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Abstract 
     This paper develops a system level architecture 
for implementing a cost-efficient, FPGA-based real-
time FFT engine. This approach considers both the 
hardware cost (in terms of FPGA resource 
requirements), and performance (in terms of 
throughput).  These two dimensions are optimized 
based on using run time reconfiguration, double 
buffering technique and the hardware virtualization 
to reuse the available processing components. The 
system employs sixteen reconfigurable parallel FFT 
cores. Each core represents a 16 complex point 
parallel FFT processor, running in continuous real-
time FFT engine. The architecture support transform 
length of 256 complex points, as a demonstrator to 
the idea design, using fixed-point arithmetic and has 
been developed using radix-4 architecture.  
      The parallel Booth technique for realizing the 
complex multiplier (required in the basic butterfly 
operation) is chosen. That  
is to save a lot of hardware compared to other  
techniques.  The simulation results that   have   been   
performed  using   VHDL  
modeling language and ModelSim software  
shows that the   full   design  can  be implemented 
using single FPGA platform requiring about 50,000 
Slices.   
Keywords: Fast Fourier Transform, Radix-4, 

FPGA, Run time Reconfiguration  

1.0 Introduction 
     The fast Fourier transform [1] is one of the 
fundamental algorithms in Digital Signal Processing 
(DSP) including acoustics, optics,  
telecommunications, speech, signal and image 
processing. Using this transform, signals can be  
moved from time domain to the frequency domain 
where many digital signal processing techniques such  
as filtering and correlation can be performed with 
fewer operations.  

         

     Many different FFT implementations have been 
developed for the digital signal processors and 
dedicated FFT processor ICs [2,3,4,5,6,7,8,9,10,11]. 
However, decreasing the cost with the growing in the 
capacity, FPGAs have become a good candidate for 
implementing FFT engines. Despite of that, High 
performance, large-scale DSP applications still 
cannot fit in a single FPGA and require carful design 
considerations. In this context, the hardware 
implementation of the FFT algorithm can be done in 
either fixed or floating point.                                                  
Floating-point arithmetic requires much more area 
per operation (adders and multipliers).  Furthermore, 
it has much higher demands on memory capacity and 
bandwidth.  
        To overcome this challenge, fitting the whole 
Fourier transform processor on a single FPGA chip is 
approached along two paths: First, the algorithm 
itself is examined and optimized specifically to 
minimize the hardware resources. Second, applying 
different techniques on the architecture, to reduce the 
required hardware. With respect to second path; one 
of the viable solutions is to use the Reconfigurable 
Computing (RC) in the field of Field Programmable 
Gate Arrays (FPGAs)  which potentially can offers 
high performance at lower chip area and power 
consumption.  
     This paper presents a high performance FFT 
architecture focusing on finding the most suitable 
structure for implementing efficient and cost 
effective FFT engine using RC technique. The 
system uses radix-4 architecture with fixed point 
arithmetic which is sufficient in many domains. 
     The rest of this paper is organized as follows. A 
background and an overview of the related works are 
described in Section 2. Review of different hardware 
implementations of the FFT algorithm and the 
proposed reconfigurable implementation of the 256 
complex points 1D-FFT algorithm are given in 
section 3. The architecture of the proposed FFT 
system is presented in section 4. Section 5 focuses on 
the architecture of the FFT core including the 
implementation of the butterfly element and the 
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hardware multiplier. Finally in Section 6 and 7, 
performance analysis and some conclusions are 
offered.   

2.0 Background And Related Work  

     The Fast Fourier Transform (FFT) algorithm used 
for implementation in the proposed system is based 
on the radix-4 butterfly, which represent the heart of 
the FFT algorithm. It takes four complex input data 
words, computes the FFT, and produces four 
complex output data words. Figure (1), illustrates the 
single flow graph of the radix-4 butterfly unit.   

   
Each butterfly requires four complex 
adder/subtractors and three complex 
multipliers. The mathematical model for 
each radix-4 butterfly is:   
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        Many different researches for the 
implementation of FFT algorithms on FPGA have 
been proposed since the introduction of this 
technology. For example, The design of a 
parametrisable architecture on an FPGA, using 
Handel-C language, was presented in [12] for  
implementation of different types of FFT algorithms. 

Kee  et al[13] uses approach involves two orthogonal 
methods - FFT inner loop unrolling and outer loop 
unrolling - to achieve cost-optimized FFT 
implementations on FPGA. In outer loop unrolling of 
the targeted FFT, he realizes parallelism by 
instantiating multiple processing cores (dedicated 
hardware subsystems) across FFT butterfly stages. 
While in unrolling of the FFT inner loop, he allocates 
multiple cores within each stage.   
       Andraka et al[14] describes a technique, for 
implementing FFT algorithm on FPGA, that is a 
hybrid of fixed  point and floating point operations 
designed to significantly reduce the overhead for 
floating point. In Ma's scheme[15], an FFT core that 
involves a single butterfly unit was developed. He 
uses an efficient method for in-place memory 
management. But the overall approach is limited in 
terms of throughput improvement.  
      To achieve an effective balance between 
hardware costs and performance features,  Nordin et 
al [16] presented a  parameterized soft core generator 
for the FFT based on the Peace FFT algorithm by 
running multiple butterflies simultaneously with a 
scalable stride permutation. 
       In XU et al. [17], an FPGA-based reconfigurable, 
hierarchical-SIMD (H-SIMD) machine with its 
codesign of the Pyramidal Instruction Set 
Architecture (PISA) was proposed. He assumes a 
multiple FPGA board where  each FPGA is 
configured as a separated SIMD machine to  
implement 2D FFT. While Jackson et al. [18] 
proposed a systolic structure for high throughput FFT 
implementation.  Finally,  Kamalizad et al[19], 
mapped the FFT to the MorphoSys reconfigurable 
computing platform to achieve high performance 
FFT architecture.  

3.0 Hardware Implementations Of The  Fft 
Algorithm 

       In general, there are four different ways for 
hardware implementations  of  the FFT  algorithm: 
Serial FFTs: The computations are implemented in a 
number of iterations using only single butterfly unit 
and single memory unit.  
Pipeline FFTs: They utilize concurrent processing of 
different stages to achieve high throughput. 
Parallel FFTs: Each stage in the FFT is computed 
with a set of processing elements and the result is fed 
back to the same processing elements for the 
computation of the next stage. 
Fully parallel-pipeline FFTs: The operations in the 
signal flow graph are mapped completely to a 
hardware structure. 
       The serial implementations sufure from low 
throughput while the pipeline FFT architectures are  

Fig.1 Single flow graph of  radix-4 butterfly unit. 
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suitable for continuous I/O with high throughput but 
yield larger latency. The parallel FFT architectures 
increase the parallelism within a stage but require 
buffer for the continuous throughput. Fully parallel-
pipeline FFT architectures are hardware intensive and 
not suitable for implementation on FPGA especially 
for large transform length.  
       The design of the FFT engine, proposed in this 
paper, is implemented using reconfigurable parallel 
architecture. The architecture considered focuses on 
minimizing and optimizing the hardware resources 
without large scarifying in performance. The signal 
flow graph for implementing 256 complex point 
decimation in frequency (DIF) readix-4 FFT 
algorithm in the proposed system is shown in figure 
2.   
     The input data are grouped in 16 blocks; each 
block consists of 16 complex points which then 
distributed to 16 FFT processors  (FFT cores) for 
execution. The computation of 256 point radix-4 FFT 
algorithm requires four stages implementing using 
only 16 FFT cores. The result of each stage is stored 
and then reused by the same hardware to execute the 
next stage. The time required to compute an entire 
stage is the same for all stages. Data exchange is 
required between each group of four FFT cores after 
executing stage-1 and  stage-2 of the algorithm as 
shown in figure 2.    

    

 

Fig.2 Single flow graph for implementing 256 point radix-
4DIF-FFT algorithm in proposed system. 

 

4.0 Proposed Fft Architecture       
       Figure 3 shows the architecture of the proposed 
FFT machine which can be divided into four main 
building blocks:  
The data processing part and consists of 16 FFT 
cores, each core represents 16 complex point parallel 
FFT processor. The storage system which represented 
by the FIFO buffers. The routing structure (buses and  
input/output system) to routes data between the FFT 
cores and between the FFT engine and the external 
memories. Finally, Global and Control Configuration 
Unit (GCCU) to  produce the global clock and 
control signals and to manages the configuration 
process.  

      Each FFT core consists of four redix-4 butterflies, 
and every core has a pair of FIFO input buffers each 
of size 16 complex points (16FIFO). The FPGA 
receives input samples from external memory and 
distributed it to one of the two sets of 16FIFO input 
buffers.  By utilizing this double buffering structure, 
the two sets of 16FIFO input buffers are used to feed 
the FFT cores alternatively, thus solving the problem 
of data latency in data distributing process. 
Moreover, double buffering architecture allows 
subsequent input blocks to be processed in a 
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continuous, so that all of the butterflies in all FFT 
cores can be engaged all the time. 

 

Fig.3 Architecture of the FFT Engine. 

 

    The execution of the algorithm passes in three 
phases: 

 

In data load phase, the input data is loaded (by 
the input system) from external memory and 
grouped in digit reverse order to a 16 block. 
These blocks are stored in the first set of 16FIFO 
input buffers. 

 

After full frame has been loaded, the FFT is 
computed on the stored data. When the FFT 
computation is complete, the result is sent back 
to the same set of 16FIFO input buffers. This 
represents the computation phase. 

 

In the last phase - result store phase -     the result 
is read out from the 16FIFO. input buffers ( by 
the output system) and then sent to the external 
memories. 

      Using the decimation in frequency (DIF) FFT 
algorithm, a digit reversal is required to reorder the 
input data which is done (under the control of 
GCCU) during data load phase, by the input system. 
Therefore no extra hardware or additional memory 
resource or time overhead is required to reorder the 
input samples.  
      After the data load phase, and while the first 
frame of 256 points, stored in the 1st set of 16FIFO 
input buffers, take part in calculations the next frame 
of 256 points are loaded to the 2nd set of 16FIFO 
input buffers. When the calculations of the first frame 

are finished, the FFT engine copies the result to the 
1st 16FIFO input buffers. This result is then 
transferred, in next time, to the external memories 
and the FFT cores starts directly to compute the FFT 
algorithm on the next frame stored in the 2nd set of 
16FIFO input buffers. Thus, data input, computation 
and data output operations are overlapped, so that the 
FFT processor is never left in an idle state waiting for 
an I/O operation. This provides high throughput rates 
for real-time applications, in which the input data is a 
sequential stream.  
      Furthermore, to speed up the operation of data 
transfer between the FFT cores and the I/O system 
and improving the throughput, each four FFT cores 
share a common bus for data input ( Input Buses, IB). 
Considering that there are four separate external 
memory models to feed the FFT  engine with the I/O 
samples in parallel.   A torus network is chosen to 
connecting the FFT cores to facilities data exchange 
between the stages and for the data output. As shown 
in figure 3,  four Horizontal Buses (HB) and four 
Vertical Buses (VB) connect each group of four FFT 
cores horizontally and vertically. This allows the 
sharing of data among neighboring cores which 
reduce the communication overhead.  

      Since the target output is the frequency 
components of the input signal. Therefore, the 
amplitude of the input signal is effectiveless and can 
be normalized. Based on this fact, we assumed that 
the input signal is in the range ±1, and using fixed 
point implementations, each of the real and 
imaginary parts of the I/O data are represented in 18-
bit format with one bit for sign, one bit for integer 
and 16-bit for fraction. Therefore, all data pathways 
(buses) are also in  18-bit two's complement signed 
format.  During the FFT computation results at a 
particular stage are scaled and truncated and then 
stored in FIFO buffers. In the following stage these 
results are read from these buffers. New stage 
computations are performed and new results are 
scaled and truncated again and moved back to the 
buffers. 
    The vertical buses are also used as data output 
buses to upload the result of computation to the 
external memories through the output system. The 
input and output systems are a set of input/output 
circuitry within the FPGA. These systems are used to 
upload and download, in  parallel, the input/output 
data to and from four external memories using the 
separate input/output buses.  

      The Global Control and Configuration Unit 
(GCCU) is a state machine provides a number of 
control signals to coordinate and to synchronize the 
activity of different units in the FFT engine and to 
initiate processing and monitor its completion. The 
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GCCU provides different clock signals to keep track 
of data input/output in FIFO buffers and switching 
between the 16FIFO input buffers during data 
load/store phase and FFT computation phase. It 
implies that a particular stage of the FFT computation 
is done, either the input or output process is done, 
and the FFT computation process is accomplished. It 
is also responsible of unscrambling (digit-reversal) of 
input data at the beginning of each FFT execution. 
Finally, the GCCU controls and configures the 
input/output system to route the input  and output 
data between FFT cores and external world.  

5.0   Fft Cores 

      The FFT cores are responsible for performing the 
butterfly computations needed for the FFT algorithm. 
The FFT core consists of four DIF-FFT radix-4 
butterflies (which are referred as the basic radix-4 
butterfly (BR4B) processing element) in a full 
parallel configuration, local FIFO buffers of size 16 
complex points (Local 16FIFO) to store the 
intermediate results of the computation, and the 
Local Control and Configuration Unit (LCCU). The 
local data pathways within the core are also in the 
form of 18- bit two s complement signed numbers. 
The block diagram representation of the FFT core is 
depicted in figure 4.  

In the beginning of processing of a new frame, the 
input data are loaded from one of the two 16FIFO 
input buffers and distributed to the operand registers 
within each BR4B. During the computation, the 
intermediate results   of the BR4B units are stored in 
local 16FIFO buffer. Then routed through the VB or 
HB to other cores (data exchange), depending on the 
stage of computations. After the end of computation 
of the current frame, the result is return back to the 
same 16FIFO input buffer, (replacing the input 
frame) in which is sent through the VB to the 
external memories in the next time.           

Fig.4 Architecture of the FFT core. 

   

As mentioned above, the result of the BR4B is 
stored in local 16FIFO buffer and then sent to one of 
the storage sources depending on which stage is 
being executed as shown figure 2 and figure 4. 
     The LCCU is mainly responsible for sequencing 
the execution of local hardware on the FFT core 
during different execution phases. It sends number of 
control signals to set the MUXs and DMUX within 
the core to appropriate configuration to rout the data 
between components of the core. Moreover, it sends 
enable signals to the FIFO buffers of the core and to 
the operand registers of the BR4B units to perform 
the  data exchange between the FFT cores. Finally, is 
also responsible of producing counting signals to 
address the coefficient ROM within every butterfly to 
provide the multipliers with the correct twiddle 
factors.  

5.1 Basic Radix-4 Butterfly (BR4B) 
elements 
       The radix-4 butterfly operations represent one 
of the most efficient methods of performing the FFT 
calculation. The main advantages in utilizing a radix-
4 butterfly operation is that it has better speed 
performance, in spite of its major complexity, and 
require less hardware compared to Radix-2. It 
requires 3 complex multiplies and 4 complex 
additions. Therefore, the total cost in complex 
multipliers is 75% of radix-2 FFT, although it uses 
the same number of complex additions [20].  Also, 
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Radix-4 algorithm has better signal to noise ratio than 
that of radix-2 algorithm [21].  
       Figure 5 shows the main components of the basic 
radix-4 butterfly (BR4B) elements. Each BR4B 
consists of three 18*8bit booth complex multipliers, 
and 18-bit adders/subtractors. Also each BR4B has 
eight 18-bit operand registers that accept (under the 
control of  LCCU) the  real and imaginary parts of 
four complex input points. Coefficients (or twiddle 
factors) are pre-calculated and stored in local 
coefficient ROM as 8-bit two s complement signed 
fixed-point words in each butterfly to achieve parallel 
access to twiddle factors for all butterflies. The 
adder/subtractors perform the butterfly operations on 
the data stored in the operand registers. The result is 
then send  to the complex multiplier to multiply the it 
by the twiddle factors.      
     The 18 bit results of the butterfly operation are 
scaled by ¼ by applying right shift. The 26 bit result,  
growth of the fractional bits created from the 
multiplication,  are truncated to return the data word 
sizes back to 18-bit, which is sufficient in most 
practical cases. The result are then stored in local 
16FIFO buffers for further processing in next stages.  

 

Fig.5 Basic Radix-4 Butterfly  (BR4B)              
Datapath 

 

       The scaling of the intermediate results in FFT 
computation is necessary in order to prevent 
overflows which can be handled in three ways[22]:   

Performing the calculations with no scaling and 
carrying all significant integer bits to the end of the 
computation  

Scaling at each stage using a fixed-scaling schedule  
Scaling automatically using block floating point 

       The second option is chosen in this work. 
Therefore the scaling factor of ¼  is required after 
each butterfly operation to avoid overflow with fixed-
point arithmetic. The design of the butterfly unit is 
simulated using the gate level simulator ModelSim. 
The functional simulation is performed to confirm the 
correct operation of the design.  

5.2 Complex multiplier 
    The complex multiplier is the key component in 
the data processing. The direct implementation of 
complex multiplier requires 4 real multipliers, one 
adder and one subtractor. Furthermore, the 
multiplications are the most power dissipating 
arithmetic operations. Today's FPFA contain a 
number of speed optimized signal processing 
building blocks, such as multipliers, RAM blocks or 
I/O structures with propagation delays in the range of 
a few nanoseconds [23]. However, in this system we 
intended to design the FFT engine to be as a part of 
larger system. Therefore we do not use any of 
embedded hardware multipliers which are left to be 
used by other parts of the system and we designed 
our custom hardware multiplier. Based on that, and in 
order to minimize the area cost and the total power 
consumption and also to simplify the 
implementations, the parallel booth multiplier 
technique is used.  
      The simple serial by parallel booth multiplier is 
particularly well suited for FPGA implementation 
without carry chains because all of its routing is to 
nearest neighbors with the exception of the input. The 
number of real multipliers can be reduced to 3 with a 
simple transformation at the cost of extra additions. 
Thus, the complex multiplier used in this work 
requires only three real multipliers and four 
adder/subtractors. Several tests were performed in 
order to verify the complex multiplier functionality, 
besides the time performance analysis. The total area 
of the implemented multiplier highlights the 
advantages over traditionally implementation of the 
complex multipliers specially with the increasing of 
multiplier operand sizes. A comparison in area cost 
with respect to different operand size between two 
types of complex multipliers (Booth Complex 
Multiplier-BCM, and Ripple Complex Multiplier-
RCM) is shown in figure 6.   

6.0 Simulation Results 
        The simulation is based on using VHDL and 
ModelSim softwares. The inputs to the FFT are 18 
bits wide, sixteen bits of fraction and one bit for 
integer and one bit for sign (assuming that the input 
signal in the range between (+1 and -1).  Basic radix-
4 butterfly element has been implemented on 
Spartan-3E(XC3S500E) evaluation board of     4656 
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slices requiring 657 slices. Based on this 
implementation, it can be estimated that one FFT 
core approximately requires (657*4) slices, which 
consumes 56 % of the total number  of  slices.   
Therefore,    the   entire proposed system (with 16 
FFT cores) can be implemented using a single FPGA 
platform of more than 50,000 slices. As shown in 
figure 6, the component utilization, using the parallel 
Booth technique for realizing the complex multiplier 
save a lot of hardware compared to other techniques 
such as RCM.  

 

Fig.6 Component utilization for Spartan-3E 
(XC3S500E) for two types of multipliers with respect 

to the operand size. 

 

7.0 Conclisions 
      This paper shows proposed architecture for the 
development of a 256-point radix-4 FFT engine for 
applications in hardware digital signal processing, 
targeting low-cost FPGA technologies. The 
architecture supports scaled fixed point arithmetic 
methods. The approach proposed in this paper use 
reconfigurable computing to carefully integrate two 
orthogonal methods for trading-off hardware cost and 
performance. This type of implementation leads to 
decrease in a silicon area at the cost of increasing in 
processing time. However, different methods are 
used to increase the performance such as using 
double buffering technique and parallel butterflies 
execution. 
    The double buffering technique, by using two sets 
of FIFO buffers, overcomes the data I/O latency 
problem. The switching between those pairs of data 
FIFO buffers overlaps data communications with 
computations. Thus, hiding the communication 
overheads leading to improve the performance. The 
global controller (GCCU) lies in the FPGA and 
controls all the transactions between the FPGA and 
the external world. Data coming from external 
memory is distributed into the 1st set of high- speed 
FIFO buffers on the FPGA. When the FFT cores 

finish their current FFT implementations, they will 
switch to 2nd set of FIFO buffers to begin the FFT 
computation on a new frame of 256 complex points. 
Thus real-time processing is achieved.  
     In the proposed implementation, the 
communications among the butterflies are based on a 
nearest neighbor s grid interconnection. Data needed 
by every butterfly can be routed from its neighbor by 
using a set of operand registers and FIFO buffers. 
    The proposed system can offer acceptable 
throughput rates in relation to the other conventional 
FFT implementations such as DSP processors or 
ASIC FFT systems.  
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