Performance Evaluation of Multimode Fiber-Based Optical OFDM Communication System

R. S. Fyath Department of Computer Engineering, Nahrian University Email: rsfyath@yahoo.com

Abstract:

The most significant limitation of data transmission in Multimode Fibers (MMFs) is intermodal dispersion due to the propagation velocity of each of the guided mode is different. This paper addresses this problem by adopting optical Orthogonal Frequency Division Multiplexing (OFDM) scheme to compensate intermodal dispersion and to enhance the bandwidth-distance product of MMF. The optical OFDM scheme adopted here is based on treating the signal fading due to intermodal dispersion in MMFs in a similar manner to that caused by multipath effect in wireless channels.

A MATLAB simulink model is developed for the optical OFDM system. Simulation results are reported for 1Gbps link operating with different digital subcarrier modulation schemes to assess the impact of various parameters on system performance. The results indicate clearly that a Bit Error Rate (BER) of 10-5 can be achieved for a 1Gbps, 1km (10ns-dispersion) link operating with 1550nm, -23.6dBm laser and 16- Quadrature Amplitude Modulation (QAM) subcarrier modulation scheme.

Keywords: Optical communication.

1. Introduction

Recently there is an increasing interest in using Multimode Fiber (MMF) links as the transmission medium for gigabit per second Local Area Networks (LANs) [1]. Such highspeed links are particularly needed for backbone links, because of the increased LAN bandwidths following the 10- Gigabit Ethernet (10GbE) standard [2]. The use of MMFs bring multiple advantages regarding to their ease of installation, handling and maintenance, which in turn implies an important cost reduction. Unfortunately, the bit rate- length product of these fibers is limited by the intermodal dispersion. If the bit rate of the transmitted signal is high, the bit period is small. When a received pulse is spread out in time caused by

Alhuda A. Al-mfrji Department of Laser and Optoelectronics Engineering Email: laser_eng_huda@yahoo.com

intermodal dispersion, the neighboring pulses may overlap causing Intersymbol Interference (ISI). This may lead to a wrong decision in the decision circuit in the receiver; thus, a high Bit Error Rate (BER) occurs.

Recently, the concepts of Orthogonal Frequency Division Multiplexing (OFDM) have been applied to reduce the effect of high-speed dispersion in optical communication systems incorporating Singlemode Fibers (SMFs) [3-5]. The motivation behind that is the capability of OFDM technique in efficiently dealing with linear distortions encountered signal when transmitting over wireless dispersive fading channels [6].

OFDM is a form of multicarrier modulation, where a single high-speed information bearing stream is transmitted over a number of harmonically related narrowband subcarriers [7]. This paper investigates the use of optical OFDM technique in reducing the effect of intermodal dispersion in gigabit per second MMF transmission links.

2. MMF channel model

The MMF is modeled here as a two-path fading channel as shown in Fig. 1. The first path represents the shortest path corresponding to mode propagating along the longitudinal axis of the fiber. The second path corresponds to the longest propagating path. The difference between propagation times along these two paths is equal to

$\tau_{\text{int}} = \frac{Ln_1}{c} \left(\frac{n_1}{n_2} - 1 \right) \cong \frac{Ln_1 \Delta}{c}$	1
---	---

where L, n_1 , n_2 and c are, respectively, fiber length, core refractive index, cladding refractive index and speed of light in vacuum.

The transmitted power is assumed to be equally distributed among these two modes. Let $e_i(t)$ is the signal electric field incident on the input of the fiber. The input electric field of each of the fastest and slowest modes is equal to $e_i(t)/2$. If the fiber attenuation is neglected (an assumption which is justified for short link), then field at the fiber end is given by

$$e_o(t) = \frac{1}{2} [e_i(t) + e_i(t - \tau_{int})]$$
 2

Applying fourier transform to eq. (2) yields

$$E_{o}(f) = \frac{1}{2} \left[E_{i}(f) + E_{i}(f) e^{-j2\pi\tau_{\text{int}}f} \right]$$
3

where $E_i(f)$ and $E_o(f)$ are, respectively, the fourier transforms of $e_i(t)$ and $e_o(t)$. The transfer function of the MMF is given by

$$H(f) \equiv \frac{E_o(f)}{E_i(f)} = \frac{1}{2} \left[1 + e^{-j2\pi\tau_{\text{int}}f} \right]$$
$$= \frac{1}{2} \left[e^{j\pi\tau_{\text{int}}f} + e^{-j\pi\tau_{\text{int}}f} \right] e^{-j\pi\tau_{\text{int}}f}$$
$$H(f) = \left[\cos(\pi\tau_{\text{int}}f) \right] e^{-j\pi\tau_{\text{int}}f} \qquad \mathbf{4}$$

Note that the MMF behaves as an optical filter having |H(f) = 1| at f = 0 and a cut-off frequency f_{cut} corresponding to the frequency which makes $|H(f) = \frac{1}{\sqrt{2}}|$.

NUCEJ vol.11,No.1,2008

Thus

$$\cos \pi \tau_{\text{int}} f_{cut} = \frac{1}{\sqrt{2}} \text{ or}$$
$$f_{cut} = \frac{\cos^{-1}(1/\sqrt{2})}{\pi \tau_{\text{int}}} = \frac{1}{4\tau_{\text{int}}}$$

Thus according to the model adopted here, the bandwidth of the MMF is equal to $1/4\tau_{int}$.

3. Simulation of optical OFDM system

The optical OFDM signal is generated for the simulation model (Fig. 2) as follows:

In the transmitter, an incoming binary data sequence from Bernoulli source is first encoded by (11/15) Reed Solomon (RS) encoder to reduce the probability of error at the receiver due to the optical channel effects. The data binary values are mapped to symbols, using Quaternary Phase Shift Keying (OPSK) or one of the M-ary Quadrature Amplitude Modulation (OAM) constellation formats, on a complex word consisting of a real and an imaginary parts. The so called Gray coding allocates the bits to the respective constellation points. Each subcarrier is assigned one baseband symbol to transmit with duration increasing proportionally to the bit interval. The training frame (pilot subcarriers frame contains 31 samples) is inserted and sent prior to information frame. This pilot frame is used later in the receiver to make channel estimation which is needed to compensate the effects of the channel on the transmitted signal. The complex words frame and pilots frame pass through an 64-bin Inverse Fast Fourier Transform (IFFT) stage to generate an OFDM symbol (i.e., this transform generates time domain waveform that is a superposition of all the modulated subcarriers). Zeros are then inserted in some bins of the IFFT in order to make the transmitted spectrum compacts and to reduce the Intercarrier Interference (ICI). The reason behind that is that the dominant portion of the transmission channel distortion usually located around the edge of a transmission band. The cyclic prefix is taken to be 40% of the IFFT size (26 samples are added), so that the relative delays between the received OFDM subcarriers (due to fiber dispersion) can be accommodated without destroying the orthogonality of the OFDM subcarriers. The OFDM symbol is converted from parallel to serial version by a Parallel-to-Serial (P/S) converter. The OFDM band is used to intensity modulate an optical carrier

(1550nm). In intensity modulation, the laser output power varies linearly with the modulating signal. The laser bias current I_{h} is chosen above laser threshold current I_{th} to ensure lasing in the absence of Radio Frequency (RF) modulating signal. Further, the minimum value of driving current $I_{driv}(t)$ must be greater than I_{th} to prevent clipping. The laser is assumed to have a linear powercurrent characteristic in the lasing regime to ensure negligible nonlinear distortion. The optical signal is transmitted over a MMF The intermodal channel. dispersion characteristics are governed by eqns. (1) and (4).

At the receiver, inverse operations to that of the transmitter are employed with additional training tasks, the received signal is converted to parallel version by Serial-to-Parallel (S/P) converter. The interfered cyclic prefix is then discarding. The FFT is used to transfer the signal back to the baseband frequency domain to recover the N_s modulation values of all

subcarriers where N_s is the number of OFDM

subcarriers. The MMF channel effects are compensated by using the received pilot symbols to estimate the channel frequency response. After channel compensation, the QPSK or M-ary QAM values are demapped into binary values. Finally, an RS decoder is used to decode the information bits.

4. Simulation results

This section presents simulation results to assess the performance of optical OFDMbased link incorporating a Multimode Fiber (MMF). Unless otherwise stated, the important parameters values used in the simulation are listed in Table 1. The values of the fiber parameters used here give a 10ns/km intermodal dispersion according to eq. (1). Such fiber can be used in conventional optical systems to carry a maximum bit rate of $1/4\tau_{int} = 25Mbps$

Table (1) Optical OFDM simulation parameters			
Parameter	Symbol	Value	
Data rate	R _b	1Gbps	
RS code rate	k / n	11/15	
Number of OFDM subcarriers	N _s	62	
OFDM symbol duration	Т	64 samples	
Guard interval period	T_g	26 samples	
Amplitude modulation index	K _m	0.1	
Wavelength	λ	1550nm	
Relative intensity noise	RIN	-140dB/Hz	
Fiber length	L	1km	
Core refractive index	<i>n</i> ₁	1.48	
Cladding refractive index	<i>n</i> ₂	1.477	
Absolute temperature	Т	300K	
Amplifier load resistance	R_L	50 Ω	
Amplifier noise figure	F _n	3dB	
Photodiode quantum efficiency	η	1	

4.1 Performance of 1km, 1Gbps Link

The performance of 1km, 1Gbps link incorporating optical OFDM scheme is simulated and the results are depicted in Figs. (3-5). Figure 3a shows the constellation diagram of the 16-QAM symbols used in the transmitter. Figures 3b and 3c show, respectively, the corresponding constellation diagrams in the receiver computed in the absence and presence of channel estimation. The results are displayed for Signal-to-Noise Ratio (SNR) = 20dB. Investigating the results in these figures highlights the following fact In the absence of channel estimation, the received constellation diagram is completely destroyed. Further, using the channel estimation scheme will enhance the quality of the received constellation diagram. The task of the channel estimation is to learn the reference phases and amplitudes for all subcarriers. A pilot symbol aided channel estimator has been used in the case of fading channels to compensate the ISI occurred due to fading effect.

Figures 4a and 4b show, respectively, the power spectra of the transmitted and received signals (baseband domain). The results are reported when a 16-QAM modulation scheme is adopted for mapping the binary data and assuming a bit $SNR \quad (E_b / N_o)$ equal to 20dB. Note that the spectrum of the transmitted signal is almost uniform and band limited to 0.5GHz which is equal to half the bit rate. However, the uniformity of the spectrum degrades due to the transmission over the

NUCEJ vol.11, No.1,2008

MMF. The reason behind this result is that the intermodal dispersion affects the orthogonality property of the OFDM subcarriers.

Figure 5a shows the eye diagram of the 16-QAM symbols used in the transmitter. Figures 5b and 5c show, respectively, the corresponding eye diagram in the receiver in the absence and presence of channel estimation when SNR = 20dB. Note that the eye diagram is almost closed in the absence of channel estimation. Employing the channel estimation opens the eye diagram and gives a lower level of Bit Error Rate (BER).

4.2 Effect of Coding

The performance of the optical OFDM system is investigated in the absence of coding. The results are obtained by running the MATLABsimulink model described in Fig. 2 without inserting the Reed Solomon (RS) encoder and decoder blocks in the transmitter and receiver, respectively. Figures 6a-6d show, respectively, a comparison among the BER characteristics of the coded and uncoded optical OFDM systems for QPSK, 16-QAM, 64-QAM and 256-QAM schemes. The results in these figures indicate clearly that BER reduces in the presence of coding and this effect is more pronounced as the *SNR* increases.

Table	2	SNR	gain	and	receiver	sensitivity
enhanc	em	ent int	roduce	ed by	coding for	or different
modula	atio	n schei	mes w	ith ()	RIN = -14	40 dB/Hz)

BED	SNR Gain (dB)			SNR Gain (dB) Enhancement (d			Sensitivit nent (dB	у))
DER	QPSK	16- QAM	64- QAM	256- QAM	QPSK	16- QAM	64- QAM	256- QAM
10 ⁻³	6.82	10.24	11.66	10.15	7.69	16.21	*	*
10-4	7.60	15.82	17.08	13.16	11.41	*	*	*
10 ⁻⁵	8.03	19.09	18.96	15.52	*	*	*	*

Table 2 summarizes the main conclusions drawn from Figs. 6a-6d and shows the *SNR* gain and receiver sensitivity enhancement introduced by coding for different modulation schemes when a semiconductor laser with Relative Intensity Noise (RIN) = -140dB/Hz is used.

The calculations in Table 2 are repeated in Table 3 when RIN = -160dB/Hz.

T enh mo	Solution	receiver sensitivity y coding for different (<i>RIN</i> = -160 dB/Hz)	
		Receiver Sensitivity	

סזס	SNR Gain (dB)			1	tecerver : Enhancer	sensitivit nent (dB	у)	
DEK	QPSK	16- QAM	64- QAM	256- QAM	QPSK	16- QAM	64- QAM	256- QAM
10 ⁻³	6.82	10.24	11.66	10.15	6.83	10.27	11.77	10.35
10-4	7.60	15.82	17.08	13.16	7.62	16.08	18.23	15.87
10 ⁻⁵	8.03	19.09	18.96	15.52	8.07	20.06	13.39	*
Note:	(*) d	lenotes	that	the ro	equire	d BEI	R can	not b

Investigating the results in Table 2 and Table 3 reveals the following facts

(i) The presence of coding enhances the receiver sensitivity by an amount approximately equal to code *SNR* gain.

(ii) The sensitivity enhancement increases with decreasing the level of BER.

(iii) The code SNR gain is independent on RIN while the receiver sensitivity enhancement increases with RIN.

4.3 Effect of Fiber length

The effect of fiber length on system performance is investigated and the results are presented in Figs. 7a-7d for QPSK, 16-QAM, 64-QAM, and 256-QAM, respectively. In these calculations, the fiber length is varied from 0 to 1500m which corresponds to an intermodal dispersion variation from 0 to 15ns. Then the BER is estimated as a function of fiber length L under the assumption of constant SNR (i.e., constant laser power P_h). In each part of Fig. 7, the SNR (and hence P_h) is chosen to yield a BER= 10^{-5} when L = 0 (i.e., absence of dispersion). Investigating the results in Fig. 7 reveals that the effect of OFDM is more pronounced as the intermodal dispersion increases.

This result is expected since the fading effect of the fiber increases with distance. Note that the OFDM scheme makes the BER approximately saturates as the fiber length increases. The oscillating behavior observed in the BER-length characteristic is due to the simplified model (two-path model) adopted for the MMF. For the fiber parameter values used here, the 1GHz-frequency component of the signal spectrum (for example) propagates along the fiber via two modes which combine constructively at the end of the fiber when L = 100m, 200m, 300m,.... (i.e., $\tau_{int} = 1ns$, 2ns, 3ns,....). For these values, the phase shift between the two propagating modes is equal to 2π, 4π, 6π,

4.4 Effect of Number of Fiber Propagation Modes

The results reported in the previous sections have been calculated under the assumption that the dispersion characteristics of the step-index MMF is dominated by two main propagating modes. These modes are the fastest (shortest-path) mode and the slowest (longest-path) mode. In practice, the MMF supports many propagating modes whose number M_o is governed by the following expression

$$M_o \cong V^2 / 2$$
 5

where V is the normalized cutoff frequency, the V parameter determines the number of modes supported by the fiber. To know the exact number of propagating modes along with their individual powers and propagation constants β (and hence their propagation velocities), Maxwell's equations must be solved in the core and cladding regions. The problem should be formulated in the cylindrical coordinates space and taking into account the boundary conditions at the core/cladding interface.

To get a simplified picture about the multimode propagation behavior of the stepindex MMF, we propose the model described in Fig. 8. The model assumes that the fiber supports M_o equipower modes. The difference in the propagation time between two successive modes is given by $\tau = \tau_{int} / (M_o - 1)$.

where $\tau_{\text{int}} = \frac{Ln_1}{c} \left(\frac{n_1}{n_2} - 1 \right) = \frac{Ln_1 \Delta}{c}$

represents the intermodal dispersion of the fiber.

The transfer function of the MMF is given by

$$H(f) = \frac{1}{M_o} \Big[1 + e^{-j2\pi\tau f} + e^{-j4\pi\tau f} + \dots + e^{-j2\pi(M_o)} \Big]$$
$$= \frac{1}{M_o} \sum_{m=0}^{M_o - 1} e^{-j2m\pi\tau f} \Big]$$
$$= \frac{1}{M_o} \frac{[1 - e^{-j2M_o\pi\tau f}]}{[1 - e^{-j2\pi\tau f}]}$$

The above results can be simplified to

$$H(f) = \frac{1}{M_o} \frac{\sin(M_o \pi \tau f)}{\sin(\pi \tau f)} e^{-j(M_o - 1)\pi \tau f}$$
 6a
Or
$$H(f) = \frac{1}{M_o} \frac{\sin\left(\frac{M_o}{M_o - 1}\pi \tau_{\text{int}}f\right)}{\sin\left(\frac{1}{M_o}\pi \tau_{\text{int}}f\right)} e^{-j\pi \tau_{\text{int}}f}$$
 6b

The derivation of eq. (6b) is one of the main results reported in this section.

Note that eqn. (6b) reduces to eq. (1) when $M_o = 2$. Further, when f approaches zero, then $\sin(M_o \pi \tau f) \cong M_o \pi \tau f$ and $\sin(\pi \tau f) \cong \pi \tau f$. This yields H(0) = 1 independent of the number of modes M_o .

To assess the effect of number of propagation modes on the BER characteristics, the optical OFDM system is simulated using a multipath model for the MMF as described by eqn. (6b). The results are tabulated in Table 4 -1)for different modulation schemes. In each scheme, the ratio E_b / N_o is chosen to yield a BER=10⁻² when the number of propagating modes $M_{o} = 2$. The calculations are repeated for a BER= 10^{-3} in Table 5. It is clear that increasing M_{a} beyond 2 may increase or decrease the level of BER. This results leads to the following conclusions "A comprehensive model must be used to calculate the multimode propagation characteristics of a MMF to get an accurate simulation results for an optical OFDM system incorporating this fiber".

Table (4) Effect of number of fiber propagatingmodes on BER characteristics of an OFDM systemassuming a BER= 10^{-2} when $M_o = 2$

		Bl	ER	
М	Q P SK <i>E_b / N_o</i> = 8.80dB (<i>P_b</i> = -37.05dBm)	$\frac{16\text{-QAM}}{E_b / N_o} = 10.76\text{dB}$ ($P_b = -35.05\text{dBm}$)	$64-QAM \\ E_b / N_o = 14.58 dB \\ (P_b = -31.08 dBm)$	256 -QAM <i>E_b /N_o</i> = 18.19dB (<i>P_b</i> = -27.11dBm)
б	1.385×10 ⁻³	5.325×10 ⁻²	1.189×10 ^{.1}	9.268×10 ^{.2}
11	9.455×104	1.509×10 ⁻²	1.469×10 ⁻²	3.139×10 ⁻²
21	1.068×10 ⁻²	6.916×10 ⁻³	2.865×10 ⁻²	5.039×10 ⁻²

Table (5) Effect of number of fiber propagating modes on BER characteristics of an OFDM system assuming a BER= 10^{-2} when $M_o = 2$

		BI	ER	
М	QPSK <i>E_b / N_o</i> = 13.59dB (<i>P_b</i> = -32.12dBm)	16-QAM <i>E_b / N_o</i> = 15.59dB (<i>P_b</i> = -29.99dBm)	64-QAM E _b /N _o = 19.64dB (P _b = -25.39dBm)	256-QAM <i>E_b / N_o</i> = 23.88dB (<i>P_b</i> = -19.12dBm)
6	3.273×10 ^{.5}	3.384×10 ⁻³	3.054×10 ^{.2}	1.307×10 ^{.2}
11	1.02×10 ^{.6}	4.32×10 ^{.4}	6.938×10 ^{.4}	2.029×10 ⁻³
21	1.018×10 ^{.4}	9.236×10 ^{.5}	2.209×10 ⁻³	4.505×10 ^{.3}

4.5 BER Performance in the Absence and Presence of MMF Channel

Figures 9 and 10 show the BER characteristics for four modulation schemes QPSK, 16-QAM, 64-QAM, and 256-QAM. The results in Fig. 9 are reported when the receiver is connected directly to the transmitter without using fiber (i.e., fiber length L = 0). The calculations are repeated in Fig. 10 when a

1km of fiber is used. For both cases, the QPSK scheme requires the lowest level of signal-tonoise ratio $SNR \equiv E_b / N_o$ to achieve a specific level of a BER compared with other modulation schemes. As the modulation level M increases, the required E_b / N_o increases too.

optica	absence and	presence	of fiber	dispersio	on	
	Modulation	Fiber l L :	Length = O	Fiber Length L = 1km		
BER	Scheme	E _b / N _o (dB)	P _b (dBm)	E _b / N _o (dB)	P _b (dBm)	
	QPSK	8.49	-37.36	13.59	-32.12	
103	16-QAM	11.00	-34.80	15.59	-29.99	
10*	64-QAM	15.34	-30.26	19.64	-25.39	
	256-QAM	20.16	-24.74	23.88	-19.12	
	QPSK	10.26	-35.56	17.38	-28.03	
104	16-QAM	12.39	-33.37	18.96	-26.21	
10*	64-QAM	17.11	-28.32	23.65	-19.56	
	256-QAM	21.85	-22.47	29.58	*	
	QPSK	11.33	-34.46	19.40	-25.68	
105	16-QAM	13.47	-32.25	20.99	-23.67	
10.	б4-QAM	18.31	-26.97	26.75	-6.46	
	256-QAM	23.15	-20.44	33.25	*	

Table (6) Dependence of BER on SNR and received

Table 6 summarizes the main results deduced from Figs. 9 and 10. The table lists the required E_b / N_o and the corresponding received optical power P_b to achieve specific levels of BER.

The power penalty due to the intermodal dispersion introduced by the 1km fiber is calculated for different levels of BER. The power penalty in decibels (dBs) is computed as

$$(\Delta P_b)_{dB} = (P_b)_{dB} - (P_{bo})_{dB}$$
 7

 $(P_b)_{dB}$ and $(P_{bo})_{dB}$ where are, respectively, the optical power in dBs required to achieve a specific level of BER in the presence and absence of dispersion. The power penalty is calculated using the results of Table 6 and the resultant values are listed in Table 7.

Investigating the results in Tables 6 and 7 reveals the following finding. The power penalty due to intermodal dispersion increases as the level of BER decreases and it depends on the used digital modulation scheme.

BER	Modulation Scheme	Power Penalty $(\Delta P_b)_{dB}$ (dB)
	QPSK	5.24
103	16-QAM	4.81
10,	64-QAM	4.87
	256-QAM	5.62
	QPSK	7.53
104	16-QAM	7.16
10*	64-QAM	8.76
	256-QAM	*
	QPSK	8.78
105	16-QAM	8.58
10,	64-QAM	20.51
	256-QAM	*

5. CONCLUSIONS

Comprehensive analysis and modeling have been reported for optical OFDM scheme adopted for communication system incorporating Multimode Fiber (MMF) link. The main conclusions drawn for this study are the power penalty due to intermodal dispersion increases as the level of BER decreases and it depends on the used digital subcarrier modulation The scheme. sensitivity enhancement increases with decreasing the level of BER. The code SNR gain is independent on RIN while the receiver sensitivity enhancement increases with RIN. The effect of OFDM is more pronounced as the intermodal dispersion increases. The QPSK scheme requires the lowest level of signal-tonoise ratio $SNR \equiv E_b / N_o$ to achieve a specific level of a BER compared with other

modulation schemes. As the modulation level M increases, the required E_b / N_o increases too. Finally, a comprehensive model must be used to calculate the multimode propagation characteristics of a MMF to get an accurate simulation results for an optical OFDM system incorporating this fiber.

6. REFRENCES

- [1] I. B. Djordjevic and B. Vasic, "Orthogonal frequency division multiplexing for high-speed optical transmission," Opt. Express, Vol. 14, No. 9, PP. 3767-3775, May 2006.
- [2] S. Bottacchi, "Multi-gigabit transmission over multimode optical fiber," John Wiley & Sons, England, 2006.
- [3] Y. Tang, K. Ho, and W. Shieh, "Coherent optical OFDM transmitter design employing predistortion," IEEE Photonics Technology Letters, Vol. 20, No. 11, PP. 954-956, June 1, 2008.
- [4] J. B. Song, and A. H. M. R. Islam, "Distortion of OFDM signals on radio-overfiber links integrated with an RF amplifier and active/passive electroabsorption modulators," J. Lightwave Technology, Vol. 26, No. 5, PP. 467-477, March 1, 2008.
- [5] A. J. Lowery, "Amplified-spontaneous noise limit of optical OFDM lightwave systems," Opt. Express, Vol. 16, PP. 860-865, 2008.
- [6] X. Yi, W. Shieh, and Y. Ma, "Phase noise effects on high spectral efficiency coherent optical OFDM transmission," J. Lightwave Technology, Vol. 26, No. 10, PP. 1309-1316, March 15, 2008.
- [7] E, Giacoumidis, J. L. Wei, X. Q. Jin, and J. M. Tang, "Improved transmission performance of adaptively modulated optical OFDM signals over directly modulated DFB laser-based IMDD links using adaptive cyclic prefix," Opt. Express, Vol. 16, No. 13, PP. 9480-9494, June, 2008.

تقييم أداء منظومة أتصالات الألياف البصريه متعددة النمط المعتمده

على طريقة تضمين تقسيم التردد المتعامد

رعد سامي فياض الهدى عبد الحسين المفرجي استاذ مدرس مساعد قسم هندسة الليزر و الألكترونيات البصريه/ جامعة النهرين النهرين

الخلاصه

أن التقييد الأكثر تأثيراً لأرسال البيانات (المعلومات) في الألياف البصريه متعددة النمط (MMF) هو التشتت النمطي بسبب ان سرعة الأنتشار لكل نمط موجه تكون مختلفه. يتبنى هذا البحث مخطط تضمين تقسيم التردد المتعامد (OFDM) البصري للحد من التشتت النمطي و لتحسين حاصل ضرب الطول و عرض النطاق الترددي للألياف متعددة النمط (MMF).يستند مخطط تضمين تقسيم التردد المتعامد (OFDM) البصري المتبنى في هذا البحث على معاملة تلاشي الأشاره بسبب التشتت النمطي في الألياف متعددة النمط بطريقه مماثله للتشتت الذي تسببه ظاهرة تعدد المسارات في القنوات اللاسلكيه. أن نموذج Simulink المنظومة تضمين تقسيم التردد المتعامد البصري تطور باستعمال BER قدمت نتائج التمثيل لوصله 1Gbps ، تعمل مع مختلف مخططات تضمين الناقل الثانوي الرقميه لتقييم تأثير مختلف المعالم على أداء النظام. تشير النتائج التي تم الحصول عليها بشكل واضح بأن التمثيل محتلف المعالم على أداء النظام. تشير النتائج التي تم الحصول عليها بشكل واضح بأن و EER=10⁻⁵ (160ps) ليزر ومخطط تضمين الناقل الثانوي (1000) تعمل مع -, This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.