
POWER ENGINEERING AND ELECTRICAL ENGINEERING VOLUME: 16 | NUMBER: 4 | 2018 | DECEMBER

Extended Second Order Sliding Mode Control for
Mismatched Uncertain Systems with Only Output

Measurable

Van VAN HUYNH 1, Bui LE NGOC MINH 2, Tam MINH NGUYEN 2, Vo HOANG DUY 1

1Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics
Engineering, Ton Duc Thang University, No. 19 Nguyen Huu Tho Street,

Tan Phong Ward, District 7, Ho Chi Minh City, Vietnam
2Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology and

Education, No 1 Vo Van Ngan Street, Linh Chieu Ward, Thu Duc District, Ho Chi Minh City, Vietnam

huynhvanvan@tdtu.edu.vn, 1726002@student.hcmute.edu.vn, tamnm@hcmute.edu.vn, vohoangduy@tdt.edu.vn

DOI: 10.15598/aeee.v16i4.2775

Abstract. Most existing Second Order Sliding Mode
Control (SOSMC) approaches are achieved under as-
sumptions that 1) all of state variables must be acces-
sible; 2) the second derivative of all state variables must
exist, even though mathematical model of systems uses
the first order equations. In this paper, a new adaptive
SOSMC scheme is proposed for mismatched uncertain
systems in which these above assumptions are required.
In this proposed method, only output variables are used
in the sliding surface and controller design. The ad-
vantage of no need of all state variables in controller
design makes the method more useful and realistic since
it can be applied to a wider class of systems. Finally,
a vertical take-off and landing aircraft at the nominal
airspeed of 135 knots is simulated to demonstrate the
advantages and effectiveness of the proposed approach.
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1. Introduction

Over the past three decades, there has been an increas-
ing research interest in Sliding Mode Control (SMC)
theory and application. The main advantages of SMC
are fast global convergence, simplicity of implementa-
tion, order reduction, high robustness to external dis-
turbances and insensitivity to model errors and sys-
tem parameter variations [1]. Thanks to these advan-

tages, the SMC theory has been successfully applied
to a wide variety of practical engineering systems such
as robot manipulators, aircrafts, underwater vehicles,
spacecraft, flexible space structures, electrical motors,
power systems, and automotive engines [1], [2] and [3].

Although the sliding mode controller guarantees ro-
bustness with respect to uncertainties and external dis-
turbances, chattering is its main drawback. Chattering
is the high frequency finite amplitude oscillations oc-
curring because of the discontinuous control signal used
in the SMC [4]. Such chattering has many negative ef-
fects in practical applications since it may damage the
control actuator and excite the undesirable unmodeled
dynamics, which probably leads to unforeseen instabil-
ity [4]. Many authors have applied various techniques
to reduce chattering problem across the sliding sur-
face. Recently, some good results have been published
in high quality journal such as [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18] and [21].
The authors of [5] have presented a direct way to re-
duce chattering problems by inserting a fixed or vari-
able boundary layer near the sliding variable so that a
smooth continuous control replaces the discontinuous
one when the system is inside the boundary layer. This
approach can produce a chattering-free system but a
larger boundary layer width results in larger errors in
control accuracy and a finite steady-state error may
occur. Another approach to eliminate the chattering
is carried out by using fuzzy control with sliding mode
controller [6], using low-pass filtering [7] or nonlinear
reaching law [8]. This method can give a chattering-
free system but a finite steady-state error may remain.
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One of the most effective methods to avoid chatter-
ing problems is to use the Second-Order Sliding Mode
Control (SOSMC). The basic idea of the second order
sliding mode controller is that the discontinuous sign
function is made to act on the time derivative of the
control inputs and the actual control signal obtained
after integration is continuous and hence chattering is
removed [9]. In addition, SOSMC allows driving to
zero the sliding variable and its consecutive derivatives
in the presence of the disturbances/uncertainties in-
creasing the accuracy of the sliding variable stabiliza-
tion [10]. Thanks to these advantages, the SOSMC
with finite-time convergence has been successfully im-
plemented for solution of real problems [11] and [12].
Another approach given in [13] was to present a modi-
fied second-order sliding mode control for single-input
nonlinear systems. This study guarantees the finite
time reaching of the sliding manifold and chattering
reduction. The SOSMC proposed in [13] was extended
by [14] for a class of uncertain multi input nonlinear
systems but the disturbances were not considered in
the above approach.

In [15], the second-order sliding mode control ap-
proach with additional capabilities of learning and con-
trol adaptation was developed to estimate and com-
pensate for the uncertainty affecting the system’s dy-
namics. This technique is capable of reducing the dis-
continuous control effort to an arbitrarily small quan-
tity. However, the approach given in [15] could not
be applied for systems with unknown upper bounds
of uncertainties. The study of [16] proposed a robust
adaptive SOSMC scheme for a class of uncertain non-
linear systems where the upper bounds of uncertainties
are not required to be known in advance. As a result,
a finite-time convergent second-order sliding mode is
established and the chattering problem is eliminated.
In [17], an adaptive second order sliding mode control
law is proposed for the control of an electro pneumatic
actuator. In order to reduce the overshoot and the
settling time, the adaptive second order sliding mode
controller with a nonlinear sliding surface is presented
in [18]. The authors of [19] have proposed a chatter-
ing free adaptive sliding mode controller for stabilizing
a class of multi-input multi-output systems. This ap-
proach can ensure asymptotical stability of the overall
system and eliminate chattering in the control input.
In [20], based on the linear quadratic regulator method,
an optimal second order sliding mode controller was
proposed for a class of matched uncertain systems. By
designing a new sliding surface, the approach given in
[21] can solve both the chattering and singularity prob-
lems in sliding mode control. A second-order sliding
mode control method to handle sliding mode dynam-
ics with mismatched term was presented in [22]. In
[23], a robust chattering-free control scheme was pro-
posed using second-order fast terminal sliding mode

control technique for the tracking problem of a class of
uncertain systems with matched and mismatched un-
certainties.

However, it is worth pointing out that most of the
previous results have been developed under the as-
sumption that all the system states are available for the
control law. It may be impossible or prohibitively ex-
pensive to measure all of the process variables in some
practical systems [24]. For example, it is difficult to
measure the variables describing the flexible motion,
the modal position, and the velocity of flexible space-
craft [25]. Thus, it is very important to establish a
new adaptive SOSMC method to control mismatched
uncertain systems via output feedback. Herein, we in-
tent to use the output information completely in the
sliding surface and controller design but still remain
the advantages of SOSMC such as the chattering-free,
the maximum convergence time interval, and the di-
mension of neighbourhood of the origin to which the
controlled trajectory converges [14].

In this paper, we extend the concept of second order
sliding mode controller, introduced by [19], [22], [23]
and [27], for the aim of stabilizing mismatched uncer-
tain systems where only output variables are accessible.
The main contributions of this paper are as follows:

• A new Lemma and a novel adaptive law are estab-
lished for the aim of controller design using only
output variables.

• New sufficient conditions in terms of Linear Matrix
Inequalities (LMI) are derived such that the equiv-
alent reduced-order system in the sliding mode is
asymptotically stable.

• The two major assumptions by [19], [22], [23] and
[27] (that all of state variables must be accessible,
and that the second derivative of all state variables
must exist) are both eliminated. Therefore, the
proposed method can be applied to a wider class
of mismatched uncertain systems.

2. System Description and
Preliminary Results

Consider the following mismatched uncertain systems:

ẋ = [A+ ∆A(x, t)]x+B [u+ ξ(x, t)] ,
y = Cx.

(1)

Here x ∈ Rn, u ∈ Rm and y ∈ Rp denote the state
variables, inputs and outputs, respectively. A ∈ Rn×n

is state matrix, B ∈ Rn×m is the input matrix and
C ∈ Rp×n is the output matrix. The terms ∆A and
ξ(x, t) represent the system matrix and the input ma-
trix uncertainties, respectively. We assume that:
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Assumption 1. The matrix pair (A,B) is completely
controllable.

Assumption 2. The mismatched uncertainty
∆A(x, t) is a norm-bounded time varying uncertainty
as follows:

∆A(x, t) = DF(x, t)E, ‖ F(x, t) ≤ 1 ‖,

where D and E are known constant real matrices with
appropriate dimensions that characterize the structure
of the uncertainty, and F(x, t) is a norm-bounded un-
known matrix.
Assumption 3. rank(CB) = m.

From [28], Assumption 3 implies that there exists
a non-singular linear coordinate transformation z = T̃ x
such that the triple (A,B,C) with respect to the new
coordinates has the structure

Ã =

[
Ã1 Ã2

Ã3 Ã4

]
, B̃ =

[
0

B̃2

]
, C̃ =

[
0 C̃2

]
, (2)

where Ã1 ∈ R(n−m)×(n−m), B̃2 ∈ Rm×m are non-
singular and C̃2 ∈ Rp×p is orthogonal.

Assumption 4: The triple (Ã1, Ã2,Ξ) is output feed-
back stabilisable, where Ξ =

[
0(p−m)×(n−p) I(p−m)

]
.

Assumption 4 implies that there exist matrix K̃ such
that the matrix A1 = Ã1− Ã2K̃Ξ is stable. From [28],
the coordinate transformation z = T̄ x̃ where

T̄ =

[
I 0

−K̃Ξ I

]
, (3)

will transform the triple (A,B,C) to the following
form in the new coordinate system z

[
A1 A2

A3 A4

]
,

[
0
B2

]
,
[
0 C2

]
, (4)

where A1 = Ã1 − Ã2K̃Ξ ∈ R(n−m)×(n−m) is stable
and both these matrices B2 ∈ Rm×m, C2 ∈ Rp×p are
non-singular.

Remark 1: In [19], [22], [23] and [27], all of state
variables x ∈ Rn must be accessible and the second
derivative of all state variables ẍ exist, even though
mathematical model of systems is of the first order.
The proposed method needs only a subset of state vari-
ables y ∈ Rp to be accessible and the second derivative
of output variables ÿ exists. Therefore, the proposed
approach can be applied to a wider class of mismatched
uncertain systems.

Remark 2: The output feedback SOSMC scheme is
proposed in [26]. However, there are three major con-
ditions set by [26]:

• The system under consideration is assumed to be
matched.

• The exogenous disturbances are bounded by a
known constant value. That is ‖ f ‖≤ π where
π is known. This condition is quite restrictive.

• The sliding matrix F satisfies that the matrix
FCAB is invertible to guarantee sliding condition
S(t) = Fy(t) + w(t) = 0. This limitation is really
strong.

Remark 3: The SOSMCs using output variables were
subject of many recently researches [29] and [30]. How-
ever, all these methods require more hardware and in-
crease system dimension. In this paper, an adaptive
output feedback SOSMC scheme is proposed for mis-
matched uncertain systems where above limitations are
eliminated.

3. Adaptive Output Feedback
Second Order Sliding Mode
Control Design

In this section, we introduce a systematic design pro-
cedure of an adaptive output feedback Second Order
Sliding Mode Control (SOSMC) scheme. There are
three steps involved in the design of an adaptive out-
put feedback SOSMC for system, see Eq. (1). In the
first step, a sliding surface is designed to depend on
only output variables. In the second step, we derive
appropriate Linear Matrix Inequalities (LMI) stability
conditions by the Lyapunov method to guarantee that
the system in the sliding mode is asymptotically sta-
ble. In the third step, we design an adaptive output
feedback second order sliding mode controller in a way
such that the system states reach the sliding manifold
in finite time and remain it thereafter.

3.1. Sliding Surface Design

From Eq. (11), Eq. (12) and Eq. (13) of paper [28], it
follows that under Assumptions 3 and 4, there exists a
non-singular matrix T such that in the new coordinates
z = Tx the system Eq. (1) can be described as:

ż =

([
A1 A2

A3 A4

]
+

[
D1

D2

]
F
[
E1 E2

])
z+

+

[
0
B2

] [
u+ ξ(T−1z, t)

]
,

(5)

and
y =

[
0 C2

]
z, (6)

where z =
[
z1 z2

]T , z1 ∈ Rn−m, z2 ∈ Rm, TAT−1 =[
A1 A2

A3 A4

]
, TDFET−1 =

[
D1

D2

]
F
[
E1 E2

]
, TB =
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[
0
B2

]
and CT−1 =

[
0 C2

]
. The matrices B2 ∈

Rm×m, C2 ∈ Rp×p are non-singular and A1 = Ã1 −
Ã2K̃Ξ ∈ R(n−m)×(n−m) is stable.

It follows from Eq. (5) that

ż1 = (A1 +D1FE1) z1 + (A2 +D1FE2) z2, (7)

and

ż2 = (A3 +D2FE1) z1 + (A4 +D2FE2) z2+

+B2 [u+ ξ] .
(8)

For the systems Eq. (5) and Eq. (6), consider a sliding
surface

σ(y(t)) = KC−12 y = 0, (9)

where K =
[
K1 K2

]
=
[
0m×(p−m) K2

]
. The ma-

trix K2 ∈ Rm×m is the form of

K2 = ΨPΨT , (10)

in which P ∈ R(n−m)×(n−m) is defined later and the
matrix Ψ ∈ Rm×(n−m) is selected such that the matrix
K2 ∈ Rm×m is non-singular. According to Eq. (6), the
sliding surface Eq. (9) can be rewritten as:

σ(y(t)) = KC−12 y =

= K

[
N 0(p−m)×m

0m×(n−m) Im×m

]
z = K2z2 = 0,

(11)

where N =
[
O(p−m)×(n−p) I(p−m)×(p−m)

]
. From

Eq. (11) and since K2 ∈ Rm×m is non-singular, in
the coordinate z, the sliding surface Eq. (9) can be de-
scribed by:

{col(z1, z2) | z2 = 0} . (12)

Using Eq. (12), the dynamic equation in sliding mode
is:

ż1 = (A1 +D1FE1) z1. (13)

3.2. Stability Analysis of Sliding
Motion

In last section, we have designed an output sliding sur-
face. There are still two important tasks that should be
done. The first task is to derive appropriate LMI sta-
bility conditions by the Lyapunov method to guarantee
that the sliding mode dynamics Eq. (13) is asymptoti-
cally stable. The second task is to design an adaptive
output feedback SOSMC in a way such that the system
states reach the sliding manifold in finite time and stay
on it thereafter. Now, we are going to do the former
task by considering the following LMI: AT

1G+GTA1 + Θ AT
1G−GT + P + Θ ET

1

GTA1 −G+ P + Θ −G−GT + Θ 0
E1 0 −ϕI

<0,

(14)

where G ∈ R(n−m)×(n−m) is general and non-zero
matrix, P ∈ R(n−m)×(n−m) is any positive matrix,
Θ = ϕGTD1D

T
1 G and the scalar ϕ > 0. Then, we

can establish the following theorem.

Theorem 1. Suppose that Assumptions 1-3 hold.
Then, the sliding mode dynamics Eq. (13) is asymp-
totically stable if the matrices P > 0 and non-zero
matrix G satisfy Eq. (14).

Proof : For the sliding mode dynamics Eq. (13), con-
sider a candidate Lyapunov function function

V = zT1 Pz1, (15)

where P > 0 satisfies Eq. (14). The time derivative of
V along the trajectories of Eq. (13) is given by

V̇=zT1
[
(A1 +D1FE1)TP + P (A1 +D1FE1)

]
z1. (16)

From Eq. (16), if (A1+D1FE1)TP + P (A1+D1FE1)<0
then V̇ < 0 and the sliding mode dynamics Eq. (13) is
asymptotically stable.

Before proving V̇ < 0 , we recall the following Lem-
mas.

Lemma 1. [31]: Let X, Y and F be matrices
of compatible dimension then XFY + Y TFTXT <
ϕ−1XXT + ϕY TY for any F satisfying ‖ F ‖≤ 1 and
a scalar ϕ > 0.

Lemma 2. [31]: Given a symmetric matrix W and two
matrices Γ and, Σ and consider the problem of finding
some matrix G such that W + ΣGΓ + (ΣGΓ)T < 0.

Denote Σ⊥ and Γ⊥ any matrices whose columns
form the bases of the null spaces of Σ and Γ, respec-
tively. Then the above inequality is solvable for G if
and only if Σ⊥WΣ⊥T < 0, ΓT⊥WΓT⊥T < 0.

Now, we are going to prove V̇ < 0. Let us first define

Γ⊥ =

[
I
I

]
, W =

[
0 P
P 0

]
, Σ =

[
(A1 +D1FE1)T

−I

]
,

Σ⊥ =
[
I (A1 +D1FE1)T

]
, ΓT⊥ =

[
I −I

]
and G

is defined in LMI Eq. (14). Then, we have

Λ = W + ΣGΓ + (ΣGΓ)T

=

[
AT

1G+GTA1 AT
1G−GT + P

GTA1 −G+ P −G−GT

]
+

[
GT D1

GT D1

]
F
[
E1 0

]
+

[
ET

1

0

]
FT
[
DT

1 G DT
1 G
]
.

(17)

Applying Lem. 1 to Eq. (17), we achieve

Λ ≤
[
AT

1G+GTA1 + Θ AT
1G−GT + P + Θ

GTA1 −G+ P + Θ −G−GT + Θ

]
+ϕ−1

[
ET

1

0

] [
E1 0

]
, (18)
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where Θ = ϕGTD1D
T
1 G and the scalar ϕ > 0.

Using Schur complement formula, LMI Eq. (14) can
be rewritten as[

AT
1G+GTA1 + Θ AT

1G−GT + P + Θ
GTA1 −G+ P + Θ −G−GT + Θ

]
+ϕ−1

[
ET

1

0

] [
E1 0

]
< 0. (19)

From Eq. (18) and Eq. (19), it can be observed that

Λ ≤
[
AT

1G+GTA1 + Θ AT
1G−GT + P + Θ

GTA1 −G+ P + Θ −G−GT + Θ

]
+ϕ−1

[
ET

1

0

] [
E1 0

]
< 0. (20)

It follows from Eq. (20) and Lem. 2 that

Σ⊥WΣ⊥T < 0. (21)

Since the fact W =

[
0 P
P 0

]
, and

Σ⊥ =
[
I (A1 +D1FE1)T

]
, we obtain:

Σ⊥WΣ⊥T = (A1 +D1FE1)
T
P+P (A1+D1FE1) < 0.

(22)
According to Eq. (16) and Eq. (22), it is obvious that

V̇ < 0. (23)

Note that Eq. (23) verifies that Eq. (14) holds, which
further implies that sliding motion is asymptotically
stable. The following new Lemma is derived for con-
troller design using only output variables.

Lemma 3. Consider the reduced-order system Eq. (7).
If the matrix A1 is stable then ‖ z1(t) ‖ is bounded by
η(t) for all time, where η(t) is the solution of

η̇(t) = (k ‖ D1 ‖‖ E1 ‖ +λ) η(t) (24)

+k (k ‖ A2 ‖ + ‖ D1 ‖‖ E2 ‖) ‖ K−12 KC−12 ‖‖ y ‖,

where k ‖ D1 ‖‖ E1 ‖ +λ < 0, the scalar k > 0 and λ
is the maximum eigenvalue of the matrix A1.

Proof : Solving Eq. (7) gives

‖z1(t)‖≤
t∫
0

‖exp {A1(t− τ)}‖ × [‖D1FE1‖‖z1‖

+ (‖ A2 ‖ + ‖ D1FE2 ‖) ‖ z2 ‖] dτ
+ ‖ exp(A1t) ‖‖ z1(0) ‖ .

(25)

The stable matrix A1 satisfy the constraint

‖ exp(A1t) ‖≤ k exp(λt), (26)

where k > 0 and λ < 0 are defined in Eq. (3). Accord-
ing to Eq. (25) and Eq. (26) we have

‖z1(t)‖≤
t∫
0

k ‖exp {λ(t− τ)}‖ × [‖D1‖‖E1‖‖z1‖

+ (‖ A2 ‖ + ‖ D1 ‖‖ E2 ‖) ‖ z2 ‖] dτ
+k ‖ exp(λt) ‖‖ z1(0) ‖ .

(27)

Multiplying both sides of Eq. (27) by exp(−λt), gives

‖z1(t)‖exp(−λt)≤
t∫
0

k exp(−λτ)‖D1‖‖E1‖‖z1‖dτ

+
t∫
0

k exp(−λτ)× (‖A2‖ + ‖D1‖‖E2‖) ‖z2‖ dτ

+k ‖ z1(0) ‖ .

(28)

Letting h(t) is the right term of Eq. (28) and taking
the time derivative of h(t), yields

d
dt
h(t) = k exp(−λt) ‖ D1 ‖‖ E1 ‖‖ z1 ‖

+k exp(−λt)× (‖ A2 ‖ + ‖ D1 ‖‖ E2 ‖) ‖ z2 ‖ .
(29)

According to Eq. (28) and Eq. (29) we achieve

d
dt
h(t) ≤ k ‖ D1 ‖‖ E1 ‖ h(t)

+k exp(−λt) (‖ A2 ‖ + ‖ D1 ‖‖ E2 ‖) ‖ z2 ‖ .
(30)

Multiplying both sides of Eq. (30) by exp(−k ‖ D1 ‖‖
E1 ‖ t), gives

d
dt
{h(t) exp(−k ‖ D1 ‖‖ E1 ‖ t)} ≤ k exp(−λt)·

(‖A2‖ + ‖D1‖‖E2‖) ‖z2‖ exp(−k ‖D1‖‖E1‖ t).
(31)

Integrating both sides of Eq. (31), we obtain

h(t) ≤ k ‖ z1(0) ‖ exp(k̄t) + exp(k̄t)×
t∫

0

k exp(−λτ)

(‖ A2 ‖ + ‖ D1 ‖‖ E2 ‖) ‖ z2 ‖ exp(−k̄τ)dτ, (32)

where k̄ = k ‖ D1 ‖‖ E1 ‖. Since ‖ z1(t) ‖ exp(−λt) ≤
h(t) and KC−12 y = K2z2, therefore it can be obtained
that

‖ z1(t) ‖≤ η(0) exp
[
(k̄ + λ)t

]
+

∫ t

0

k(‖ A2 ‖ + ‖ D1 ‖

‖E2‖) ‖ K−12 KC−12 ‖‖ y ‖ exp
[
(k̄ + λ)(t− τ)

]
dτ (33)

= η(t), if η(0) ≥ k ‖ z1(0) ‖,

where η(t) is defined in Eq. (3). Therefore, it is easy
to conclude that η(t) ≥‖ z1(t) ‖ for all time, if η(0)
sufficiently large.
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3.3. Adaptive Output Feedback
Second Order Sliding Mode
Controller Design

In the last section, we dealt with the first and second el-
ements of the design process. In this section, we design
an adaptive output feedback second order sliding mode
controller such that the system states reach the sliding
manifold in finite time and stay on it thereafter. Let us
begin with defining the sliding manifold s(t) such that

s(t) = σ̇ +Xσ (34)

and
ṡ(t) = σ̈ +Xσ̇, (35)

where X ∈ diag(χ1, χ2, ...χm) is any diagonal matrix.
The main idea behind the second-order sliding mode is
to act on the second-order derivative of the sliding vari-
able σ̈ rather than the first derivative as in conventional
sliding mode. The second-order sliding mode is deter-
mined from the basic equality condition σ̇ = σ̈ = 0
reaches in finite time, whereas the proposed controller
reaches the condition asymptotically.

According to Eq. (9), we obtain

s(t) = KC−12 ẏ +Xσ (36)

and
ṡ(t) = KC−12 ÿ +Xσ̇. (37)

Since KC−12 y = K2z2 and Eq. (8), Eq. (37) can be
rewritten as:

ṡ(t) = K2 [A3ż1 +A4ż2] +B2u̇+ ψ̇ +Xσ̇, (38)

where ψ = K2D2FE1z1 +K2D2FE2z2 +B2ξ.

Assumption 5. The disturbance ξ(t) of Eq. (38) in
the domain of interest satisfies

ψ̇(t) ≤
r∑

i=0

ai ‖ x ‖i, (39)

where ai are unknown positive constants, r is a de-
signed positive integer.

The proposed adaptive output feedback second order
sliding mode controller for tackling the system uncer-
tainty is designed as follows:

u(t) = u(0)−
∫ t

0

(K2B2)−1 [κ(t)

+ρη(t) + ρ̄ ‖ y ‖ +ρ̂ ‖ ẏ ‖ +α]
s(t)

‖ s(t) ‖
dt,

(40)

where the scalar α > 0,
ρ =‖ K2 ‖‖ A3 ‖ (‖ A1 ‖ + ‖ D1 ‖‖ E1 ‖),
κ(t) =

∑r
i=0 âi(t)(‖ H1 ‖ η(t)+ ‖ H2 ‖‖ K−12 KC−12 ‖‖

y ‖)i,

ρ̂ =‖ K2 ‖‖ A4 ‖‖ K−12 KC−12 ‖ + ‖ X ‖‖ KC−12 ‖,
ρ̄ =‖ K2 ‖‖ A3 ‖ (‖ A2 ‖ + ‖ D1 ‖‖ E2 ‖) ‖
K−12 KC−12 ‖, and

[
H1 H2

]
= T−1. The adaptive

gains âi(t) are given by

˙̂ai(t) = qi [−q̆iâi + (‖ H1 ‖ η
+ ‖ H2 ‖‖ K−12 KC−12 ‖‖ y ‖)i

]
.

(41)

The time function η(t) is the solution of Eq. (3) and qi,
q̆i are positive constants. The major drawback of slid-
ing mode control is so-called chattering phenomenon.
Such a phenomenon consists of the oscillation of the
control signal, tied to the discontinuous nature of the
control strategy, at a frequency and with an amplitude
capable of disrupting, damaging or, at least, wearing
the controlled physical system. It should be pointed
out that the controller Eq. (40) is a continuous control
input and uses only output variables. Hence the unde-
sired high frequency chattering of the control signal is
eliminated. This is a new contribution of the proposed
method.

Now let us discuss the reaching conditions in the
following theorem.

Theorem 2. Consider the uncertain dynamic system
defined by Eq. (1) with the assumptions 1–4. If the
sliding manifold and the adaptive sliding mode con-
troller are designed as Eq. (34) and Eq. (40), respec-
tively. Then, the system states reach the sliding man-
ifold s(t) in finite time and stay on it thereafter.

Proof : Define a Lyapunov function candidate as fol-
lows:

V (t) =‖ s ‖ +
1

2

r∑
i=0

ã2i
qi
, (42)

where ãi(t) = ai−ãi(t), i = 0, 1, ..., r are the estimation
errors of the adaptive gains. Now taking the derivative
of V (t) yields

V̇ (t) =
sT

‖ s ‖
ṡ−

r∑
i=0

1

qi
˙̂aiãi. (43)

Using Eq. (7), Eq. (38) and Eq. (43) and property
‖ AB ‖≤‖ A ‖‖ B ‖, it generates

V̇ (t) ≤‖ K2 ‖‖ A3 ‖ [(‖ A1 ‖ + ‖ D1 ‖‖ E1 ‖) ‖ z1 ‖
+ (‖ A2 ‖ + ‖ D1 ‖‖ E2 ‖) ‖ z2 ‖] + ‖ K2 ‖‖ A4 ‖‖ ż2 ‖

+
sT

‖ s ‖
K2B2u̇+ ‖ ψ̇ ‖ + ‖ X ‖‖ σ̇ ‖ −

r∑
i=0

1

qi
˙̂aiãi. (44)

From Assumption 4 and ‖ x ‖≤‖ H1 ‖‖ z1 ‖ + ‖ H2 ‖‖
z2 ‖ where

[
H1 H2

]
= T−1. We can obtain that

V̇ (t) ≤ sT

‖s‖K2B2u̇−
∑r

i=0
1
qi

˙̂aiãi+ ‖ K2 ‖‖ A3 ‖
[(‖ A1 ‖+‖ D1 ‖‖ E1 ‖) ‖ z1 ‖+(‖ A2 ‖+‖ D1 ‖
‖ E2 ‖) ‖ z2 ‖]+‖ X ‖‖ σ̇ ‖+‖ K2 ‖‖ A4 ‖‖ ż2 ‖

+
∑r

i=0 ai(‖ H1 ‖‖ z1 ‖ + ‖ H2 ‖‖ z2 ‖)i.

(45)
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Equation (11) implies that

z2 = K−12 KC−12 y. (46)

According to Lem. 3, we have

‖ z1(t) ‖≤ η(t). (47)

From Eq. (41), Eq. (45), Eq. (46) and Eq. (47), it can
be observed that

V̇ (t) ≤ ρη + ρ̄ ‖ y ‖ +ρ̂ ‖ ẏ ‖ +
r∑

i=0

q̆iâi(ai − âi)

+
r∑

i=0

âi
(
‖ H1 ‖ η+ ‖ H2 ‖‖ K−12 KC−12 ‖‖ y ‖

)i
+

sT

‖ s ‖
K2B2u̇.

(48)

Substituting the controller Eq. (40) into Eq. (48), we
achieve

V̇ (t) ≤ −α−
r∑

i=0

q̆i(âi −
ai
2

)2 +

r∑
i=0

q̆i
a2i
4
. (49)

Then, from Eq. (49), it is easy to see that the uniform
ultimate boundedness can be guaranteed.

The proposed adaptive SOSMC, using the output
information completely in the sliding surface and con-
troller design, offers following advantages. Firstly,
conservatism is reduced and the robustness is en-
hanced. Secondly, an improved transient performance
can be obtained without the knowledge about the up-
per bound of the system uncertainties. Finally, the
chattering in the control input is removed.

Design procedure: The proposed adaptive output
feedback SOSMC scheme can be simultaneously de-
signed by the following steps.

• Step 1: Find a feasible solution of LMI Eq. (14)
and calculate the scaling of sliding surface param-
eter K2 using Eq. (10).

• Step 2: Design the sliding surface σ(t) according
to Eq. (9).

• Step 3: Design the sliding manifold s(t) using
Eq. (36).

• Step 4: Design the adaptive output feedback
SOSMC u(t) according to Eq. (40).

4. Numerical Example

In order to demonstrate the validity and effectiveness
of the proposed method, in this section, we are going to
apply the adaptive output feedback SOSMC given in
previous sections for a Vertical Take-Off and Landing

(VTOL) aircraft at the nominal airspeed of 135 knots,
which is modified from [19].

ẋ =



−0.0366 0.0271 0.0188 −0.0455
0.0482 −1.01 0.0024 −4.0208
0.1002 0.3681 −0.707 1.42

0 0 1 0

+∆A

x+

+


−0.4422 0.1761
3.5446 −7.5922
−5.52 4.49

0 0

 (u+ ξ) , (50)

y =

1 0 0 0
0 1 0 0
0 0 0 1

x, (51)

where x =
[
x1 x2 x3 x4

]T , u =
[
u1 u2

]T with x1
is the horizontal velocity (knots), x2 is the vertical ve-
locity (knots), x3 is the pitch rate (degrees per second)
and x4 is the pitch angle (degrees), u1 is the collective
pitch control, u2 is the longitudinal cyclic pitch control.
It is assumed that x1, x2, and x4 are the output signals.
The mismatched uncertainty is given as ∆A = DFE

with D =
[
1 1 1 0

]T , E =
[
0 1 1 1

]
and

F = sin (x2 × t+ 4x1 × π × t+ x1x3x4 × t) . (52)

The disturbance is assumed to satisfy the following
condition ‖ ψ̇(t) ‖≤ 2 + 0.1 ‖ x ‖. For this work, the
following parameters are selected as follows: α = 300.1,
ϕ = 10.0109, and k = 1.001.

Assumptions 2 and 3 can be shown to hold. The
coordinate transformation z = Tx is given by:

T =


−1 0.038 0.10514 0
0 0 0 1
0 0.841 0.540 0.758
0 −0.540 0.841 0.539

 .
Solving LMI Eq. (14), we have the solution

P =

[
0.320 −0.045
−0.045 2.254

]
and G =

[
0.269 0

0 0.942

]
.

The matrix K2 =

[
0.3204 0.00025
0.00025 0.27545

]
is non-

singular. The sliding surface is given as

Σ(x) =

[
1.64858 0.20519 0.24317
2.20577 −0.23462 0.27545

]
y = 0.

The controller for the system Eq. (50) and Eq. (51)
is the solution of the following equation:

u(t) = u(0)−
t∫

0

{[
−0.94575 −0.5525
−0.7877 0.00072

] [
κ(t)+

+1.346η(t)+13.376‖y‖+15.338‖ẏ‖+300

]
s

‖ s ‖

}
dt,

(53)

where κ(t) =
1∑

i=0

2.999âi(t)(1.375η(t) + 10.109 ‖ y ‖)i,

˙̂ai(t) = −180âi(t) + 2.999(1.375η(t) + 10.109 ‖ y ‖)i,
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Fig. 1: Time responses of states x1 (dash-dot), x2 (dashed), x3
(dotted), x4 (solid).
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Fig. 2: Control input u1.

i = 0, 1 and η̇(t) = −0.048996η(t) + 10.109 ‖ y ‖,
η(0) = 0.1.

The initial conditions for the above system
are selected to be x(0) =

[
2 −2 1 1

]T and
u(0) =

[
0 0

]T . The system states and the control in-
put of the VTOL aircraft system using the proposed
adaptive output feedback SOSMC are shown in Fig. 1,
Fig. 2 and Fig. 3. It is evident from Fig. 1 that the
proposed adaptive output feedback SOSMC produces
faster convergence of the system states to equilibrium
as compared to the method proposed by [19]. It is ob-
served from Fig. 2 and Fig. 3 that the actual control
input obtained by the proposed method is smooth and
chattering free. Convergence of the sliding surface is
shown in Fig. 4 and Fig. 5. Figure 4 and Fig. 5, clearly
show that the proposed sliding surface is smooth and
approach to equilibrium point quickly.

Remark 4: The method proposed by [19] cannot be
applied for the system Eq. (50) and Eq. (51) if the
state variable x3 is unmeasurable. This limitation has
been removed by the proposed adaptive output feed-
back SOSMC Eq. (53) because the proposed controller
Eq. (53) only uses three output variables (x1, x2, and
x4).

Remark 5: The mismatched parameter uncertain-
ties in the state matrix of the system Eq. (50) and
Eq. (51) are non-linear and time-varying. Thus, the
approaches given in [26] could not be applied for the
system defined by Eq. (50) and Eq. (51).

5. Conclusion

This paper has presented a new adaptive Second Or-
der Sliding Mode Control (SOSMC) for mismatched
uncertain systems where only output information is
available. The proposed SOSMC is guaranteed that
the system in sliding mode is asymptotically stable and
the state trajectories reach the sliding manifold in finite
time and stay on it thereafter. Furthermore, system
performance using the proposed control is good with-
out and no chattering phenomenon exists. The most
significant advantage of the proposed SOSMC scheme
is that the measurement of all the system state vari-
ables which are required in most existing SOSMCs is
removed. This is valuable for cases in which the system
state variables are unavailable.
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