
INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 17 | NUMBER: 1 | 2019 | MARCH

Discovering Periodic Itemsets Using Novel
Periodicity Measures

Philippe FOURNIER-VIGER 1, Peng YANG 2, Jerry Chun-Wei LIN 3, Quang-Huy DUONG 4,
Thu-Lan DAM 4, Jaroslav FRNDA5, Lukas SEVCIK 6, Miroslav VOZNAK 6

1School of Humanities and Social Sciences, Harbin Institute of Technology (Shenzhen),
University Town of Shenzhen, Shenzhen, China

2School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen),
University Town of Shenzhen, Shenzhen, China

3Department of Computing, Mathematics and Physics, Faculty of Engineering and Science, Western Norway
University of Applied Sciences (HVL), Inndalsveien 28, 5063 Bergen, Norway

4Department of Computer and Information Science, Faculty of Information Technology and Electrical
Engineering, Norwegian University of Science and Technology, Hogskoleringen 1, 7491 Trondheim, Norway
5Department of Quantitative Methods and Economic Informatics, Faculty of Operation and Economics of
Transport and Communications, University of Zilina, Univerzitna 8215/1, 010 26 Zilina, Slovak Republic

6Department of Telecommunications, Faculty of Electrical Engineering and Computer Science, VSB–Technical
University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic

philfv8@yahoo.com, pengyeung@163.com, jerrylin@ieee.org, huydqyb@gmail.com, lanfict@gmail.com,
jfrnda@gmail.com, lukas.sevcik@vsb.cz, miroslav.voznak@vsb.cz

DOI: 10.15598/aeee.v17i1.3185

Abstract. Discovering periodic patterns in a customer
transaction database is the task of identifying item-
sets (sets of items or values) that periodically ap-
pear in a sequence of transactions. Numerous meth-
ods can identify patterns exhibiting a periodic behavior.
Nonetheless, a problem of these traditional approaches
is that the concept of periodic behavior is defined very
strictly. Indeed, a pattern is considered to be periodic
if the amount of time or number of transactions be-
tween all pairs of its consecutive occurrences is less
than a fixed maxPer (maximum periodicity) threshold.
As a result, a pattern can be eliminated by a traditional
algorithm for mining periodic patterns even if all of its
periods but one respect the maxPer constraint. Conse-
quently, many patterns that are almost always periodic
are not presented to the user. But these patterns could
be considered as interesting as they generally appear pe-
riodically. To address this issue, this paper suggests to
use three measures to identify periodic patterns. These
measures are named average, maximum and minimum
periodicity, respectively. They are each designed to
evaluate a different aspect of the periodic behavior of
patterns. By using them together in a novel algorithm
called Periodic Frequent Pattern Miner, more flexibility
is given to users to select patterns meeting specific pe-
riodic requirements. The designed algorithm has been
evaluated on several datasets. Results show that the

proposed solution is scalable, efficient, and can identify
a small sets of patterns compared to the Eclat algorithm
for mining all frequent patterns in a database.

Keywords

Itemset mining, periodic pattern, periodicity,
average periodicity.

1. Introduction

Analyzing symbolic data to discover frequently
co-occurring symbols is a problem called Frequent
Itemset Mining (FIM) [1], [2], [3], [4], [5] and [7]. FIM
is considered by many as an important data science
task with various applications in different fields [7].
The input of FIM is a database consisting of a set
of records described by binary attributes. A typical
example of such database is a customer transaction
database, where each record is a transaction and each
attribute indicates whether a given item was purchased
or not in each transaction. To discover frequent item-
sets, a user must set a minimum frequency threshold

c© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 33

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201135313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 17 | NUMBER: 1 | 2019 | MARCH

called minsup. Then, a FIM algorithm outputs all sets
of items (itemsets) that co-occur in more than minsup
transactions.

Many studies have proposed efficient techniques
to enumerate all frequent itemsets from a binary
database, and numerous applications of these tech-
niques have been presented [1], [2], [3], [4], [5] and
[7]. Nonetheless, these techniques are inappropriate
for identifying patterns that have a periodic behavior.
Analyzing the periodic behavior of patterns is desirable
for some applications such as the analysis of customer
shopping behavior. For instance, one could analyze
a transaction database and discover that a person typ-
ically purchases some items such as wine and cheese
every weekend. Finding such periodic patterns is use-
ful for the purpose of marketing. For example, a mo-
bile application could provide discounts on wine and
cheese to that customer before every weekend, antic-
ipating that the customer will repeat that purchase.
In a shopping context, periodic patterns for multiple
customers could be also discovered. For example, if
a retail store identifies that some type of bread is gen-
erally sold every hour, this information can be used
to improve inventory management of this product. Be-
sides analyzing shopping data, periodic pattern mining
can be used in many other applications.

To identify recurring patterns in symbolic data, the
concept of Periodic Frequent Patterns (PFP) was de-
fined, and many algorithms were designed to enumer-
ate these patterns [8], [9], [10], [11], [12], [13] and [14].
The input of a traditional PFP mining algorithm is
a transaction database where transactions are ordered
by time, and a parameter called maxper (maximum
periodicity) is provided by the user. Then, the output
is all periodic patterns, where an itemset is said to be
periodic if the number of transactions between any of
its consecutive occurrences (the length of its periods)
is no greater or equal to maxPer. Mining such pat-
terns was shown to be useful in previous studies. But
a drawback of this definition is that it is a very strict
definition of what is a periodic pattern. In fact, algo-
rithms for mining these periodic patterns will eliminate
a pattern from the result set even if all but one of its
periods satisfy the maxPer constraint. Thus, many
patterns that are generally periodic but not always pe-
riodic will not be presented to the user. However, such
patterns still carry some interesting information. One
may think that a solution to find such missing patterns
is to increase themaxPer threshold. However, this can
result in finding a very large number of patterns, and
it is typically difficult and time-consuming for users to
analyze a large pattern set.

To address this issue, a novel problem is defined in
this paper, which is to identify periodic patterns us-
ing three measures. Those are the average, maximum
and minimum periodicity, respectively. They are each

designed to each evaluate a different aspect of the pe-
riodic behavior of patterns. By using them together
in a novel algorithm called PFPM (Periodic Frequent
Pattern Miner), more flexibility is given to users to se-
lect patterns meeting specific periodic requirements.

The contributions of this paper are as follows:

• Two measures called minimum and average pe-
riodicity are defined to be used jointly with the
maximum periodicity measure. These measures
let the user more precisely specify requirements
about the periodic behavior of patterns to be dis-
covered. Using the average periodicity measure,
patterns that are generally but not always peri-
odic can be discovered.

• To enumerate all periodic patterns satisfying con-
straints on the above measures, an efficient algo-
rithm is proposed, called Periodic Frequent Pat-
tern Miner (PFPM) - Note that an early version
of this paper was published in a conference pro-
ceedings [18].

• The performance in terms of scalability, runtime
and memory has been evaluated on four real
datasets. It has been observed that the newly
designed algorithm is scalable, efficient and can
eliminate numerous patterns that are not periodic
to show a small set of patterns to the user.

The following sections describe relevant related
work and some important preliminaries about fre-
quent itemset mining (Sec. 2.), present the de-
signed minimum periodicity and average periodicity
measures (Sec. 3.), describe the proposed algorithm
(Sec. 4.), report results from the experimental eval-
uation (Sec. 5.) and draw a conclusion and discusses
opportunities for future work (Sec. 6.), respectively.

2. Related Work

FIM consists of analyzing a binary database (also
called transaction database) to identify sets of sym-
bols that appear together in many records. FIM was
defined by Agrawal and Srikant [1] as follows.

A binary database DB is a set of records (called
transactions), described using several binary attributes
(items). Let the set of all database attributes (items)
be called A. Each record (transaction) R is defined
by the set of attributes R ⊆ A for which it has posi-
tive values. A transaction database DB containing n
records is denoted as DB = {R1, R2, ..., Rn}. The in-
dice c of a record Rc in a database is also called its
identifier, and it is unique. It is assumed that records
in a database are ordered from the oldest one to the
newest one.

c© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 34

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 17 | NUMBER: 1 | 2019 | MARCH

Tab. 1: A binary database containing seven records.

Records Binary attributes
a b c d e

R1 x x
R2 x
R3 x x x x x
R4 x x x x
R5 x x x
R6 x x x
R7 x x x

A small binary database is depicted in Tab. 1. It con-
tains seven records having the identifiers 1, 2, 3, . . . , 7,
respectively. Each record is described using five binary
attributes denoted as a, b, . . . , e. Consider the first
record R1. It indicates that the attributes a and c have
positive values. If this database represents a shopping
database, it could indicate that some products a and c
were bought. The rest of this paper uses the database
of Tab. 1 as running example.

A pattern (also called itemset) X is a set of pos-
itive attribute values, and is defined as X ⊆ A. In
traditional FIM, interesting patterns are discovered on
the basis of their support (occurrence frequency). For
a database DB, let s(X) denote the support of X de-
fined as s(X) = |{R|R ∈ DB ∧X ⊆ R}|.

An alternative definition of the support is the fol-
lowing. For an itemset X, let the notation g(X) re-
fer to the set of records containing X, where records
are ordered by time. For a database DB contain-
ing n records, g(X) is formally defined as g(X) =
{Rg1 , Rg2 ..., Rgk}, where 1 ≤ g1 < g2 < ... < gk ≤
n. Hence, the support of X can be also defined as
s(X) = |g(X)|.

In FIM, the goal is to enumerate all frequent item-
sets, given a minimum support threshold minsup, set
by the user [1]. An itemset X is said to be frequent if
and only if s(x) ≥ minsup. For example, consider the
database of Tab. 1 and that a user sets minsup = 4.
In that cases, five frequent itemsets are found, which
are {a} : 4, {a, c} : 4, {e} : 5, {c, e} : 4, {c} : 6, where
the notation X : s(X) is used.

Many algorithms have been developed to enumer-
ate all frequent patterns in a database. Some popular
algorithms are for example, FP-Growth [15], Apriori
[1], LCM [3], and Eclat [4]. These algorithms all pro-
duce the same result but utilize different data struc-
ture, search strategies and optimizations. The Apriori
algorithm utilizes a breadth-first search and repeatedly
scan the database, which is very costly, and can gen-
erate many candidate patterns. The FP-Growth com-
presses the database in a compact database structure,
and performs database projections to avoid generat-
ing candidates. The Eclat algorithm utilizes a verti-
cal database representation to calculate the support

of patterns to avoid repeatedly scanning the database.
Although these algorithms are efficient, they are de-
signed for finding frequent itemsets rather than identi-
fying itemsets having a periodic behavior.

To discover patterns exhibiting periodic behaviors,
traditional FIM algorithms have been adapted and ex-
tended. Many algorithms were defined to identify Pe-
riodic Frequent Patterns (PFPs) in a binary attribute
database [8], [9], [10], [11], [12], [13] and [14]. They
generally extend FIM algorithms with the ability of cal-
culating periodicity measures, and rely on appropriate
data structures and optimizations to perform these cal-
culations efficiently. Periodic frequent pattern mining
techniques are useful for various applications [13]. For-
mally, the concept of PFP is defined as follows, based
on a concept of periods [13].

Definition 1 (Consecutive records). Consider
an itemset X appearing in a set of records
g(X) = {Rg1 , Rg2 , . . . , Rgk} of a binary database
DB = {R1, R2, . . . , Rn}. Two records Rx and Ry are
consecutive w.r.t. X in DB if there does not exist
an identifier w of a record Rw such that x < w and
w < y.

Definition 2 (Period of consecutive records of an item-
set). Let there be two consecutive records Rx and Ry

in g(X) for an itemset X. The period of Rx and Ry

is denoted as pe(Rx, Ry), and defined as the number of
records between Rx and Ry, that is pe(Rx, Ry) = y−x.

Definition 3 (Periods of an itemset). The periods of
an itemset X appearing in a set of records g(X) =
{Rg1 , Rg2 , . . . , Rgk} is defined formally as ps(X) =
{g1−g0, g2−g1, g3−g2, . . . gk−gk−1, gk+1−gk}, where
g0 = 0 and gk+1 = n.

For instance, the database records containing {a, c}
are R1, R3, R5, and R6 in the running example. Hence,
the periods of {a, c} are calculated as ps({a, c}) = {1−
0, 3− 1, 5− 3, 6− 5, 7− 6} = {1, 2, 2, 1, 1}.

Definition 4 (Maximum periodicity). Let there be
an itemset X. Its maximum periodicity is defined as
maxper(X) = max(ps(X)) [13].

Definition 5 (Periodic Frequent Pattern). Let there
be an itemset X and maxPer be a threshold set by
the user. X is said to be a periodic frequent pattern if
maxper(X) < maxPer and s(X) ≥ minsup [13].

For instance, assume that maxPer = 2 and
minsup = 4. A traditional PFP mining algorithm will
enumerate all periodic frequent patterns, i.e. (4, 2),
{a,c} : (4, 2), {e} : (5, 2), {c} : (6, 2), where the
notation X : (s(X),maxper(X)) is used.

Many algorithms have been developed to identify
PFPs from a transaction database. The first algo-
rithm, named PFP-tree [13], adopts a pattern-growth

c© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 35

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 17 | NUMBER: 1 | 2019 | MARCH

approach extending FP-Growth [15] to mine PFPs.
Then, the MTKPP [8] algorithm was presented to dis-
cover the k most frequent PFPs in a database, where
k and maxPer are parameters that must be set by the
user. MTKPP is inspired by Eclat [4]. It relies on the
same vertical database representation and explores the
search space in the same depth-first way. The ITL-tree
algorithm [9] was then proposed. It is an approximate
algorithm, which uses a tree based approach to find
PFPs. Unlike previous algorithms, ITL-tree does an
approximate calculation of the periodicities of itemsets.
PFP mining is another algorithm for the approximate
discovery of PFPs [12]. In another work, the MCPF-
tree algorithm [10] was proposed by extending PF-Tree
to mine PFPs when considering many minsup thresh-
olds. Another extension of the PF-Tree algorithm is
MaxCPF [11], which considers multipleminper thresh-
olds. Recently, to find PFPs common to multiple se-
quences of a sequence database, an algorithm named
MPFPS was proposed [14]. But this algorithm is de-
fined for a problem that is quite different from the
proposed addressed in this paper as it consider mul-
tiple sequences. In summary, many papers have de-
fined a periodic pattern as an itemset having no period
greater than some maxPer threshold set by the user.
A problem of this definition is that it is very strict.
For example, an itemset will be discarded even if it has
a single period greater than maxPer. In practice, it
would be desirable to discover such patterns that are
almost always periodic.

3. Two Novel Measures

To provide more flexibility when searching for periodic
patterns, this paper proposes to consider two novel pe-
riodicity measures, called the average and minimum
periodicity, respectively. The following paragraphs
present these measures and discuss their properties.

Definition 6 (Average periodicity). The average pe-
riodicity of an itemset X is the average of its periods.

It is formally defined as: avgper(X) =

∑
p∈ps(X)

p

|ps(X)| .

For instance, for the itemset {a, c}, we have
ps({a, c}) = {1, 2, 2, 1, 1} and avgper({a, c}) = 1.4.
For the itemset {e}, we have ps({e}) = {2, 1, 1, 2, 1, 0}
and avgper({e}) = 1.16.

It is interesting that the average periodicity measure
can be calculated using the support measure, and vice-
versa.

Lemma 1 (Correspondence between support and av-
erage periodicity). Consider a database DB. The
average periodicity avgper(X) of an itemset X can
be calculated as avgper(X) = |DB|/(s(X) + 1) =
|DB|/(|g(X)|+ 1).

Proof. The ordered list of records containing X in DB
is g(X) = {Rg1 , Rg2 , . . . , Rgk}, where g1 < g2 < . . . <

gk. By definition, avgper(X) =

∑
p∈ps(X)

p

|ps(X)| . Thus, we

only need to demonstrate that

∑
p∈ps(X)

p

|ps(X)| = |DB|
|g(X)|+1 to

prove the lemma.

(1) We first show that
∑

p∈ps(X)

p = |DB|, as follows:∑
p∈ps(X)

p = (g1 − g0) + (g2 − g1) + . . .+ (gk+1 − gk)

= g0 + (g1 − g1) + (g2 − g2) + . . .+ (gk − gk) + gk+1

= gk+1 − g0= |DB|.
(2) To demonstrate that |ps(X)| = |g(X)|+1, we pro-
ceed as follows:
An equivalent definition of ps(X) is ps(X) =⋃

1≤z≤k+1 (gz − gz−1). Hence, k + 1 elements are in
ps(X). Because X is contained in k records, sup(X) =
k. Thus, it is found that |ps(X)| = |g(X)|+ 1.

Because (1) and (2) have been proven, the lemma
holds.

Lemma 1 explains the relationship between the av-
erage periodicity and support of each itemset. From
a practical perspective, this lemma is very useful as it
allows to efficiently compute avgper(X) for any item-
set X of a database DB. The reason why this calcula-
tion is efficient is that the number of database records
|DB| is known and can be precalculated once. Then,
to calculate avgper(X), only |g(X)|+ 1 remains to be
computed, and then divided by the number of database
records. Doing this calculation is easier than comput-
ing avgper using Def. 6, as this later requires to sum all
periods of X and then divide by the number of periods.

The average periodicity can be viewed as an inter-
esting measure because it allows finding patterns that
are on average periodic. However, this measure can
be easily influenced by outliers. This is illustrated
with an example. The periods of itemset {c, d, e} are
ps({R3, R4}) = {3, 1, 4} because {c, d, e} appears in
records R3 and R4. Hence, avgper({R3, R4}) = 2.33.
But it can be argued that this pattern should not be
viewed as periodic since there are very large differences
between its periods. To address this drawback of the
average periodicity, this paper proposes to combine
this measure with the maximum periodicity measure
and a novel minimum periodicity measure. Using this
combination ensures that the average periodicity of an
itemset is not influenced by outliers.

Definition 7 (Minimum periodicity). Let there be
an itemset X. Its minimum periodicity is defined as
minper(X) = min(ps(X)) (where the first and last
periods of ps(X) are ignored). In the case where
ps(X) = ∅, minper(X) is defined as ∞.

c© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 36

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 17 | NUMBER: 1 | 2019 | MARCH

Setting a constraint on the minimum periodicity of
itemsets can be useful to eliminate itemsets that have
very short periods. But if we simply defines the min-
imum periodicity as minper(X) = min(ps(X)), some
problems occur because the first and last periods of an
itemset are special cases that can greatly influence the
overall minimum periodicity. For instance, consider
the itemset {e}. Because {e} is contained in the last
record, the last period of {e} is 0, as well as its min-
imum periodicity. To avoid such situations, the first
and last periods are excluded from the calculation of
the minimum periodicity. A second problem is that
if these periods are excluded, the set of periods of an
itemset may then become empty. To handle this case,
the minimum periodicity is then defined as ∞.

By combining the minimum, maximum and aver-
age periodicity measures to find periodic patterns, it
is possible to finely evaluate the periodic behavior of
patterns. Another interesting aspect of these measures
is that they are easy to calculate if the set of records
g(X) is known for an itemset X. This is especially
useful for extending the Eclat frequent itemset mining
to find periodic patterns, because Eclat already cal-
culates g(X) for each itemset X encountered during
search space exploration. Besides, another reason why
calculating these measures is efficient is that it is not
necessary to calculate and store ps(X) in memory to
calculate these measures. In fact, all measures can be
calculated while scanning g(X) once.

Based on the above discussion and novel measures,
this paper defines a novel problem of mining periodic
frequent itemsets with novel measures as follows.

Definition 8 (Problem definition). Let there be four
user-specified thresholds minAvg ≥ 0, maxAvg ≥ 0,
minPer ≥ 0, and maxPer ≥ 0. An itemset X is a pe-
riodic frequent itemset if and only if three conditions
are met: (1)minper(X) ≥ minPer, (2)maxper(X) ≤
maxPer, and (3) minAvg ≤ avgper(X) ≤ maxAvg.

For instance, consider the database of the running
example and that the thresholds are set to minPer =
minAvg = 1, maxPer = 3 and maxAvg = 2. Table 2
shows the eleven PFPs.

To efficiently enumerate all periodic frequent item-
sets from a binary database, it is necessary to avoid
considering the whole search space of itemsets. For
this purpose, the following paragraphs presents strate-
gies that can be used to reduce the search space using
the periodicity measures considered in this paper.

Lemma 2 (Monotonicity of the average periodicity).
For a database DB and any itemsets X ⊂ Y , the rela-
tionship avgper(Y) ≥ avgper(X) holds.

Proof. By the definition of the average periodic-
ity measure, we have avgper(X) = |DB|

|g(X)|+1 and

avgper(Y) = |DB|
|g(Y)|+1 . Since X is a subset of Y , it

is clear that g(Y) ⊆ g(X) and thus that avgper(Y) ≥
avgper(X).

Lemma 3 (Monotonicity of the minimum periodic-
ity). For a database DB and any itemsets X ⊂ Y , the
relationship minper(Y) ≥ minper(X) holds.

Proof. Because Y is a superset of X, it follows that
g(Y) ⊆ g(X). Two cases are considered. In the
first case (g(Y) ⊂ g(X)). Then, for each record
Rx ∈ g(X) \ g(Y), the corresponding periods in ps(X)
will be replaced by a larger period in ps(Y). Hence,
each period of ps(Y) must be greater than the cor-
responding period(s) in ps(X). Hence, minper(Y) ≥
minper(X). In the second case, if g(Y) = g(X), then
ps(X) = ps(Y) and henceminper(Y) = minper(X).

Lemma 4 (Monotonicity of the maximum periodic-
ity). For a database DB and any itemsets X ⊂ Y ,
the relationship maxper(Y) ≥ maxper(X) holds [13].

Based on the above lemmas, two search space prun-
ing theorems are defined. The first one was used in
previous work [13], while the second one is novel.

Theorem 1 (Search space pruning using the maximum
periodicity). Consider a database DB and an itemset
X. If it is found that maxper(X) > maxPer, then all
supersets of X are not periodic frequent itemsets and
can be ignored during further exploration of the search
space [13].

Theorem 2 (Search space pruning using the average
periodicity). Consider a database DB and an itemset
X. If it is found that avgper(X) > maxAvg, then all
supersets of X are not periodic frequent itemsets and
can be ignored during further exploration of the search
space [13]. Note that the condition |g(X)| < |D|

maxAvg−1
can be equivalently used for pruning.

Proof. Because avgper(X) > maxAvg, the itemset
X is not a periodic frequent itemset. Moreover, by
Lem. 2, it is known that avgper(Y) ≥ avgper(X)
for any superset Y of X. The pruning condition
avgper(X) > maxAvg is rewritten as: |DB|

|g(X)|+1 >

maxAvg. Thus, 1
|g(X)|+1 > maxAvg

|DB| , which can be

further rewritten as |g(X)| + 1 < |DB|
maxAvg , and as

|g(X)| < |DB|
maxAvg − 1.

4. The PFPM Algorithm

The previous section has defined the problem of mining
periodic itemsets using novel measures. This section
defines an efficient algorithm named Periodic Frequent

c© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 37

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 17 | NUMBER: 1 | 2019 | MARCH

Tab. 2: The periodic frequent itemsets for minPer = minAvg = 1, maxPer = 3 and maxAvg = 2.

Itemset support s(X) minper(X) maxper(X) avgper(X)
{b} 3 1 3 1.75
{b, e} 3 1 3 1.75
{b, c, e} 3 1 3 1.75
{b, c} 3 1 3 1.75
{d} 3 1 3 1.75
{c, d} 3 1 3 1.75
{a} 4 1 2 1.4
{a, c} 4 1 2 1.4
{e} 5 1 2 1.17
{c, e} 4 1 3 1.4
{c} 6 1 2 1.0

Pattern Miner (PFPM), which extends the Eclat [4] al-
gorithm to efficiently enumerate periodic patterns us-
ing the novel measures. As the Eclat algorithm, PFPM
utilizes a structure called tid-list to annonate each po-
tential periodic itemset X with the list of records g(X)
where it appears. This structure is suitable for the pro-
posed problem as it allows to quickly obtain |g(X)| to
calculate the periodicity measures of each itemset X.
Moreover, the minper(X) and maxper(X) values are
used to annotate each itemset X.

The pseudocode of the proposed PFPM algorithm is
presented in Alg. 1. PFPM explores the search space of
itemsets in a recursivey way by extending each itemset
one item at a time. PFPM processes items following
an order � on items, defined as the ascending order of
support values. In the following, the extensions of an
itemset X are the itemsets that can be obtained by ap-
pending an item y to X such that y � a, ∀a ∈ X. The
input of PFPM is four thresholds (minPer, maxPer
minAvg, maxAvg) and a binary database DB, while
the output is the set of all periodic itemsets. PFPM
initially reads the database to compute for each item
a ∈ A, s({a}), minper({a}) and maxper({a}). There-
after, a constant called γ is calculated. This latter is
used for reducing the search space based on Thm. 2.
PHPM then selects items having a support no less than
γ and having periods no greater than maxPer. These
items, called A∗, are the only items that can appear
in periodic frequent itemsets according to the search
space pruning Thm. 1 and Thm. 2. This set is sorted
according to the � order, as suggested in [4]. There-
after, PFPM reads the database again to construct the
tid-list of each item in A∗. Finally, the Search proce-
dure is called with A∗, γ, minAvg, minPer, maxPer,
and |DB| to recursively explore the search space in
a depth-first way.

Algorithm 2 provides the pseudo-code of the Search
procedure. An itemset P is taken as input, as well as
a set of extensions of P of the form Pz where z is an
item. When the Search procedure is called for the first
time, P is the empty set and the set of extensions con-
tains single items. Search also takes as parameters γ,

Algorithm 1: Periodic Frequent Pattern Miner
input : minPer, maxPer, minAvg, maxAvg,

a binary database DB
output: the set of periodic itemsets

1 Read the database once to compute for each
item a ∈ A: s({a}), minper({a}) and
maxper({a});

2 Calculate γ = (|DB|/maxAvg)− 1;
3 A∗ ← {a|a ∈ A ∧ s({a}) ≥ γ ∧maxper({a}) ≤

maxPer};
4 Create the tid-list of each item a ∈ A∗ by

reading the database DB;
5 Search (A∗, γ, minAvg, minPer, maxPer,
|DB|);

and the minAvg, minPer, maxPer, and |DB| tresh-
olds. The procedure then performs a loop to consider
each extension Px of P from the set received as pa-
rameter. The procedure first calculates avgper(Px) as
|DB| divided by the number of elements in the tid-list
of Px plus one (according to Lem. 1). Then, if the
conditions (1) minAvg ≤ avgper(Px) ≤ maxAvg, (2)
minper(Px) ≤ minPer and (3) and maxper(Px) ≤
maxPer are satisfied according to the tid-list of Px,
Px is output as a periodic frequent itemset. There-
after, if the third condition is satisfied and the tid-list of
Px contains at least γ records, the algorithm will con-
sider extensions of Px. Otherwise, those extensions are
ignored according to Thm. 1 and Thm. 2. Exploring
larger extensions is done by combining two itemsets Px
and Py where y � x to get an itemset Pxy. After ob-
taining an itemset Pxy, the BuildTIDList procedure
(Alg. 3) is called to construct the tid-list of Pxy. This
procedure takes as input the tid-lists of Px and Py and
returns the tid-list of Pxy. The BuildTIDList proce-
dure is almost identical to the tid-list join operation
of Eclat. But a key difference is that periods of Pxy,
maxPer(Pxy) and minPer(Pxy) are calculated dur-
ing list construction (not shown). Finally, the Search
procedure is recursively called with Pxy to explore its
extension(s). Because the PFPM algorithm starts from
single items and recursively explores the search space

c© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 38

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 17 | NUMBER: 1 | 2019 | MARCH

of patterns by appending items and only prunes the
search space using Thm. 1 and Thm. 2, it can be seen
that this procedure is correct and complete to discover
all PFPs.

Algorithm 2: Search
input : ExtensionsOfP: a set of extensions of

an itemset P , γ, minAvg, minPer,
maxPer, |DB|

output: the set of periodic frequent itemsets

1 foreach itemset Px ∈ ExtensionsOfP do
2 avgperPx← |DB|/(|Px.tidlist|+ 1);
3 if minAvg ≤ avgperPx ≤ maxAvg ∧

Px.tidlist.minp ≥ minPer ∧
Px.tidlist.maxp ≤ maxPer then output
Px;

4 if
avgperPx ≥ γ∧Px.tidlist.maxp ≤ maxPer
then

5 ExtensionsOfPx← ∅;
6 foreach itemset Py ∈ ExtensionsOfP

such that y � x do
7 Pxy ← Px ∪ Py;
8 Pxy.tidlist← BuildTIDList

(Px, Py);
9 ExtensionsOfPx←

ExtensionsOfPx ∪ {Pxy};
10 end
11 Search (ExtensionsOfPx, γ, minAvg,

minPer, maxPer, |DB|);
12 end
13 end

To illustrate how the algorithm works, an example
is given. Consider the database of Tab. 3 and that
minAvg = 1, and maxAvg = 2, minPer = 1, and
maxPer = 3. PFPM (Alg. 1) first processes sin-
gle items. Consider the item {a}. By scanning the
database, PFPM finds that s({a}) = 4,minper({a}) =
1 and maxper({a}) = 2. PFPM calculates that γ =
(|DB|/maxAvg)−1 = (7/2)−1 = 2.5. Since s({a}) ≥
γ and maxper({a}) is less than the maximum period-
icity threshold, the item {a} will be considered during
further processing (each item that does not meet the
requirements is pruned). Then, the same process is
repeated for the other items and a set of PFP candi-
dates is found. Iitems are then sorted by ascending
support values ({b}, {d}, {a}, {e}, {c}). The tid-lists of
these candidates are built (e.g. {b}’s tid-list [T3,T4,T7]
is built), and the Search procedure is called to find all
PFPs (Alg. 2). The search procedure performs a loop
on each extension Px of P . Consider Px = {b}. By
using {b}’s tid-list, PFPM finds that avgper({b}) =
7

3+1 = 1.75, maxper({b}) = 3 and minper({b}) = 1.
AsminAvg ≤ avgper({b}) ≤ maxAvg,minper({b}) ≥
minPer and maxper({b}) ≤ maxPer, item {b} is

Algorithm 3: The BuildTIDList procedure
input : two extensions Px and Px of an

itemset P
output: the tid-list of Pxy

1 TidListOfPxy ← ∅;
2 foreach Tid v ∈ Px.tidlist such that

v ∈ Py.tidlist do
3 periodv ←

calculatePeriod(v, T idListOfPxy);
4 Update(TidListOfPxy, periodv);
5 TidListOfPxy ← TidListOfPxy ∪ {v};
6 end
7 return TidListOfPxy ;

1

2 3 4

5

6

7

8 9 10

11

12 13

14

15

16

Fig. 1: The search space of the example.

a PFP and it is output. The extensions of {b} are:
{b, d},{b, a},{b, e} and {b, c}, which will be explored
because s({b}) ≥ γ and maxper({b}) ≤ maxPer. The
tid-list of {d} is [T3,T4,T5], thus the tid-list of {b, d}
is [T3,T4], obtained by joining the tid-list of {b} and
{d}. Thereafter, the Search procedure is recursivelly
invoked with these extensions to find larger PFPs. The
search space of the algorithm is shown in Fig. 1. In that
figure, itemsets that do not meet one of the constraint
are colored in red and their extensions (descendant
nodes) are not explored. The complete set of PFPs
that is found is shown in Tab. 2.

The above paragraphs have described the main idea
of the PFPM algorithm. The next paragraphs presents
two optimizations to enhance PFPM’s performance.

Optimization 1. Estimated Average Period-
icity Pruning (EAPP). During the second database
scan, a structure named ESCS (Estimated Support Co-
occurrence Structure) is built, which stores the support
s({a, b}) = c of each pair of item a and b as a triple
of the form (a, b, c). From a practical perspective, the
ESCS can be implemented using vairous structure such
as a hashmap of hashmaps or a triangular matrix (as
shown in Fig. 2). An advantage of using a hash map
is that each tuple (a, b, c) where c 6= 0 may be ommit-
ted to reduce memory usage. The EAPP optimizations
consists of modifying Line 7 of the search procedure to
prune an itemset Pxy if s({x, y}) is less than γ (based
on Thm. 2).

c© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 39

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 17 | NUMBER: 1 | 2019 | MARCH

TID Transactions Item a b c d e f g

T1 (a,1)(c,1)(d,1) Profit 5 2 1 2 3 1 1

T2 (a,2)(c,6)(e,2)(g,5)

T3 (a,1)(b,2)(c,1)(d,6),(e,1),(f,5)

T4 (b,4)(c,3)(d,3)(e,1)

T5 (b,2)(c,2)(e,1)(g,2)

TU(T_1) = 7 TU(T_2) = 27 TU(T_3) = 30 TU(T_4) = 20 TU(T_5) = 11

TWU(a) = 65 TWU(b)= 61 TWU(c)= 96 TWU(d)=58 TWU(e)=88

TWU(f)= 30 TWU(g) = 38

TID TU Item TWU Item a b c d e f

T1 8 a 65 b 30

T2 27 b 61 c 65 61

T3 30 c 96 d 38 50 58

T4 20 d 58 e 57 61 77 50

T5 11 e 88 f 30 30 30 30 30

 f 30 g 27 38 38 0 38 0

 g 38

support

Item a b c d

b 1

c 4 3

d 2 2 3

e 2 3 4 2

TW
U

Item a b c d

b 25

c 61 54

d 33 45 53

e 47 54 76 45

Fig. 2: The Estimated Support Co-occurrence Structure.

Optimization 2. Abandoning List Construc-
tion early (ALC). The ALC optimization stops the
construction of an itemset’s tid-list if current calcula-
tions of its periodicity measures show that it cannot
be a periodic frequent itemset. According to Thm. 2,
an itemset Pxy cannot be a periodic frequent itemset
if less than γ = (|DB|/maxAvg) − 1 records contains
Pxy. The ALC strategy is obtained by first changing
Line 1 of Alg. 3 to initialize a variable max as γ in Line
1. Modifications are also made in the loop of Line 2.
For each tuple not appearing in Py, the variable max
is decremented by 1. If max becomes less than γ, ALC
stops the construction of Pxy’s tid list. This can be
done without compromising the algorithm’s complete-
ness because |g(Pxy)| will not be higher than γ, and
hence Pxy is not a PFP by Thm. 2, and its extensions
can also be ignored.

5. Experimental Study

This section presents an experimental study to assess
the performance of the designed PFPM algorithm in
terms of runtime, memory consumption, number of
patterns found and scalability, when parameters are
varied. The experimental environment is a Windows
10 computer equipped with 12 GB of RAM and a 6th
gen 64 bit Core i5 processor. The designed algorithm
is programmed in Java. In the experiments, the per-
formance of PFPM is compared with that of the Eclat
algorithm because it is one of the most efficient al-
gorithm for FIM and PFPM extends the Eclat algo-
rithm. Thus, a comparison with Eclat allows to see
the cost or benefits of using PFPM to find only the
periodic patterns rather than finding all frequent item-
sets. Performance of the algorithms was evaluated on
four datasets often used for comparing itemset mining
algorithms, having varied characteristics (short or long
transactions, or dense or sparse data). chainstore, re-
tail, and foodmart are customer transaction databases.
mushroom is a dataset about mushrooms. Characteris-
tics of the four datasets are presented in Tab. 3, where
|DB|, |A| and A denote the number of records, distinct
items and average record length.

The experiment consisted of running the PFPM
algorithm on each dataset with fixed minPer and
minAvg values, while varying the maxAvg and
maxPer parameters. To be able to compare PFPM
with Eclat, Eclat was run with the γ value calculated

by PPFM. Execution times, memory consumption, and
number of patterns found were measured for each al-
gorithm. All memory measurements were done using
the Java API.

For each dataset, values for the periodicity thresh-
olds have been found empirically for each dataset (as
they are dataset specific), and were chosen to show
the trade-off between the number of periodic patterns
found and the execution time. Note that results for
varying the minPer and minAvg values are not shown
because these parameters have less influence on the
number of patterns found than the other parameters.
Thereafter, the notation PFPM V-W-X represents the
PFPM algorithm with minPer = V , maxPer = W ,
and minAvg = X. Figure 3 compares the execu-
tion times of PFPM for various parameter values and
Eclat. Figure 4, compares the number of PFPs found
by PFPM for various parameter values, and the num-
ber of frequent itemsets found by Eclat.

It can first be observed that mining PFPs using
PFPM is generally much faster than mining frequent
itemsets. On the retail dataset, PFPM is up to four
times faster than Eclat. On the mushroom and chain-
store datasets, no results are shown for Eclat because
it cannot terminate whithin 1,000 seconds or ran out of
memory, while PFPM terminates in less than 10 sec-
onds. The reason is that the search space is huge for
these datasets when the minimum support is set to γ.
The PFPM algorithm still terminates on these datasets
because it only searches for periodic patterns, and thus
prunes a large part of the search space containing non
periodic patterns. On the foodmart dataset, PFPM can
be up to five times faster than Eclat depending on the
parameters. But it can also be slightly slower in some
cases. The reason is that foodmart is a sparse dataset
and thus the gain in terms of pruning the search space
does not always offset the cost of calculating the peri-
odicity measures. In general, the more the periodicity
thresholds are restrictive, the more the gap between
the runtime of Eclat and PFPM increases.

A second observation is that the number of PFPs
can be much less than the number of frequent itemsets
(see Fig. 4). For example, on retail, 19,836 frequent
itemsets are found for maxAvg = 2, 000. But only 110
frequent itemsets are PFPs for PFPM 1-1000-5, and
only 7 for PFPM 1-250-5. Some of the patterns found
are quite interesting as they contain several items. For
example, it is found that items with product ids 32, 48
and 39 are periodically bought with an average period-
icity of 16.32, a minimum periodicity of 1, and a maxi-
mum periodicity of 170. A similar reduction in terms of
number of patterns is also observed on the three other
datasets. This demonstrates that the PFPM algorithm
is effective at filtering non periodic patterns, and that
a huge amount of non periodic patterns are found in
real-life datasets.

c© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 40

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 17 | NUMBER: 1 | 2019 | MARCH

Tab. 3: Dataset characteristics.

Dataset |DB| |A| A Type
retail 88,162 16,470 10.30 sparse, many items
mushroom 8,124 119 23.0 dense, long records
chainstore 1,112,949 46,086 7.26 sparse, many records
foodmart 4,141 1,559 4.4 sparse, short records

0

500

1000

1500

2000

0 500 1000 1500 2000

Ru
nt

im
e

(m
s)

maxAvgPer

Retail

Eclat
PFPM 1-1000-5
PFPM 1-500-5
PFPM 1-250-5

1

2

3

4

5

6

7

0 500 1000 1500 2000
Ru

nt
im

e
(s

)
maxAvgPer

Mushroom

Eclat
PFPM 1-1000-5
PFPM 1-500-5
PFPM 1-250-5

2000

2100

2200

2300

2400

2500

2600

 - 500 1,000 1,500 2,000

Ru
nt

im
e

(m
s)

maxAvgPer

Chaintstore
Eclat
PFPM 1-2000-5
PFPM 1-1500-5
PFPM 1-1000-5

0

200

400

600

800

1,000

0 500 1000 1500 2000

Ru
nt

im
e

(m
s)

maxAvgPer

Foodmart

Eclat
PFPM 1-2000-5
PFPM 1-1000-5
PFPM 1-500-5

Fig. 3: Execution times.

k

k

k

1k

10k

100k

0 500 1000 1500 2000

Pa
tt

er
n

co
un

t

maxAvgPer

Retail

Eclat
PFPM 1-1000-5
PFPM 1-500-5
PFPM 1-250-5

1

21

41

61

81

101

121

141

161

181

0 500 1000 1500 2000

Pa
tt

er
n

co
un

t

maxAvgPer

Mushroom

Eclat
PFPM 1-1000-5
PFPM 1-500-5
PFPM 1-250-5

0

5

10

15

20

25

0 500 1000 1500 2000

Pa
tt

er
n

co
un

t

maxAvgPer

Chaintstore

Eclat
PFPM 1-2000-5
PFPM 1-1500-5
PFPM 1-1000-5

k

1k

2k

3k

4k

5k

0 500 1000 1500 2000

Pa
tt

er
n

co
un

t

maxAvgPer

Foodmart
Eclat
PFPM 1-2000-5
PFPM 1-1000-5
PFPM 1-500-5

Fig. 4: Number of patterns found.

c© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 41

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 17 | NUMBER: 1 | 2019 | MARCH

0

50

100

150

200

250

300

350

0

500

1000

1500

2000

2500

3000

2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %

Pa
tt

er
n

co
un

t

Ru
nt

im
e

(m
s)

Database size

Pattern count

Runtime

Fig. 5: The scalability.

The scalability of the algorithm with respect to
database size was also assessed in another experiment.
The execution time and number of patterns found by
PFPM was measured for various number of records. In
this experiment, the real chainstore dataset was used,
since it is a huge sparse dataset with a large number
of distinct items and records (its characteristics are
shown in Fig. 3). We divided the dataset into five parts.
Then, we ran PFPM on 20 %, 40 %, 60 %, 80 % and
100 % of the data. Figure 5 shows the experimental
result for minPer = 1, maxPer = 5000, minAvg = 5
and maxAvg = 5000 for each database size. The black
line indicates the execution time of the algorithm, and
bars indicate the number of patterns found. It can be
observed that the runtime increases and the number of
patterns decreases when the database size is increased,
respectively. This is reasonable because it takes more
time to process a larger database, and fewer patterns
may meet the constraints of periodic patterns for larger
databases.

Performance in terms of memory usage was also
evaluated. The detailed results are not presented.
But it was generally observed that the designed al-
gorithm can consumes up to five times less memory
than Eclat on the foodmart and retail databases de-
pending on parameter values. For example, on retail
and maxAvg = 2, 000, Eclat and PFPM 1-5000-5-500
respectively consumes 900 MB and 189 MB of memory.

Overall, from these experiments, it is found that the
performance of PFPM can be considered as satisfying
in terms of runtime, memory and scalability. More-
over, as shown in the experiments, using PFPM can
greatly reduce the number of patterns presented to the
user compared to using a traditional frequent pattern
mining algorithm such as Eclat.

In this experiments, the parameter have been set em-
pirically. The number of parameters may appear to be
large. However, it allows the user to precisely specify
the type of patterns to be discovered. Designing an ap-
proach to automatically find a good set of parameters
based on the type of data can be an opportunity for
future work.

Note that, preprocessing can also be used before ap-
plying the proposed algorithm to find different types
of patterns. For example, consider the task of find-
ing patterns appearing more or less every week-ends in
the transaction database of a customer. To find such
patterns, one can first eliminate all transactions from
weekdays, and merge the transactions of each week-
end into a single transaction. Then, the algorithm
can be applied to find periodic patterns with an av-
erage periodicity of more or less 1 transaction (e.g.
minAvg = 0.5 and maxAvg = 1.5). Then the algo-
rithm will output patterns that appear more or less
every week-end. If one wants to be stricter, he can
set these parameters to values closer to 1. Similarly,
preprocessing can be applied to find patterns appear-
ing more or less every month or on a specific day (e.g.
Monday).

6. Conclusion

This paper has proposed a novel problem of mining
periodic itemsets using a combination of three mea-
sures to avoid drawbacks of traditional periodic item-
set mining algorithms, which rely on a single measure.
The minimum periodicity and the average periodicity
measures have been introduced and their properties
have been studied. To efficiently enumerate all peri-
odic itemsets using these measures, an algorithm called
Periodic Frequent Pattern Miner was developed. Re-
sults from an experimental evaluation on real databases
have shown that the designed algorithm is efficient
and can find a small set of periodic patterns while fil-
tering many non periodic patterns. The designed al-
gorithm’s Java implementation is available under the
GPL open-source license in the SPMF open source
data mining library [16] http://www.philippe-fournier-
viger.com/spmf/.

The research presented in this paper set forward sev-
eral possibilities for future work. First, one can design
more efficient algorithms to discover the desired pat-
terns. Second, one can design alternative algorithms to
discover more complex types of periodic patterns [17]
or patterns from complex types of data. Third, alterna-
tive measures could be investigated for measuring the
periodicity of patterns, and quantitative transactions
could be considered. We also plan to investigate possi-
ble applications related to sensor network data analy-
sis [19], sequential pattern mining [20] and high-utility
itemset mining [21].

Acknowledgment

The research of Prof. Fournier-Viger is funded by the
National Science Fundation of China. Moreover, au-

c© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 42

http://www.philippe-fournier-viger.com/spmf/
http://www.philippe-fournier-viger.com/spmf/

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 17 | NUMBER: 1 | 2019 | MARCH

thors would like to thank the project support of VSB–
TUO for activities with China under the financial sup-
port of the Moravian-Silesian Region.

References

[1] AGRAWAL, R., T. IMIELINSKI and A. SWAMI.
Mining association rules between sets of items
in large databases. In: International Con-
ference on Management of Data. Washington:
ACM, 1993, pp. 207–216. ISBN 0-89791-592-5.
DOI: 10.1145/170035.170072.

[2] PEI, J., J. HAN, H. LU, S. NISHIO,
S. TANG and D. YANG. H-mine: fast and
space-preserving frequent pattern mining
in large databases. IIE Transactions. 2007,
vol. 39, iss. 6, pp. 593–605. ISSN 0740-817X.
DOI: 10.1080/07408170600897460.

[3] MINATO, S., T. UNO and H. ARIMURA. LCM
over ZBDDs: Fast generation of very large-scale
frequent itemsets using a compact graph-based
representation. In: Pacific-Asia Conference on
Knowledge Discovery and Data Mining. Osaka:
Springer, 2008, pp. 234–246. ISBN 978-3-540-
68124-3. DOI: 10.1007/978-3-540-68125-0_22.

[4] ZAKI, M. J. and K. GOUDA. Fast vertical min-
ing using diffsets. In: International Conference on
Knowledge Discovery and Data Mining. Washing-
ton: ACM, 2003, pp. 326–335. ISBN 1-58113-737-
0. DOI: 10.1145/956750.956788.

[5] FOURNIER-VIGER, P., J. C.-W. LIN, B. VO,
T. C. TRUONG, J. ZHANG and H. B. LE. A sur-
vey of itemset mining. Wiley Interdisciplinary Re-
views: Data Mining and Knowledge Discovery.
2017, vol. 7, iss. 4, pp. 1–18. ISSN 1942-4795.
DOI: 10.1002/widm.1207.

[6] FONG, A. C. M., B. ZHOU, S. C. HUIM,
G. Y. HONG and T. DO. Web content recom-
mender system based on consumer behavior mod-
eling. IEEE Transactions on Consumer Electron-
ics. 2011, vol. 57, iss. 2, pp. 962–969. ISSN 0098-
3063. DOI: 10.1109/TCE.2011.5955246.

[7] AGGARWAL, C. C. and J. HAN. Frequent pattern
mining. New York: Springer, 2014. ISBN 978-3-
319-07820-5.

[8] AMPHAWAN, K., P. LENCA and A. SURAR-
ERKS. Mining top-k periodic-frequent pattern
from transactional databases without support
threshold. In: International Conference on Ad-
vances in Information Technology. Bangkok:
Springer, 2009, pp. 18–29. ISBN 978-3-642-10391-
9. DOI: 10.1007/978-3-642-10392-6_3.

[9] AMPHAWAN, K., A. SURARERKS and
P. LENCA. Mining periodic-frequent item-
sets with approximate periodicity using in-
terval transaction-ids list tree. In: Interna-
tional Conference on Knowledge Discovery
and Data Mining, WKDD. Phuket: IEEE,
2010, pp. 245–248. ISBN 978-1-4244-5398-6.
DOI: 10.1109/WKDD.2010.126.

[10] KIRAN, R. U. and P. K. REDDY. Towards ef-
ficient mining of periodic-frequent patterns in
transactional databases. In: International Con-
ference on Database and Expert Systems Appli-
cations. Bilbao: Springer, 2010, pp. 194–208.
ISBN 978-3-642-15250-4. DOI: 10.1007/978-3-642-
15251-1_16.

[11] SURANA, A., R. U. KIRAN and P. K. REDDY.
An efficient approach to mine periodic-frequent
patterns in transactional databases. In: Pacific-
Asia Conference on Knowledge Discovery and
Data Mining. Shenzhen: Springer, 2011, pp. 254–
266. ISBN 978-3-642-28319-2. DOI: 10.1007/978-
3-642-28320-8_22.

[12] KIRAN, R. U., M. KITSUREGAWA and
P. K. REDDY. Efficient discovery of periodic-
frequent patterns in very large databases.
Journal of Systems and Software. 2016,
vol. 112, iss. 1, pp. 110–121. ISSN 0164-1212.
DOI: 10.1080/07408170600897460.

[13] TANBEER, S. K., C. F. AHMED, B.-S. JEONG
and Y.-K. LEE. Discovering periodic-frequent pat-
terns in transactional databases. In: Pacific-Asia
Conference on Knowledge Discovery and Data
Mining. Bangkok: Springer, 2009, pp. 242–253.
ISBN 978-3-642-01306-5. DOI: 10.1007/978-3-642-
01307-2_24.

[14] FOURNIER-VIGER, P., Z. LI, J. C.-W. LIN,
R. U. KIRAN and H. FUJITA. Discovering Pe-
riodic Patterns Common to Multiple Sequences.
In: International Conference on Big Data An-
alytics and Knowledge Discovery. Regensburg:
Springer, 2018, pp. 231–246. ISBN 978-3-319-
98538-1. DOI: 10.1007/978-3-319-98539-8_18.

[15] HAN, J., J. PEI and Y. YIN. Mining Frequent
Patterns without Candidate Generation. In: In-
ternational Conference on Management of Data.
Dallas: ACM, 2000, pp. 1–12. ISBN 1-58113-217-
4. DOI: 10.1145/342009.335372.

[16] FOURNIER-VIGER, P., A. GOMARIZ,
T. GUENICHE, A. SOLTANI, C.-W. WU
and V. S. TSENG. SPMF: a Java open-source
pattern mining library. Journal of Machine Learn-
ing Research. 2014, vol. 15, iss. 1, pp. 3389–3393.
ISSN 1532-4435.

c© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 43

https://doi.org/10.1145/170035.170072
https://doi.org/10.1080/07408170600897460
https://doi.org/10.1007/978-3-540-68125-0_22
https://doi.org/10.1145/956750.956788
https://doi.org/10.1002/widm.1207
https://doi.org/10.1109/TCE.2011.5955246
https://doi.org/10.1007/978-3-642-10392-6_3
https://doi.org/10.1109/WKDD.2010.126
https://doi.org/10.1007/978-3-642-15251-1_16
https://doi.org/10.1007/978-3-642-15251-1_16
https://doi.org/10.1007/978-3-642-28320-8_22
https://doi.org/10.1007/978-3-642-28320-8_22
https://doi.org/10.1016/j.jss.2015.10.035
https://doi.org/10.1007/978-3-642-01307-2_24
https://doi.org/10.1007/978-3-642-01307-2_24
https://doi.org/10.1007/978-3-319-98539-8_18
http://doi.acm.org/10.1145/342009.335372

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 17 | NUMBER: 1 | 2019 | MARCH

[17] LIN, J. C.-W., W. GAN, P. FOURNIER-VIGER,
L. YANG, Q. LIU, J. FRNDA, L. SEVCIK and
M. VOZNAK. High utility-itemset mining and
privacy-preserving utility mining. Perspectives in
Science. 2016, vol. 7, iss. 1, pp. 74–80. ISSN 2213-
0209. DOI: 10.1016/j.pisc.2015.11.013.

[18] FOURNIER-VIGER, P., J. C.-W. LIN, Q.-H.
DUONG, T.-L. DAM., L. SEVCIK, D. UHRIN
and M. VOZNAK. PFPM: Discovering Peri-
odic Frequent Patterns with Novel Periodicity
Measures. In: Proceedings of the 2nd Czech-
China Scientific Conference 2016. London: Inte-
chOpen, 2016, pp. 64–79. ISBN 978-953-51-2858-
8. DOI: 10.5772/66780.

[19] FAJKUS, M., J. NEDOMA, R. MARTINEK,
V. VASINEK, H. NAZERAN and P. SISKA.
A Non-Invasive Multichannel Hybrid Fiber-Optic
Sensor System for Vital Sign Monitoring. Sensors.
2017, vol. 17, iss. 1, pp. 1–17. ISSN 1424-8220.
DOI: 10.3390/s17010111.

[20] FOURNIER-VIGER, P., J. C.-W. LIN, R. U. KI-
RAN, Y. S. KOH and R. THOMAS. A Survey of
Sequential Pattern Mining. Data Science and Pat-
tern Recognition. 2017, vol. 1, iss. 1, pp. 54–77.
ISSN 2520-4165.

[21] FOURNIER-VIGER, P., J. C.-W. LIN,
T. TRUONG and R. NKAMBOU. A survey
of high utility itemset mining. In: Studies in
Big Data. Berlin: Springer, 2019, pp. 1–46.
ISBN 978-3-030-04920-1.

About Authors

Philippe FOURNIER-VIGER is full professor
at the Harbin Institute of Technology (Shenzhen).
He has a Ph.D. in Computer Science from the
University of Quebec in Montreal. He published
more than 200 articles in international conference
proceedings and journals. He is editor-in-chief of
the Data Mining and Pattern Recognition journal,
and director of the Center of Innovative Industrial
Design. He is the founder of SPMF, an open-source
data mining software, specialized in pattern min-
ing (http://www.philippe-fournier-viger.com/spmf/).
SPMF has been cited in 680 research papers since 2010.

Peng YANG is pursuing a master de-
gree in Computer Science at the School of
Computer Science and Technology of the
Harbin Institute of Technology (Shenzhen),
China. His research interest is data mining.

Jerry Chun-Wei LIN is currently working as
an Associate Professor at Department of Computing,
Mathematics and Physics, Western Norway University
of Applied Sciences (HVL), Bergen, Norway. He has
published more than 250 research papers in referred
journals and international conferences. He is also
a project leader of SPMF: An Open-Source Data
Mining Library, and also serves as the Editor-in-Chief
of the international journal of Data Science and
Pattern Recognition.

Quang-Huy DUONG is a Ph.D. student at
the Computer Science at the Norwegian University
of Science and Technology, Norway. His research
interests include data mining, artificial intelligence,
and machine learning. He received an M.Sc. in
Computer Science from Hunan University, China.

Thu-Lan DAM is a postdoctoral fellow at the
Norwegian University of Science and Technology,
Norway. Her research interests include data mining,
artificial intelligence, and machine learning. She
obtained her Ph.D. in Computer Science at Hunan
University, China in 2017. She received her Bachelor
degree and Master degree in computer science at
Hanoi University of Science and Technology, Vietnam
in 2004 and 2009, respectively.

Jaroslav FRNDA was born in 1989 in Martin,
Slovakia. He received his M.Sc. and Ph.D. from the
VSB–Technical University of Ostrava, Department of
Telecommunications, in 2013 and 2018 respectively.
Now he works as an assistant professor at University
of Zilina in Slovakia. His research interests include
Quality of Triple play services and IP networks and
articial intelligence.

Lukas SEVCIK was born in 1989 in Cadca,
Slovakia. He received his M.Sc. in Informatics from
the Faculty of Management Science and Informat-
ics, University of Zilina, in 2013 and Ph.D. at the
Department of Telecommunications, VSB–Technical
University of Ostrava in 2018. His research interests
include Quality of Triple play services and IP networks.

Miroslav VOZNAK is a full professor at the
Department of Telecommunications, VSB–Technical
University of Ostrava. He received his Ph.D. in
telecommunications, and his dissertation thesis was
entitled “Voice traffic optimization with regard to
speech quality in networks with VoIP technology” in
2002. Topics of his research interests are NextGen-
eration Networks, IP telephony, speech quality and
network security.

c© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 44

https://doi.org/10.1016/j.pisc.2015.11.013
https://doi.org/10.5772/66780
https://doi.org/10.3390/s17010111
http://www.philippe-fournier-viger.com/spmf/

	Introduction
	Related Work
	Two Novel Measures
	The PFPM Algorithm
	Experimental Study
	Conclusion

