
Nahrain University, College of Engineering Journal (NUCEJ) Vol.13 No.2, 2010 pp.150-157

NUCEJ Vol.13, No.2 Reconfigurable FFT 150

Run-Time Reconfigurable FFT Engine

Ahmad F. Al-Allaf Shefa A. Dawwd

Lecturer Lecturer
Technical college-MOSUL College of Engineering

 Dept of Computer eng. Dept of Computer Eng.
 CTE MOSUL University

 Ahmadalallaf@yahoo.com shefadawwd@yahoo.com

Abstract
 This paper develops a system level architecture
for implementing a cost-efficient, FPGA-based real-
time FFT engine. This approach considers both the
hardware cost (in terms of FPGA resource
requirements), and performance (in terms of
throughput). These two dimensions are optimized
based on using run time reconfiguration, double
buffering technique and the hardware virtualization
to reuse the available processing components. The
system employs sixteen reconfigurable parallel FFT
cores. Each core represents a 16 complex point
parallel FFT processor, running in continuous real-
time FFT engine. The architecture support transform
length of 256 complex points, as a demonstrator to
the idea design, using fixed-point arithmetic and has
been developed using radix-4 architecture.
 The parallel Booth technique for realizing the
complex multiplier (required in the basic butterfly
operation) is chosen. That
is to save a lot of hardware compared to other
techniques. The simulation results that have been
performed using VHDL
modeling language and ModelSim software
shows that the full design can be implemented
using single FPGA platform requiring about 50,000
Slices.
Keywords: Fast Fourier Transform, Radix-4,

FPGA, Run time Reconfiguration

1.0 Introduction
 The fast Fourier transform [1] is one of the
fundamental algorithms in Digital Signal Processing
(DSP) including acoustics, optics,
telecommunications, speech, signal and image
processing. Using this transform, signals can be
moved from time domain to the frequency domain
where many digital signal processing techniques such
as filtering and correlation can be performed with
fewer operations.

 Many different FFT implementations have been
developed for the digital signal processors and
dedicated FFT processor ICs [2,3,4,5,6,7,8,9,10,11].
However, decreasing the cost with the growing in the
capacity, FPGAs have become a good candidate for
implementing FFT engines. Despite of that, High
performance, large-scale DSP applications still
cannot fit in a single FPGA and require carful design
considerations. In this context, the hardware
implementation of the FFT algorithm can be done in
either fixed or floating point.
Floating-point arithmetic requires much more area
per operation (adders and multipliers). Furthermore,
it has much higher demands on memory capacity and
bandwidth.
 To overcome this challenge, fitting the whole
Fourier transform processor on a single FPGA chip is
approached along two paths: First, the algorithm
itself is examined and optimized specifically to
minimize the hardware resources. Second, applying
different techniques on the architecture, to reduce the
required hardware. With respect to second path; one
of the viable solutions is to use the Reconfigurable
Computing (RC) in the field of Field Programmable
Gate Arrays (FPGAs) which potentially can offers
high performance at lower chip area and power
consumption.
 This paper presents a high performance FFT
architecture focusing on finding the most suitable
structure for implementing efficient and cost
effective FFT engine using RC technique. The
system uses radix-4 architecture with fixed point
arithmetic which is sufficient in many domains.
 The rest of this paper is organized as follows. A
background and an overview of the related works are
described in Section 2. Review of different hardware
implementations of the FFT algorithm and the
proposed reconfigurable implementation of the 256
complex points 1D-FFT algorithm are given in
section 3. The architecture of the proposed FFT
system is presented in section 4. Section 5 focuses on
the architecture of the FFT core including the
implementation of the butterfly element and the

NUCEJ Vol.13 No.2 Al-Allaf, Dawwd 151

hardware multiplier. Finally in Section 6 and 7,
performance analysis and some conclusions are
offered.

2.0 Background And Related Work

 The Fast Fourier Transform (FFT) algorithm used
for implementation in the proposed system is based
on the radix-4 butterfly, which represent the heart of
the FFT algorithm. It takes four complex input data
words, computes the FFT, and produces four
complex output data words. Figure (1), illustrates the
single flow graph of the radix-4 butterfly unit.

Each butterfly requires four complex
adder/subtractors and three complex
multipliers. The mathematical model for
each radix-4 butterfly is:

1

2

3

4

 Many different researches for the
implementation of FFT algorithms on FPGA have
been proposed since the introduction of this
technology. For example, The design of a
parametrisable architecture on an FPGA, using
Handel-C language, was presented in [12] for
implementation of different types of FFT algorithms.

Kee et al[13] uses approach involves two orthogonal
methods - FFT inner loop unrolling and outer loop
unrolling - to achieve cost-optimized FFT
implementations on FPGA. In outer loop unrolling of
the targeted FFT, he realizes parallelism by
instantiating multiple processing cores (dedicated
hardware subsystems) across FFT butterfly stages.
While in unrolling of the FFT inner loop, he allocates
multiple cores within each stage.
 Andraka et al[14] describes a technique, for
implementing FFT algorithm on FPGA, that is a
hybrid of fixed point and floating point operations
designed to significantly reduce the overhead for
floating point. In Ma's scheme[15], an FFT core that
involves a single butterfly unit was developed. He
uses an efficient method for in-place memory
management. But the overall approach is limited in
terms of throughput improvement.
 To achieve an effective balance between
hardware costs and performance features, Nordin et
al [16] presented a parameterized soft core generator
for the FFT based on the Peace FFT algorithm by
running multiple butterflies simultaneously with a
scalable stride permutation.
 In XU et al. [17], an FPGA-based reconfigurable,
hierarchical-SIMD (H-SIMD) machine with its
codesign of the Pyramidal Instruction Set
Architecture (PISA) was proposed. He assumes a
multiple FPGA board where each FPGA is
configured as a separated SIMD machine to
implement 2D FFT. While Jackson et al. [18]
proposed a systolic structure for high throughput FFT
implementation. Finally, Kamalizad et al[19],
mapped the FFT to the MorphoSys reconfigurable
computing platform to achieve high performance
FFT architecture.

3.0 Hardware Implementations Of The Fft
Algorithm

 In general, there are four different ways for
hardware implementations of the FFT algorithm:
Serial FFTs: The computations are implemented in a
number of iterations using only single butterfly unit
and single memory unit.
Pipeline FFTs: They utilize concurrent processing of
different stages to achieve high throughput.
Parallel FFTs: Each stage in the FFT is computed
with a set of processing elements and the result is fed
back to the same processing elements for the
computation of the next stage.
Fully parallel-pipeline FFTs: The operations in the
signal flow graph are mapped completely to a
hardware structure.
 The serial implementations sufure from low
throughput while the pipeline FFT architectures are

Fig.1 Single flow graph of radix-4 butterfly unit.

Complex Multiplier

Complex Adder/Subtractor

T

im
e

D
om

ai
n

In
pu

t
P

oi
nt

s

F
re

qu
en

cy
 D

om
ai

n
O

ut
pu

t
P

oi
nt

s

Coefficients ROM

X(4k)

X(4k+1
)

X(4k+2
)

x(n)

x(n+N/4)

x(n+N/2)

x(n+3N/4
)

NUCEJ Vol.13, No.2 Reconfigurable FFT 152

suitable for continuous I/O with high throughput but
yield larger latency. The parallel FFT architectures
increase the parallelism within a stage but require
buffer for the continuous throughput. Fully parallel-
pipeline FFT architectures are hardware intensive and
not suitable for implementation on FPGA especially
for large transform length.
 The design of the FFT engine, proposed in this
paper, is implemented using reconfigurable parallel
architecture. The architecture considered focuses on
minimizing and optimizing the hardware resources
without large scarifying in performance. The signal
flow graph for implementing 256 complex point
decimation in frequency (DIF) readix-4 FFT
algorithm in the proposed system is shown in figure
2.
 The input data are grouped in 16 blocks; each
block consists of 16 complex points which then
distributed to 16 FFT processors (FFT cores) for
execution. The computation of 256 point radix-4 FFT
algorithm requires four stages implementing using
only 16 FFT cores. The result of each stage is stored
and then reused by the same hardware to execute the
next stage. The time required to compute an entire
stage is the same for all stages. Data exchange is
required between each group of four FFT cores after
executing stage-1 and stage-2 of the algorithm as
shown in figure 2.

Fig.2 Single flow graph for implementing 256 point radix-
4DIF-FFT algorithm in proposed system.

4.0 Proposed Fft Architecture
 Figure 3 shows the architecture of the proposed
FFT machine which can be divided into four main
building blocks:
The data processing part and consists of 16 FFT
cores, each core represents 16 complex point parallel
FFT processor. The storage system which represented
by the FIFO buffers. The routing structure (buses and
input/output system) to routes data between the FFT
cores and between the FFT engine and the external
memories. Finally, Global and Control Configuration
Unit (GCCU) to produce the global clock and
control signals and to manages the configuration
process.

 Each FFT core consists of four redix-4 butterflies,
and every core has a pair of FIFO input buffers each
of size 16 complex points (16FIFO). The FPGA
receives input samples from external memory and
distributed it to one of the two sets of 16FIFO input
buffers. By utilizing this double buffering structure,
the two sets of 16FIFO input buffers are used to feed
the FFT cores alternatively, thus solving the problem
of data latency in data distributing process.
Moreover, double buffering architecture allows
subsequent input blocks to be processed in a

NUCEJ Vol.13 No.2 Al-Allaf, Dawwd 153

continuous, so that all of the butterflies in all FFT
cores can be engaged all the time.

Fig.3 Architecture of the FFT Engine.

 The execution of the algorithm passes in three
phases:

In data load phase, the input data is loaded (by
the input system) from external memory and
grouped in digit reverse order to a 16 block.
These blocks are stored in the first set of 16FIFO
input buffers.

After full frame has been loaded, the FFT is
computed on the stored data. When the FFT
computation is complete, the result is sent back
to the same set of 16FIFO input buffers. This
represents the computation phase.

In the last phase - result store phase - the result
is read out from the 16FIFO. input buffers (by
the output system) and then sent to the external
memories.

 Using the decimation in frequency (DIF) FFT
algorithm, a digit reversal is required to reorder the
input data which is done (under the control of
GCCU) during data load phase, by the input system.
Therefore no extra hardware or additional memory
resource or time overhead is required to reorder the
input samples.
 After the data load phase, and while the first
frame of 256 points, stored in the 1st set of 16FIFO
input buffers, take part in calculations the next frame
of 256 points are loaded to the 2nd set of 16FIFO
input buffers. When the calculations of the first frame

are finished, the FFT engine copies the result to the
1st 16FIFO input buffers. This result is then
transferred, in next time, to the external memories
and the FFT cores starts directly to compute the FFT
algorithm on the next frame stored in the 2nd set of
16FIFO input buffers. Thus, data input, computation
and data output operations are overlapped, so that the
FFT processor is never left in an idle state waiting for
an I/O operation. This provides high throughput rates
for real-time applications, in which the input data is a
sequential stream.
 Furthermore, to speed up the operation of data
transfer between the FFT cores and the I/O system
and improving the throughput, each four FFT cores
share a common bus for data input (Input Buses, IB).
Considering that there are four separate external
memory models to feed the FFT engine with the I/O
samples in parallel. A torus network is chosen to
connecting the FFT cores to facilities data exchange
between the stages and for the data output. As shown
in figure 3, four Horizontal Buses (HB) and four
Vertical Buses (VB) connect each group of four FFT
cores horizontally and vertically. This allows the
sharing of data among neighboring cores which
reduce the communication overhead.

 Since the target output is the frequency
components of the input signal. Therefore, the
amplitude of the input signal is effectiveless and can
be normalized. Based on this fact, we assumed that
the input signal is in the range ±1, and using fixed
point implementations, each of the real and
imaginary parts of the I/O data are represented in 18-
bit format with one bit for sign, one bit for integer
and 16-bit for fraction. Therefore, all data pathways
(buses) are also in 18-bit two's complement signed
format. During the FFT computation results at a
particular stage are scaled and truncated and then
stored in FIFO buffers. In the following stage these
results are read from these buffers. New stage
computations are performed and new results are
scaled and truncated again and moved back to the
buffers.
 The vertical buses are also used as data output
buses to upload the result of computation to the
external memories through the output system. The
input and output systems are a set of input/output
circuitry within the FPGA. These systems are used to
upload and download, in parallel, the input/output
data to and from four external memories using the
separate input/output buses.

 The Global Control and Configuration Unit
(GCCU) is a state machine provides a number of
control signals to coordinate and to synchronize the
activity of different units in the FFT engine and to
initiate processing and monitor its completion. The

NUCEJ Vol.13, No.2 Reconfigurable FFT 154

GCCU provides different clock signals to keep track
of data input/output in FIFO buffers and switching
between the 16FIFO input buffers during data
load/store phase and FFT computation phase. It
implies that a particular stage of the FFT computation
is done, either the input or output process is done,
and the FFT computation process is accomplished. It
is also responsible of unscrambling (digit-reversal) of
input data at the beginning of each FFT execution.
Finally, the GCCU controls and configures the
input/output system to route the input and output
data between FFT cores and external world.

5.0 Fft Cores

 The FFT cores are responsible for performing the
butterfly computations needed for the FFT algorithm.
The FFT core consists of four DIF-FFT radix-4
butterflies (which are referred as the basic radix-4
butterfly (BR4B) processing element) in a full
parallel configuration, local FIFO buffers of size 16
complex points (Local 16FIFO) to store the
intermediate results of the computation, and the
Local Control and Configuration Unit (LCCU). The
local data pathways within the core are also in the
form of 18- bit two s complement signed numbers.
The block diagram representation of the FFT core is
depicted in figure 4.

In the beginning of processing of a new frame, the
input data are loaded from one of the two 16FIFO
input buffers and distributed to the operand registers
within each BR4B. During the computation, the
intermediate results of the BR4B units are stored in
local 16FIFO buffer. Then routed through the VB or
HB to other cores (data exchange), depending on the
stage of computations. After the end of computation
of the current frame, the result is return back to the
same 16FIFO input buffer, (replacing the input
frame) in which is sent through the VB to the
external memories in the next time.

Fig.4 Architecture of the FFT core.

As mentioned above, the result of the BR4B is
stored in local 16FIFO buffer and then sent to one of
the storage sources depending on which stage is
being executed as shown figure 2 and figure 4.
 The LCCU is mainly responsible for sequencing
the execution of local hardware on the FFT core
during different execution phases. It sends number of
control signals to set the MUXs and DMUX within
the core to appropriate configuration to rout the data
between components of the core. Moreover, it sends
enable signals to the FIFO buffers of the core and to
the operand registers of the BR4B units to perform
the data exchange between the FFT cores. Finally, is
also responsible of producing counting signals to
address the coefficient ROM within every butterfly to
provide the multipliers with the correct twiddle
factors.

5.1 Basic Radix-4 Butterfly (BR4B)
elements
 The radix-4 butterfly operations represent one
of the most efficient methods of performing the FFT
calculation. The main advantages in utilizing a radix-
4 butterfly operation is that it has better speed
performance, in spite of its major complexity, and
require less hardware compared to Radix-2. It
requires 3 complex multiplies and 4 complex
additions. Therefore, the total cost in complex
multipliers is 75% of radix-2 FFT, although it uses
the same number of complex additions [20]. Also,

NUCEJ Vol.13 No.2 Al-Allaf, Dawwd 155

Radix-4 algorithm has better signal to noise ratio than
that of radix-2 algorithm [21].
 Figure 5 shows the main components of the basic
radix-4 butterfly (BR4B) elements. Each BR4B
consists of three 18*8bit booth complex multipliers,
and 18-bit adders/subtractors. Also each BR4B has
eight 18-bit operand registers that accept (under the
control of LCCU) the real and imaginary parts of
four complex input points. Coefficients (or twiddle
factors) are pre-calculated and stored in local
coefficient ROM as 8-bit two s complement signed
fixed-point words in each butterfly to achieve parallel
access to twiddle factors for all butterflies. The
adder/subtractors perform the butterfly operations on
the data stored in the operand registers. The result is
then send to the complex multiplier to multiply the it
by the twiddle factors.
 The 18 bit results of the butterfly operation are
scaled by ¼ by applying right shift. The 26 bit result,
growth of the fractional bits created from the
multiplication, are truncated to return the data word
sizes back to 18-bit, which is sufficient in most
practical cases. The result are then stored in local
16FIFO buffers for further processing in next stages.

Fig.5 Basic Radix-4 Butterfly (BR4B)
Datapath

 The scaling of the intermediate results in FFT
computation is necessary in order to prevent
overflows which can be handled in three ways[22]:

Performing the calculations with no scaling and
carrying all significant integer bits to the end of the
computation

Scaling at each stage using a fixed-scaling schedule
Scaling automatically using block floating point

 The second option is chosen in this work.
Therefore the scaling factor of ¼ is required after
each butterfly operation to avoid overflow with fixed-
point arithmetic. The design of the butterfly unit is
simulated using the gate level simulator ModelSim.
The functional simulation is performed to confirm the
correct operation of the design.

5.2 Complex multiplier
 The complex multiplier is the key component in
the data processing. The direct implementation of
complex multiplier requires 4 real multipliers, one
adder and one subtractor. Furthermore, the
multiplications are the most power dissipating
arithmetic operations. Today's FPFA contain a
number of speed optimized signal processing
building blocks, such as multipliers, RAM blocks or
I/O structures with propagation delays in the range of
a few nanoseconds [23]. However, in this system we
intended to design the FFT engine to be as a part of
larger system. Therefore we do not use any of
embedded hardware multipliers which are left to be
used by other parts of the system and we designed
our custom hardware multiplier. Based on that, and in
order to minimize the area cost and the total power
consumption and also to simplify the
implementations, the parallel booth multiplier
technique is used.
 The simple serial by parallel booth multiplier is
particularly well suited for FPGA implementation
without carry chains because all of its routing is to
nearest neighbors with the exception of the input. The
number of real multipliers can be reduced to 3 with a
simple transformation at the cost of extra additions.
Thus, the complex multiplier used in this work
requires only three real multipliers and four
adder/subtractors. Several tests were performed in
order to verify the complex multiplier functionality,
besides the time performance analysis. The total area
of the implemented multiplier highlights the
advantages over traditionally implementation of the
complex multipliers specially with the increasing of
multiplier operand sizes. A comparison in area cost
with respect to different operand size between two
types of complex multipliers (Booth Complex
Multiplier-BCM, and Ripple Complex Multiplier-
RCM) is shown in figure 6.

6.0 Simulation Results
 The simulation is based on using VHDL and
ModelSim softwares. The inputs to the FFT are 18
bits wide, sixteen bits of fraction and one bit for
integer and one bit for sign (assuming that the input
signal in the range between (+1 and -1). Basic radix-
4 butterfly element has been implemented on
Spartan-3E(XC3S500E) evaluation board of 4656

NUCEJ Vol.13, No.2 Reconfigurable FFT 156

slices requiring 657 slices. Based on this
implementation, it can be estimated that one FFT
core approximately requires (657*4) slices, which
consumes 56 % of the total number of slices.
Therefore, the entire proposed system (with 16
FFT cores) can be implemented using a single FPGA
platform of more than 50,000 slices. As shown in
figure 6, the component utilization, using the parallel
Booth technique for realizing the complex multiplier
save a lot of hardware compared to other techniques
such as RCM.

Fig.6 Component utilization for Spartan-3E
(XC3S500E) for two types of multipliers with respect

to the operand size.

7.0 Conclisions
 This paper shows proposed architecture for the
development of a 256-point radix-4 FFT engine for
applications in hardware digital signal processing,
targeting low-cost FPGA technologies. The
architecture supports scaled fixed point arithmetic
methods. The approach proposed in this paper use
reconfigurable computing to carefully integrate two
orthogonal methods for trading-off hardware cost and
performance. This type of implementation leads to
decrease in a silicon area at the cost of increasing in
processing time. However, different methods are
used to increase the performance such as using
double buffering technique and parallel butterflies
execution.
 The double buffering technique, by using two sets
of FIFO buffers, overcomes the data I/O latency
problem. The switching between those pairs of data
FIFO buffers overlaps data communications with
computations. Thus, hiding the communication
overheads leading to improve the performance. The
global controller (GCCU) lies in the FPGA and
controls all the transactions between the FPGA and
the external world. Data coming from external
memory is distributed into the 1st set of high- speed
FIFO buffers on the FPGA. When the FFT cores

finish their current FFT implementations, they will
switch to 2nd set of FIFO buffers to begin the FFT
computation on a new frame of 256 complex points.
Thus real-time processing is achieved.
 In the proposed implementation, the
communications among the butterflies are based on a
nearest neighbor s grid interconnection. Data needed
by every butterfly can be routed from its neighbor by
using a set of operand registers and FIFO buffers.
 The proposed system can offer acceptable
throughput rates in relation to the other conventional
FFT implementations such as DSP processors or
ASIC FFT systems.

References
[1] J.W. Cooley and J. W. Tukey, "An Algorithm for
the Machine Computation of the Complex Fourier
Series," Math.of Computation, Vol. 19, pp. 297-301,
April 1965.
[2] Datasheet, "Analog Devices DSP Selection Guide
2002 Edition", Analog Devices, 2002.
[3] Datasheet, "TI C62x and C67x DSP
Benchmarks", Texas Instruments, 2002.
[4] Datasheet, "Motorola DSP 56600 16-bit DSP
Family Datasheet , Motorola Ltd.,2002.
[5] M. Wosnitza: "High Precision 1024-point FFT
Processor for 2-D Object Detection", Ph.D. SBN 3-
89649-443-0, Swiss Federal Institute of Technology
(ETH) 1999.
[6] Baas, B. M., A low-power, High-Performance
1024-point FFT Processor , IEEE Journal of Solid
State Circuits. pp. 380-387, 1999.
[7] Lecce, V. D. and D. E. Sciascio, A VLSI
Implementation of a Novel Bit-Serial Butterfly
Processor for FFT , Proceedings of the 5th Euro
computer conference, Comp Euro 91, Advanced
Computer Technology, Reliable Systems and
Applications, No. 1991, pp. 875-879, 1991.
[8] Chen, T. and L. Zho, An Expandable Column
FFT Architecture Using Circuit Switching
Networks , Journal of VLSI Signal Processing, Vol.
6, No. 3, pp. 243-257, Dec. 1993.
[9] Szwarc, V. , L. Desormeaux, W. Wong, S. P. C.
Yeung, H. C. Chan and A. T. Kwasnievski, A
Chipset for Pipeline and Parallel Pipeline FFT
Architectures , Journal of VLSI Signal Processing,
Vol. 6, No. 3, pp.253-265, Dec. 1994.
[10] Storn, R. Radix-2 FFT- Pipeline Architecture
with Reduced Noise to Signal Ratio , IEE
Proceedings - Vision, Image and Signal Processing ,
Vol. 141, No. 2, pp.81-88, April, 1994.
[11] Melander, J. , T. Widhe, P. Sanbarg, K.
Palmkvist, M.Vesterbacka and L. Wanhammar,
Implementation of a Bit- Serial FFT Processor With

a Hierarchical Control Structure , Proceedings -
EECCTD 95 European Conference on Circuit

NUCEJ Vol.13 No.2 Al-Allaf, Dawwd 157

Theory and Design, I. T. U. , pp. 423-426, Sept.
1995.
[12] I. S. Uzun , A. Amira and A. Bouridane, "FPGA

Implementations of Fast Fourier Transforms for
Real-Time Signal and Image Processing", VISP(152),
No. 3, pp. 283-296, June, 2005,.
[13] Hojin Kee, Newton Petersen, Jacob Kornerup,
and Shuvra S. Bhattacharyya, "Systematic Generation
of FPGA-based FFT Implementations," In
Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing, Las
Vegas, Nevada, March,2008.
[14] Raymond J. Andraka Hybrid Floating Point
Technique Yields 1.2 Gigasample Per Second 32 to
2048 point Floating Point FFT in a single FPGA ,
DSP magazine, pp. 42-44. April, 2007
[15] Y. Ma, An Effective Memory Addressing
Scheme for FFT Processors, IEEE Transactions on
Signal Processing, Vol. 47, Issue 3, pp. 907-911,
March, 1999.
[16] G. Nordin, P. A. Milder, J. C. Hoe, M. Puschel,
Automatic Generation of Customized Discrete

Fourier Transform IPs , Design Automation
Conference, pp. 471- 474, 2005.
[17] Xizhen XUy and Sotirios G. ZIAVRAS, A
Coarse-Grain Hierarchical Technique for 2-
Dimensional FFT on Configurable Parallel
Computers.,

IEICE Transc. Inf. & Syst., Vol. E89D,
No. 2 Feb. 2006.
[18] P. A. Jackson, C. P. Chan, J. E. Scalera, C. M.
Rader, and M. M. Vai, A Systolic FFT Architecture
for Real Time FPGA Systems , High Performance
Embedded Computing Workshop, 2004.

[19] A. H. Kamalizad, C. Pan, and N. Bagherzadeh "
Fast parallel FFT on a reconfigurable computation
platform" In Proceedings of the 15th Symposium on
Computer Architecture and High Performance
Computing (SBAC-PAD 03), pages 254 259, Sao
Paulo, SP - Brazil, November, 2003.
[20] http://cnx.rice.edu/content/m12027/
[21] Weidong Li and Lars Wanhammar, "Efficient
Radix-4 and Radix-8 Butterfly Elements", available
at : http://www
.es.isy.liu.se/publications/papers_and_reports/1999/w
eidongl_NorChip99.pdf
[22] Ishaan L. Dalal and Fred L. Fontaine "A
Reconfigurable FPGA-based 16-Channel Front-End
for MRI,", at the 40th Asilomar Conference on
Signals, Systems and Computers in Pacific Grove,
CA, on October 30, 2007.
[23] Virtex-II ProO Platform FPGA Handbook,
Xilinx, Inc., San Jose, CA, 2002.
[24] S. Sukhsawas and K. Benkrid , "A High-level
Implementation of a High Performance Pipeline FFT
on Virtex-E FPGAs" In Proceedings of the IEEE
Computer Society Annual Symposium on VLSI
Emerging Trends in VLSI Systems Design (ISVLSI
04), pp. 229 232, Lafayette, LA, February, 2004.
[25] Ediz Cetin, Richard C. S. Morling and Izzet

Kale, An Integrated 256-point Complex FFT
Processor for Real-time Spectrum Analysis and
Measurement,

IEEE Proceedings of Instrumentation
and Measurement Technology Conference, Vol. 1,
pp. 96-101,Ottawa, Canada, May 19-21, 1997.
[26] L. Wanhammar, DSP Integrated

Circuits, Academic Press, 1999.

FFT

FFT

FPGA .

FPGA)

throughput)
 FPGA . FFT

FFT

FFT

FFT .

(Booth)

FFT)
 VHDL

Model Sim

(Slices) FPGA .

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

