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Abstract. Children suffering from asthma are often
undiagnosed or misdiagnosed as their symptoms are
similar to other respiratory conditions. Spirometry, the
"golden" pulmonary function test used for asthma di-
agnosis, is often unsuitable for young children since it
requires them to perform extreme inhalation and exha-
lation maneuvers. Impulse Oscillometry (IOS) is an
effortless, child-friendly, sensitive, and reliable testing
technique that could be used in the effective diagno-
sis of asthma. However, the IOS requires a deep un-
derstanding of the mechanical and/or equivalent elec-
trical circuit models of the human respiratory system,
which hinders its broad acceptance and utility in clin-
ics. This paper presents a data characterization study
based on the statistical assessment of the IOS param-
eters. The main focus is to investigate four differ-
ent manifestations of pulmonary conditions in chil-
dren due to peripheral obstruction: Asthma (A), Small
Airway Impairment (SAI), Possible Small Airway Im-
pairment (PSAI), and Normal (N). The objective of
this investigation is to pave the way for the feature se-
lection stage of our future computer-aided classifica-
tion work to distinguish between lung dysfunction and
healthy lung function in children by identifying those
IOS parameters that are most sensitive to discriminate
between the different respiratory conditions mentioned
above. Our ultimate goal is to facilitate the interpreta-
tion of the impulse oscillometric test results and pro-
vide clinicians with a reliable and proven method for
accurate classification of children’s lung function for
an early asthma detection, diagnosis, and control.
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1. Introduction

Asthma causes the inflammation and narrowing con-
ditions that significantly affect the lining of the small
airways, which are the peripheral or distal airways with
an inner diameter of about 0.5 to 2 mm [1]. The early
manifestation of these conditions prior to an asthma
diagnosis could be early Small Airway Disease (SAD)
also known as Small Airway Impairment (SAI), which
is a chronic obstructive bronchitis with narrowing of
the bronchioles and small bronchi [1] and [2]. If in-
flammation persists during SAI, asthma will appear.
Therefore, the early evaluation and treatment of the
small airways might be even more effective when initi-
ated earlier in the course of asthmatic disease [2] and
[3].

The timely diagnosis of asthma is a challenging task
since its symptoms are similar to other respiratory con-
ditions. Additionally, the diseases affecting the small
airways are difficult to detect by traditional diagnostic
tests [4]. Early childhood is a critical period to assess
pulmonary function since those suffering from asthma
usually face the onset of their symptoms during this
time [5] and [6]. Spirometry is a Pulmonary Function
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Test (PFT) that quantifies the volume and flow of air
inhaled and exhaled as a function of time, and it is the
most common PFT used by primary medical practi-
tioners to diagnose asthma. Spirometry requires sig-
nificant cooperation from patients to perform extreme
inhalation and exhalation maneuvers and is often un-
suitable for young children who cannot follow exact
instructions. Frequently, children of this age are under-
diagnosed and poorly controlled [7], creating a substan-
tial burden that includes a decreased quality of life[7],
[8] and [9]. To this end, the IOS could be used as an
alternative and objective method for asthma diagno-
sis and control in children. The IOS, which measures
the respiratory impedance (pressure/flow as a function
of frequency), is a child-friendly, noninvasive, and well
validated technique requiring only the subject’s passive
cooperation with fast, easy, and reproducible measure-
ments [10] and [11]. Despite its advantages, the high
dimensionality of the IOS data and the complexity of
the mathematical infrastructure necessary for their ac-
quisition, make the analysis of test results difficult for
clinicians. Thus, these challenges could be perceived
as a barrier to the broad clinical acceptance of the IOS
and use in spite of its patient friendliness and objectiv-
ity.

Recognizing the need to improve the clinical utility
of the IOS, in this article we focus on the characteriza-
tion of the IOS features as a preliminary step for our
future computer-aided classification of lung function
in children. The aim of this work is to identify those
IOS features that demonstrate statistical significance
pertaining to the differentiation between four differ-
ent degrees of small airways obstruction which are the
Asthma (A), Small Airway Impairment (SAI), Possi-
ble Small Airway Impairment (PSAI), and Normal (N)
respiratory conditions.

2. Materials and Methods

2.1. Impulse Oscillometry System
and its Derived Parameters

The Impulse Oscillometry System (IOS) measures the
respiratory (pulmonary) impedance (Z) which has two
components: resistance (R) and reactance (X). In other
words, Z is the sum of all the resistive and reactive
forces that oppose the pressure impulses (oscillations)
and are calculated from the ratio of pressure and flow
at each frequency (5, 10, 15, 20, 25, and 35 Hz).
Resistance is the in-phase component of respiratory
impedance and reflects information about the forward
pressure of the conducting airways. On the other hand,
reactance is the out-of-phase component of respiratory
impedance and reflects the capacitive (C) and inertive
(I) properties of the airways [12]. Other IOS derived

parameters include: the frequency-dependence of Re-
sistance (fdR) which is calculated by subtracting R20
from R5 (R5–R20) and represents the small airways re-
sistance, the resonant frequency (Fres) is the frequency
at which the reactance is equal to zero, and the reac-
tance area (AX), also known as the "Goldman Trian-
gle" is the area under the reactance curve between 5 Hz
and Fres and provides important information about
small airways obstruction [12] and [13].

2.2. The IOS-Based Human
Respiratory System Models

For more than a decade, previous research work in the
Biomedical Engineering Research Laboratory at the
University of Texas at El Paso (UTEP) has focused
on the development, analysis, and validation of differ-
ent equivalent electrical circuit models for human res-
piratory system impedance. This effort to date has
demonstrated that the performance of the extended
Resistance Inductance Capacitance (eRIC) model and
the augmented RIC (aRIC) model (an improvement
of the eRIC model) ranked in the middle of a series
of traditional models developed over the past several
decades in terms of total cumulative error. However,
these recent models provide parameter estimates that
are physiologically more realistic and in line with the
expected values in normal subjects and those suffer-
ing from pulmonary dysfunction than previous models
[13], [14] and [15].

The components of the eRIC model include the rep-
resentation of large airway resistance "R", peripheral
resistance "Rp", large airway inertance "I", and pe-
ripheral airway compliance "Cp". The aRIC model
was developed and validated as an augmentation of the
eRIC model. The additional element "Ce" in the aRIC
model represents the extrathoracic compliance mainly
due to the upper airways shunt effects. Figure 1 and
Fig. 2 show the IOS-based equivalent electric circuit
models of the human respiratory system developed and
validated in our research laboratory [15].
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Fig. 1: eRIC Model of the human respiratory system.
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Tab. 1: Study’s population demographics.

Age
(Years)

Body
Mass Index
(Kg·m−2)

Ethnicity Gender

Age
by

Gender
(Years)

Children
Tested

Range:
5–17

Mean ± SD:
9.88 ± 3.62

Range:
12.7–37.6

Mean ± SD:
19.66 ± 4.73

Caucasian Male 5–17 38
Female 5–17 26

Hispanic Male 5–17 22
Female 5–16 26

Total 112

Tab. 2: Demographics for clinician’s classification.

Age
(Years)

Body Mass Index
(Kg·m−2)

Classification Range Mean SD Range Mean SD
Asthma
(n=30) 5-13 8.1 2.5 14.35-37.57 18.89 5.35

SAI
(n=54) 5-17 9.3 3.4 12.73-31.21 19.31 4.49

PSAI
(n=17) 5-17 12.6 3.8 14.64-30.52 20.16 3.93

Normal
(n=11) 11-17 13.4 2.5 16.14-30.15 22.79 4.55
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Fig. 2: aRIC Model of the human respiratory system.

2.3. Subjects

The IOS dataset acquired as part of an NIH-funded
study ("Asthma on the Border") was used for this
study. The data were collected in El Paso, Texas with
the approval of the University of Texas at El Paso In-
stitutional Review Board (IRB). An informed consent
form was given to every parent and their child, provid-
ing them with a detailed description of the study. This
unique IOS database consists of 112 records of male
and female Caucasian and Hispanic children from 5 to
17 years of age. The demographics of the studied pop-
ulation are further described in Tab. 1 and Fig. 3.

2.4. IOS Equipment and Data
Acquisition

The equipment used for the study was a Jaeger Mas-
terScreen IOS (manufacured by Viasys Healthcare,
Höchberg, Germany). The system was calibrated ev-
ery day before data collection using a 3-L syringe
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Fig. 3: Study demographics by age.

24
29

6 56

25

11
6

0
5

10
15
20
25
30
35

Asthma SAI PSAI Normal

N
um

be
r o

f S
ub

je
ct

s

Caucasian Hispanic

Fig. 4: Clinician’s classification breakdown by ethnicity.

for volume calibrations and a reference resistance
(0.2 kPa·L−1·s−1) for pressure calibrations. Children
were asked to wear a nose clip, while breathing nor-
mally through a mouthpiece, and were instructed to
close their lips tightly around it to avoid air leakage.
During data collection, three to five IOS test replicates
were performed on each subject to ensure reproducible
tests without artifacts. In each IOS test, impulses were
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Tab. 3: Mean and coeficient of variation of each IOS parameter.

Mean Coeficient of Variation (%)
IOSParameter Units Asthma SAI PSAI Normal Asthma SAI PSAI Normal

R5 kPa·l−1·s−1 0.823 0.654 0.493 0.4 20.2 22.2 23 22.8
R10 kPa·l−1·s−1 0.629 0.519 0.41 0.348 18.2 21.5 22.5 24.8
R15 kPa·l−1·s−1 0.504 0.43 0.374 0.342 19.7 24.7 22.4 24.9
R20 kPa·l−1·s−1 0.45 0.402 0.354 0.332 19.1 24.2 23.6 22.3
R25 kPa·l−1·s−1 0.498 0.447 0.369 0.342 17.2 21.5 25.4 21.2
R35 kPa·l−1·s−1 0.65 0.551 0.461 0.417 18 19.7 24.4 23.1
X5 kPa·l−1·s−1 -0.362 -0.263 -0.168 -0.106 32.2 34.3 42.7 37.9
X10 kPa·l−1·s−1 -0.24 -0.156 -0.072 -0.023 32.2 42.3 61.5 65.9
X15 kPa·l−1·s−1 -0.163 -0.091 -0.026 0.018 35.6 49.7 130.8 128.6
X20 kPa·l−1·s−1 -0.025 0.021 0.04 0.062 172.4 214.7 62.1 41.9
X25 kPa·l−1·s−1 0.1 0.111 0.114 0.12 42.1 41.8 29.2 22.4
X35 kPa·l−1·s−1 0.199 0.206 0.21 0.206 22.5 22.4 18.7 23.9

R5–R20 kPa·l−1·s−1 0.373 0.253 0.139 0.068 31.3 35.5 48.5 49.8
Fres Hz 20.914 19.334 16.697 13.145 8 12.6 11.6 18.9
AX kPa·l−1· 3.015 1.887 0.866 0.366 32.5 39.5 58 32.9

eRIC R kPa·l−1·s−1 0.423 0.389 0.347 0.329 18.6 23.5 24.5 22.8
eRIC Rp kPa·l−1·s−1 0.836 0.637 0.444 0.497 31.5 37.6 48.3 103.4
eRIC I kPa·l−1·s−2 0.001 0.001 0.001 0.001 28.6 30.8 31.6 16
eRIC Cp l·kPa−1 0.04 0.063 0.112 0.188 32.9 44.2 34.2 34.8
aRIC R kPa·l−1·s−1 0.371 0.34 0.324 0.31 27.1 33.1 28.2 26.4
aRIC Rp kPa·l−1·s−1 0.795 0.597 0.408 0.309 28.9 31.7 41.3 34.6
aRIC I kPa·l−1·s−2 0.002 0.002 0.001 0.001 39.3 45.1 45.2 24.2
aRIC Cp l·kPa−1 0.032 0.051 0.1 0.152 40.7 59 41.5 20.4
aRIC Ce l·kPa−1 0.003 0.003 0.002 0.002 68.1 74.1 95.9 96.3
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Fig. 5: Clinician’s classification breakdown by gender.

applied for a period of 30 to 45 seconds. The data were
then carefully reviewed (quality-assured) offline by our
expert clinician to ensure that they were artifact free
(no air leaks, no swallowing effects, no breath holding,
no vocalization), segments containing artifacts were re-
jected and were not used for the present study. After
the review of every test, each child’s data were classi-
fied into one of four conditions based on the clinician’s
expertise and experience: Normal (N), Possible Small
Airway Impairment (PSAI), Small Airway Impairment
(SAI), or Asthmatic (A). Table 2, Fig. 4 and Fig. 5 de-
tail the demographics by class.

The collected data from IOS testing included resis-
tance and reactance measurements at frequencies 5,
10, 15, 20, 25, and 35 Hz, resonant frequency (Fres),
and the reactance area (AX). Additionally, R5–R20
(fdR), the eRIC, and the aRIC parameters were cal-
culated. The methodology for parameters estimation

of the eRIC and aRIC respiratory models are further
described by Diong et al. in [14] and [15], respectively.
In total, 24 IOS derived features for each child were
considered. Table 3 lists all parameters obtained for
the present study and shows the mean and coefficient
of variation of each IOS parameter per each of the stud-
ied conditions.

2.5. IOS Data Characterization for
Dimensionality Reduction

The high dimensionality of the IOS parameters, as well
as the dispersion of the data generated for the differ-
ent classes produce an overlapping effect. This makes
computer-aided classification of multiple classes with
different degrees of severity in peripheral obstruction
difficult. The complexity of the data used for this inves-
tigation plotted in terms of the respiratory impedance
components R and X, as a function of the Frequency
(F) is shown in Fig. 6.

It is observed that the data from the different classes
overlap, thus making the class differentiation a chal-
lenging task. Therefore, a deep analysis of the IOS pa-
rameters is required to find discriminating features that
could help in the accurate classification of classes with
different degrees of distal obstruction. To this end,
statistical analysis was performed using the MINITAB
18 Statistical Software (Minitab, Inc., State College,
USA). ANOVA One-way (Analysis of Variance) was
the test used to determine statistical differences be-
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Tab. 4: IOS Resistance Parameters Comparison-Matrix.

IOS
Parameter

Asthma
vs.
SAI

Asthma
vs.

PSAI

Asthma
vs.

Normal

SAI
vs.

PSAI

SAI
vs.

Normal

PSAI
vs.

Normal
R5 0 0 0 0 0 0.031
R10 0 0 0 0.001 0 0.086
R15 0.002 0 0 0.055 0.012 0.324
R20 0.027 0.001 0 0.073 0.029 0.49
R25 0.018 0 0 0.005 0.001 0.422
R35 0 0 0 0.004 0 0.289

Tab. 5: IOS Reactance Parameters Comparison-Matrix.

IOS
Parameter

Asthma
vs.
SAI

Asthma
vs.

PSAI

Asthma
vs.

Normal

SAI
vs.

PSAI

SAI
vs.

Normal

PSAI
vs.

Normal
X5 0 0 0 0 0 0.015
X10 0 0 0 0 0 0.002
X15 0 0 0 0 0 0.001
X20 0 0 0 0.105 0.005 0.003
X25 0.28 0.239 0.149 0.802 0.54 0.627
X35 0.497 0.428 0.687 0.79 0.974 0.821

Tab. 6: IOS Derived Parameters Comparison-Matrix.

IOS
Parameter

Asthma
vs.
SAI

Asthma
vs.

PSAI

Asthma
vs.

Normal

SAI
vs.

PSAI

SAI
vs.

Normal

PSAI
vs.

Normal
R5–R20 0 0 0 0 0 0.003
Fres 0.002 0 0 0 0 0
AX 0 0 0 0 0 0.003
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Fig. 6: 3D Plot of Resistance and Reactance vs. Frequency.

tween data sets. The statistical analysis was performed
using a confidence level of 95 %.

In this analysis, each IOS parameter for each class
was compared against the same IOS parameter for
a different class, until the parameter was compared for
all classes. A comparison-matrix for each of the main
IOS parameters was completed, where the p-values ob-
tained for each of the comparisons were listed in the
corresponding matrix. Please refer to Tab. 4 for the
resistance parameters comparison, Tab. 5 for the reac-
tance parameters, Tab. 6 for other IOS derived param-
eters, Tab. 7 for the eRIC, and Tab. 8 for the aRIC

human respiratory model parameters. For an IOS pa-
rameter to be considered potentially discriminative all
of its p-values must be less than 0.05. The correspond-
ing tables have any cells where the p-values are greater
than 0.05 highlighted in bold, which render that spe-
cific IOS feature undiscriminative.

3. Results

For resistance, it is observed in Tab. 4 that the resis-
tance parameters R5, R10, R15, R20, R25, and R35
are potentially discriminative to differentiate between
all classes except SAI vs. PSAI and PSAI vs. Nor-
mal; where R15 and R20 cannot differentiate between
SAI vs. PSAI, and R10, R15, R20, R25, and R35 can-
not differentiate between PSAI vs. Normal. Therefore,
the only resistance parameter found to be potentially
discriminative for all conditions was R5.

For reactance, it is observed in Tab. 5 that the re-
actance parameters X5, X10, X15 are potentially dis-
criminative to differentiate all classes, while X20 differ-
entiates all classes except SAI vs. PSAI. X25 and X35
do not differentiate any of the classes. Therefore, the
reactance parameters found to be potentially discrim-
inative for all conditions were X5, X10, and X15.
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Tab. 7: eRIC Parameters Comparison-Matrix.

eRIC
Parameter

Asthma
vs.
SAI

Asthma
vs.

PSAI

Asthma
vs.

Normal

SAI
vs.

PSAI

SAI
vs.

Normal

PSAI
vs.

Normal
R 0.091 0.003 0.003 0.097 0.073 0.669
Rp 0.001 0 0 0.004 0 0.205
I 0.026 0 0 0.019 0.011 0.463
Cp 0 0 0 0 0 0.001

Tab. 8: aRIC Parameters Comparison-Matrix.

aRIC
Parameter

Asthma
vs.
SAI

Asthma
vs.

PSAI

Asthma
vs.

Normal

SAI
vs.

PSAI

SAI
vs.

Normal

PSAI
vs.

Normal
R 0.208 0.121 0.082 0.611 0.418 0.689
Rp 0 0 0 0 0 0.094
I 0.053 0 0 0.008 0.004 0.334
Cp 0.001 0 0 0 0 0.002
Ce 0.738 0.112 0.455 0.07 0.347 0.61

Tab. 9: Ranking of Potentially Discriminative IOS Parameters.

Coeficient of Variation (%)
IOS Parameter Asthma SAI PSAI Normal CV Avg Ranking

Fres 8 12.6 11.6 18.9 12.8 1
R5 20.2 22.2 23 22.8 22 2

eRIC Cp 32.9 44.2 34.2 34.8 36.5 3
X5 32.2 34.3 42.7 37.9 36.8 4

aRIC Cp 40.7 59 41.5 20.4 40.4 5
AX 32.5 39.5 58 32.9 40.7 6

R5-R20 31.3 35.5 48.5 49.8 41.3 7
X10 32.2 42.3 61.5 65.9 50.5 8
X15 35.6 49.7 130.8 128.6 86.2 9

For the other IOS derived parameters category,
which included R5–R20 (fdR), Fres, and AX, it is ob-
served in Tab. 6 that for all instances these parameters
are potentially discriminative since all p-values were
nearly equal to zero in all cases.

For the eRIC parameters, it is observed in Tab. 7
that the "Cp" parameter is potentially discriminative
to differentiate all classes, while "Rp" and "I" differen-
tiate all classes except PSAI vs. Normal, and the "Rc"
parameter does not differentiate any of the classes.
Therefore, the only eRIC parameter found to be po-
tentially discriminative for all conditions was "Cp".

For the aRIC parameters, it is observed in Tab. 8
that the "Cp" parameter is potentially discrimina-
tive to differentiate all classes. "Rp" differentiates all
classes except PSAI vs. Normal, while "I" differenti-
ates between all classes except Asthma vs. SAI and
PSAI vs. Normal. The "Rc" and "Ce" parameters do
not differentiate any of the classes. Therefore, the only
aRIC parameter found to be potentially discriminative
for all conditions was "Cp".

Table 9 summarizes the IOS derived-parameters that
have discriminative capacity to statistically differenti-
ate all four classes based on their means. It is also
important to understand the dispersion of the data for
each parameter, since less variation will imply less data

overlapping between groups. Therefore, these IOS pa-
rameters were ranked based on the dispersion of their
data measured in terms of the average of the coefficient
of variation for the different classes. Table 9 shows the
ranking based on the coefficient of variation.

4. Discussion

Based on the analysis performed, nine parameters were
found sensitive to discriminate between the Asthma,
SAI, PSAI and Normal pulmonary conditions. Unlike
previous studies, we demonstrated that these parame-
ters statistically differentiate between four levels of pe-
ripheral lung function instead of just two (asthmatics
and non-asthmatics) as previously presented by other
studies [2], [16], [17], [18] and [19].

From the analysis of the resistance parameters, R5
was found to be discriminative, this finding is sup-
ported by previous studies that have found R5 to
be statistically significant to differentiate IOS bron-
chodilator responses for asthmatic and non-asthmatic
children. In addition to R5, R10 has also been found
to be an important parameter to differentiate between
these two groups. However, in our study it was con-
firmed that R10 has no discriminative capacity to dis-
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tinguish between PSAI and Normal conditions [16],
[17], [18], [20] and [21].

Regarding reactance, we found X5, X10, and X15 to
be discriminative parameters, in previous studies X5
and X10 have been observed to be sensitive to differ-
entiate IOS bronchodilator responses for asthmatic and
non-asthmatic children [16], [17], [20] and [21]. In ad-
dition, X5 has been shown to correlate with improve-
ment in the peripheral lung function due to the use of
systemic drugs [19].

R5–R20 (fdR), Fres, and AX have also been found to
be sensitive measures to detect lung function changes
in children in previous studies [2], [3], [13], [20], [21],
[22] and [23].

The findings related to the equivalent electrical cir-
cuit model parameters for the human respiratory sys-
tem are supported by previous studies performed by
our research group. Where, the baseline IOS measures
and estimated model parameters have previously been
analyzed to evaluate their discriminative capacity to
track changes in lung function in children [2], [13] and
[22]. In these studies, IOS measures and estimated
model parameters of Asthma, SAI, PSAI, and Normal
children were statistically analyzed to evaluate their
discriminative capacity by comparing pre and post-
bronchodilator responses for each group. According to
these studies, the data for Asthma and SAI seemed to
fall into one category (Small Airway Impaired), while
PSAI and Normal could be grouped into a different
one (Healthy). A statistical assessment was then per-
formed to identify the IOS and estimated model pa-
rameters that were discriminative to distinguish be-
tween the two groups, it was concluded that AX and
the eRIC "Cp" estimated model parameter were the
most sensible and reliable measures to statistically dis-
tinguish between the two groups [2]. With the present
study, we were able to confirm that the eRIC "Cp" esti-
mated model parameter not only differentiates between
two conditions but also differentiates between the four
conditions presented in here. In addition to the eRIC
"Cp", the aRIC "Cp" estimated model parameter was
also found discriminative to distinguish between the
four groups.

5. Conclusions

In this work, we were able to identify the IOS param-
eters that statistically differentiate between four levels
of peripheral lung function in children (Asthma, SAI,
PSAI and Normal). Out of the 24 IOS parameters
studied, only 9 were found to be sensitive to differenti-
ate between the four respiratory conditions studied in
this paper. The discriminative IOS parameters identi-
fied and listed from higher to lower sensitivity (based

on the dispersion of their data) were: Fres, R5, Cp from
the eRIC model, X5, Cp from the aRIC model, AX,
R5–R20, X10, and X15. These parameters could be
used as input features in further computer-aided classi-
fication work to best distinguish normal lung function
and different degrees of small airways obstruction in
children.
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