Eq. (1) and Eq. (2).

∆IL1 =
Vout

L
(1 −D)DTS , (1)

∆IL2pp =
Vin

L
(D)DTS . (2)

Then, by summing Eq. (1) and Eq. (2), the equation
for input current ripple reduction is:

∆Iin = ∆IL1 + ∆IL2pp =
Vout

L
(1 − 2D)DTS . (3)

Using the same procedure, the input current ripple
calculation for all intervals can be achieved. On the
other hand, in case of the steady state, it is not nec-
essary because the current ripple in all intervals is the
same.

2.1. Interleaved Coupled Boost
Converter

A simplified schematic for a coupled boost converter
is depicted in Fig. 4. The two-phase coupled boost
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Fig. 4: A simplified schematic of dual interleaved boost con-
verter using coupled inductor.

converter is divided into same four intervals as in the
non-coupled case, Fig. 5.

According to Kirchhoff’s laws, the following equa-
tions for two-phase coupled buck converter in the first
interval can be written Eq. (4), Eq. (5), Eq. (6), Eq. (7)
and Eq. (8):

iin = iL1 + iL2, (4)

iin = iL1 − iL2, (5)

Vlk1 = Vin − Vm, (6)

Vlk2 = Vin − Vout + Vm, (7)

IVII
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Fig. 5: Current ripples of interleaved coupled boost converter
for D < 0.5.

Vm =
Lm

Llk + 2Lm
Vout. (8)

Using the mathematical apparatus, the following
equations refer to the first interval of operation Eq. (9),
Eq. (10) and Eq. (11):

∆IL1 =
Vout

Llk

(
1 −D − Lm

Llk + 2Lm

)
DTS , (9)

∆IL2_I =
Vout

Llk

(
Lm

Llk + 2Lm
−D

)
DTS , (10)

∆Iin = ∆IL1 + ∆IL2_I =
Vout

Llk
(1 − 2D)DTS . (11)

These equations also apply for the third interval with
the difference that ∆IL1 is ∆IL2 and vice versa. Using
Kirchhoff’s laws, the equations for the second interval
are as follows, Eq. (12), Eq. (13) and Eq. (14).

Vlk1 = Vin − Vout − Vm, (12)

Vlk2 = Vin − Vout + Vm, (13)

Vm = 0. (14)

Using the same procedure as in intervals I and III,
we can obtain current ripples in intervals II and IV.
The given equations are as follows:

∆IL1_II = ∆IL1_II =
Vout

Llk
(0.5 −D)DTS , (15)

∆Iin = ∆IL1_II + ∆IL2_II =

=
Vout

Llk
(1 − 2D)DTS .

(16)

For the second and fourth interval of operation, the
ripple is same for both phase currents. If we want to
determine the total inductor current ripple, we must
sum the ripple currents in intervals II, III and IV or
calculate the ripple in interval I. For the ripple current
in the second phase, we can apply the same approach
with the difference that we must calculate the ripple in
III interval. On the other hand, the input current rip-
ple is the sum of inductor current ripples corresponding
to each time interval.

The operation of boost interleaved converter with
duty ratio over 0.5 is shown in Fig. 6. It can be seen
from this figure that the upper switches of the con-
verter can be switched on at once (interval I and III).
It means that in this interval the magnetizing voltage
Vm equals zero. Analytically, it is stated in some fol-
lowing equations Eq. (17), Eq. (18), Eq. (19), Eq. (20),
Eq. (21) and Eq. (22).

Vlk1 = Vin − Vm, (17)

Vlk2 = Vin + Vm, (18)
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Vm = 0, (19)

d = D − 0.5, (20)

∆IL1_I = ∆IL2_I =

=
Vout

Llk
(1 −D) (D − 0.5)TS ,

(21)

∆Iin = ∆IL1_I + ∆IL2_I =

=
Vout

Llk
(2 − 2D) (D − 0.5)TS .

(22)

Similarly, for the interval II and IV, the following
equations apply, Eq. (23), Eq. (24), Eq. (25), Eq. (26),
Eq. (27), Eq. (28) and Eq. (29).

Vlk1 = Vin − Vm, (23)

Vlk2 = Vin − Vout + Vm, (24)

Vm =
Lm

Llk + 2Lm
Vout, (25)

d = 1 −D, (26)

∆IL1_II =

=
Vout

Llk

(
1 −D − Lm

Llk+2Lm

)
(1 −D)TS ,

(27)

∆IL2_II =
Vout

Llk

(
Lm

Llk + 2Lm
−D

)
(1 −D)TS , (28)

∆Iin = ∆IL1_II + ∆IL2_II =

=
Vout

Llk
(1 − 2D) (1 −D)TS .

(29)

From Eq. (3), Eq. (11) and Eq. (16), it is evident
that input current ripple is the same (except the nega-
tive sign in Eq. (16)) under the condition that leakage
inductance Llk is equaled to non-coupled inductance
L. If we substitute the value of duty ratio into the
Eq. (22) and Eq. (28), we find that the ripple is same
as in the Eq. (3), Eq. (11) and Eq. (16). The condition
of D < 0.5 for Eq. (22) and D > 0.5 for Eq. (28) must
be fulfilled.

The coupling coefficient k is the most important pa-
rameter which affects inductor current ripple, Eq. (30).

k =
Lm

Llk + Lm
. (30)

Using the high value of the coupling coefficient
(near 1), the leakage inductance is almost zero. It leads
to increasing of the input current ripple ∆Iin, but the
ripple of the phase current ∆IL1 or ∆IL2 is minimized.
Using the smaller value of k, the magnetizing induc-
tance is smaller and the ripple of the phase current is
higher. But, the ripple of the input current is smaller
because of higher leakage inductance. Then, the bulky
input filter is reduced. Therefore, there is a trade-off
in choosing the coupling coefficient.
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Fig. 6: Current ripples of interleaved coupled buck converter for
D > 0.5.

3. Simulation Results

As mentioned in section II, the inductor current ripple
is strongly dependent on the coupling coefficient k of
the coupled inductor. In order to achieve the maximum
inductor current ripple reduction, the coupled inductor
should have high k and also enough leakage inductance
to maintain input current ripple.

The switching frequency of the one leg of the inter-
leaved converter was set to 20 kHz, due to use of the
inverter. Therefore, because of the interleaving effect,
the switching frequency (input ripple frequency) is dou-
bled, which is shown in Fig. 7, Fig. 8 and Fig. 9. The
self-inductance of the non-coupled inductor was set at
370 µH. In order to satisfy the condition of the ripple
current equality, the leakage inductance was also set
to 370 µH. Then, the coupling coefficient of the pro-
posed coupled inductor has a value of 0.68, resulting in
the magnetizing inductance of 784 µH. The additional
parameters of the converter are given in Tab. 1. The
simulation results are done for duty ratio 34 % (max-
imum input voltage), 50 % (almost zero current input
ripple) and 60 % (minimum input voltage).

The time waveforms of ripple current for the max-
imum and minimum value of duty cycle are depicted
in Fig. 7 and Fig. 8. It is evident from the simulation
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Tab. 1: Setup condition.

Parameters Coupled
Inductor

Non-Coupled
Inductor

Switching frequency 20 kHz 20 kHz
Leakage inductance 370 µH -

Magnetizing inductance 784 µH -
Self-inductance - 370 µH
Duty cycle 0.34 – 0.6 0.34 – 0.6

Input voltage 150 – 250 V 150 – 250 V
Output voltage 390 V 390 V

results in Fig. 7 and Fig. 8 that the inductor current
ripple of the converter with a coupled inductor (iL3,
iL4) is smaller than the non-coupled case (iL1, iL2). In
Fig. 9, there are given time waveforms of ripple currents
for non-coupled (iL1, iL2) and coupled inductor (iL3,
iL4) with the difference that the ripple of input current
(iV 1, iV 2) equals almost zero. The advantage is not in
zero value of input current because same option occurs
in interleaved connection with a non-coupled inductor
(50 %), but in the fact that there is reduced inductor
current ripple.
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Fig. 7: Inductor current ripples with D = 34 % for coupled
(I(L3) and I(L4|) and non-coupled inductor (I(L1) and
I(L2)) - up, input current ripples for coupled (I(V1))
and non-coupled inductor(I(V2)) - down.

39.90ms 39.92ms 39.94ms 39.96ms 39.98ms 40.00ms
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Fig. 8: Inductor current ripples with D = 60 % for coupled
(I(L3) and I(L4|) and non-coupled inductor (I(L1) and
I(L2)) - up, input current ripples for coupled (I(V1))
and non-coupled inductor(I(V2)) - down.

The comparison of the ratio between input and in-
ductor currents is depicted in Fig. 10. It is obvious
that the ratio is increased when the coupling effect is
utilized. This means that the inductor current ripple
is smaller in a whole range of duty cycle except for

D = 0.5 (ripple is equal). To satisfy the same ripple of
the input current for the coupled and non-coupled case,
the condition of the same leakage inductance must be
met. That means the leakage inductance is same as
the self-inductance in non-coupled case.

39.90ms 39.92ms 39.94ms 39.96ms 39.98ms 40.00ms
12.94A

13.01A

13.08A
0A

7A

13A

-I(V1) -I(V2)

-I(L1) I(L2) -I(L3) I(L4)

Fig. 9: Inductor current ripples with D = 50 % for coupled
(I(L3) and I(L4|) and non-coupled inductor (I(L1) and
I(L2)) - up, input current ripples for coupled (I(V1))
and non-coupled inductor(I(V2)) - down.

Fig. 10: The ratio of input current ripple and inductor current
ripple for analytic solution (coupled), simulation (non-
and coupled) and measurement (coupled).

Fig. 11: The ratio of coupled inductor current ripple to non-
coupled inductor current ripple.
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In contrast with Fig. 10, in Fig. 11, it is seen that
there is a ratio of inductor currents, and the ripple of
the coupled inductor current is smaller than the non-
coupled case in the whole range of duty cycle.

4. Experimental Verification

In coupled inductor design, there should be a problem
how to maintain the required leakage inductance. As
the easiest way how to manage this issue, the addi-
tional non-coupled inductor is used. The powder core
is ideal for this inductor, which is capable of carrying
high DC current. Then the magnetizing inductance
will wound as a coupled inductor, and only the AC
component of the current will flow through it because
the DC current is canceled with the negative coupling
of the inductors. It means that the inductors are wound
against each other, and the magnetic flux of both in-
ductors is canceled. Therefore, the solution with the
ferrite core should be utilized. The proposed coupled
inductor in this paper does not use an additional in-
ductor. The coils consist of two EE cores, where each
winding is wound on the outer leg of the core. This
ensures a sufficiently large value of inductor leakage,
and magnetizing inductance is adjusted by a change of
an air gap in the center leg or the outer legs.

The final values of the leakage and magnetizing in-
ductance are given in Tab. 1.

Subsequently, the experimental measurements of the
converter with a coupled inductor were performed.

The oscilloscope waveform with the duty lower than
50 % (minimum operating duty ratio - 34 %) is shown
in Fig. 12 and with duty higher than 50 % (maximum
operating duty ratio - 60 %) in Fig. 13.

In Fig. 12 and Fig. 13, the waveforms of the input
and inductor currents with the minimum and maxi-
mum operating point of the converter are shown. From

Fig. 12: The time waveforms of inductor current ripple
(turquoise and blue one), input current (violet) and
input voltage (green) for D < 0.5, D = 0.34.

Fig. 13: The time waveforms of inductor current ripple
(turquoise and blue one), input current (violet) and
input voltage (green) for D > 0.5, D = 0.6.

Fig. 14: The time waveforms of inductor current ripple
(turquoise and blue one), input current (violet) and
input voltage (green) for D = 0.5.

Fig. 14, it is visible that the ripple of the input cur-
rent is markedly reduced which allows to use smaller
input capacitor value and extend the lifetime of ultra-
capacitor/battery pack connected to the input of the
converter.

5. Conclusion

In order to reduce inductor current ripple as well as in-
put current ripple, the two inductors should be coupled
to the same core. It is preferable to use coupled induc-
tor topology in battery/ultra capacitor application due
to less stress of these energy sources and lower conduc-
tion losses of the semiconductor switches because of
the lower effective value of the inductor current rip-
ple. To maintain the required ripples on the inductor
and on the input, the coupling coefficient must agree.
For the output current, the leakage inductance is very
important, and it must be equal to the non-coupled
inductance to maintain the criterion. Then, for the
high value of coupling coefficient, the mutual induc-
tance increases and leakage inductance decreases and
vice versa. The solution is to find an appropriate com-
promise between the output and inductor ripple value.
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In the future work, the three and four-phase converters
with a coupled inductor will be investigated.
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