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The timing of leaf unfolding in temperate woody species is predominantly controlled by
the seasonal course of temperature in late winter and early spring. However, quantifying
lagged temperature effects on spring phenology is still challenging. Here, we aimed at
investigating lagged and potentially non-linear effects of daily maximum temperatures
on the probability of leaf unfolding in temperate woody species growing across large
elevational gradients. We analyzed 5280 observations of leaf-out time of four tree
species (European beech, horse chestnut, European larch, Norway spruce) and one
shrub species (common hazel) that were recorded by volunteers over 40 years at 42
locations in Switzerland. We used a case-crossover sampling design to match leaf-
out dates with control dates (i.e., dates before or after leaf-out), and analyzed these
data with conditional logistic regression accounting for lagged temperature effects over
60 days. Multivariate meta-analyses were used to synthesize lagged temperature and
elevational effects on leaf unfolding across multiple phenological stations. Temperature
effects on the probability of leaf unfolding were largest at relatively short lags (i.e.,
within ca. 10 days) and decreased with increasing lags. Short- to mid-term effects (i.e.,
within ca. 10 to 20 days) were larger for late-leafing species known to be photoperiod-
sensitive (beech, Norway spruce). Temperature effects increased for the broadleaved
species (horse chestnut, hazel, beech) with decreasing elevation, particularly within ca.
10 to 40 days, i.e., leaf unfolding occurs more rapidly at low elevations for a given
daily maximum temperature. Our novel findings provide evidence of cumulative and
long-term temperature effects on leaf unfolding, whereby the efficiency of relatively
high temperatures to trigger leaf-out becomes higher shortly before bud burst. These
lagged associations between temperature and leaf unfolding improve our understanding
of phenological responses across temperate woody species with differing ecological
requirements that occur along elevational gradients.

Keywords: phenology, conifers, broadleaved species, maximum temperature, distributed lag models, lag effects,
multivariate meta-analysis, elevation
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INTRODUCTION

In temperate ecosystems, recurring biological phenomena are
predominantly controlled by the cyclic, seasonal course of
weather conditions (Forrest and Miller-Rushing, 2010; Schwartz,
2013). For example, temperature is a key environmental driver
of the timing of trees’ spring phenophases such as leaf unfolding
or flowering (Chuine, 2000; Polgar and Primack, 2011), with
photoperiod playing an additional role for some species (Basler
and Körner, 2012; Way and Montgomery, 2015). The strong
dependency of phenological processes on temperature is further
reflected in the phenological shift of trees’ leaf-out time along
elevational gradients where temperature varies strongly over
short distances (Vitasse et al., 2009; Bigler and Bugmann, 2018;
Vitasse et al., 2018).

Leaf-out is typically observed when relatively warm spring
temperatures prevail for a certain time. While one or a few
warm days in late winter or early spring do not immediately
result in leaf unfolding, a series of warm days in late spring
may lead to premature leaf-out. Thus, the processes that
ultimately induce leaf unfolding have already started several
weeks or months before. Prior to leaf-out, vegetative buds
of temperate woody species undergo a period of dormancy
during which visible growth of buds is temporary suspended
(Lang et al., 1987). Bud dormancy has been commonly divided
into three physiological phases (Lang et al., 1987; Horvath
et al., 2003): First, paradormancy from summer to early fall,
which is imposed by distal hormonal control from outside
the buds but within the plant (Cline and Deppong, 1999).
Second, endodormancy from early fall to mid-winter, which is
induced by chilling temperatures and shorter days and further
regulated by physiological mechanisms occurring within the buds
(Horvath et al., 2003). Endodormancy is released by exposure
to cool temperatures in mid-winter (“chilling” temperatures
between ca. 0 to 10◦C; Polgar and Primack, 2011; Hänninen,
2016), and for some species photoperiod may also play a role
(Caffarra et al., 2011a,b). Third, unfavorable environmental
conditions (e.g., low temperatures, short days or drought) during
ecodormancy prevent the buds from leafing out, until warm
temperatures (“forcing” temperatures above ca. 5◦C; Chuine,
2000; Polgar and Primack, 2011) and increasing day length in
early spring induce bud burst and leaf unfolding. Chilling and
forcing temperatures are assumed to be negatively related, i.e.,
a longer period of chilling requires a shorter period of forcing
until bud break occurs (Murray et al., 1989; Laube et al., 2014).
A longer photoperiod further increases the sensitivity of buds to
forcing temperatures for some species such as European beech
(Basler and Körner, 2014). Formulating and testing hypotheses
about potential temperature effects on leaf unfolding remains
challenging due to (1) the contrasting effects of chilling and
forcing on bud development (Cannell and Smith, 1983; Murray
et al., 1989), (2) the loosely defined ranges of chilling and forcing
temperatures (Chuine, 2000; Luedeling et al., 2013; Delpierre
et al., 2016), (3) the gradual transitions between or the overlap of
the three dormancy phases (Cooke et al., 2012), (4) the relative
importance of photoperiod versus temperature (Chuine et al.,
2010; Körner and Basler, 2010; Vitasse and Basler, 2013), and (5)

the correlation between temperature and photoperiod due to the
similar seasonal course.

Because weather conditions in spring can drastically change
from year to year (Körner and Basler, 2010; Vitasse et al., 2014b),
dates of leaf unfolding may differ by one or even 2 months at
the same site (Sparks and Carey, 1995; Lenz et al., 2016). Leaf
unfolding is further known to be delayed at higher elevations
(Vitasse et al., 2018), where it occurs after less accumulated
warmth compared to lower elevations (Güsewell et al., 2017).
To improve our understanding of leaf phenological processes,
we would actually require to link continuous measurements of
the development, growth or physiological activity of vegetative
buds from bud set in summer to bud burst in spring with high-
resolution weather data (Cooke et al., 2012). However, molecular
or physiological changes that would reflect transient phases
during bud dormancy remain to be found. Furthermore, long-
term measurements of leaf phenology are typically restricted to
observed dates of bud burst or leaf unfolding only. Thus, relating
these phenological events to the driving forces such as lagged
temperature effects is notoriously challenging.

A large range of statistical phenology models have been
developed to predict the leaf-out time of forest trees in response
to weather variability (Hänninen, 2016). The simplest statistical
approach uses a linear model to relate the time of leaf unfolding
(e.g., day of year) to some aggregated measure of temperature
(e.g., growing degree days, mean temperature in late winter and
spring, or monthly temperature variables; Sparks and Carey,
1995; Menzel et al., 2006; Ibáñez et al., 2010; Roberts, 2012).
A drawback of this approach is that the period needs to be fixed
over which monthly or seasonal weather variables are considered.
Because the leaf-out time varies in response to the year-to-
year changes of temperature and along elevation (Güsewell
et al., 2017), fixed periods are likely to increase uncertainty in
these models or may induce artifacts, e.g., if weather conditions
following mean leaf unfolding dates are considered that turn out
to have significant influences in specific years only. Unlike these
linear models that include relatively coarse weather variables
as predictors, more complex statistical approaches have been
devised that rely on daily weather data such as (i) partial least
squares regression (Roberts, 2008; Luedeling and Gassner, 2012);
(ii) penalized signal regression (Roberts, 2008; Hudson, 2010;
Roberts et al., 2015); or (iii) hierarchical state-space models
(Clark et al., 2014a,b). Although these statistical models consider
temperature data prior to leaf unfolding, they do not explicitly
model lagged temperature effects, which may yet improve our
understanding of how temperature regulates leaf unfolding
(Hudson, 2010).

In addition to statistical phenology models, many process-
based models have been proposed to predict spring phenology
based on the hypothetical processes occurring during the endo-
and ecodormancy (Chuine et al., 2013; Basler, 2016; Hänninen,
2016). These models may be classified as whether they account for
(i) forcing temperature in spring only; (ii) chilling temperature
during winter and forcing temperature in spring; or (iii)
additionally photoperiod as an interacting factor during both the
endodormancy and ecodormancy phases. These process-based
models do not explicitly account for lagged daily weather effects,
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but rather integrate daily or hourly temperatures over a defined
period. Besides, simpler process-based models often perform as
well as or even outperform more complex models that require
more parameters and are therefore often overparameterized,
reflecting the poor understanding of the processes regulating
spring phenology (Linkosalo et al., 2008; Vitasse et al., 2011; Clark
et al., 2014b; Olsson and Jönsson, 2014; Basler, 2016).

The goal of this study was to investigate lagged and
potentially non-linear effects of daily maximum temperature
on the probability of leaf unfolding in temperate woody
species along large elevational gradients. Although most of the
phenological models have used daily mean temperature, here we
used maximum temperature, because (i) daytime temperature
seems to exert stronger effects on leaf unfolding than nighttime
temperature (Fu et al., 2016) and (ii) we expect stronger lag effects
of temperature beyond specific thresholds. The investigated tree
and shrub species included early- to late-leafing species as well as
photoperiod-sensitive and -insensitive species. We addressed the
following research questions:

(1) For how long do daily maximum temperatures of
varying intensity affect leaf unfolding? We expect
longer-term effects of cooler temperatures due to lower
development rates of buds, but more immediate effects of
warmer temperatures.

(2) Do species differ with respect to the lagged associations
between temperature and leaf unfolding? We expect
stronger effects of temperature in late-leafing species,
because leaf-out tends to occur at higher temperatures.

(3) Does the lagged association between temperature and leaf
unfolding change along elevation? We expect stronger
effects of higher temperatures at lower elevations, as chilling
requirements to break endodormancy may not always be
fulfilled due to the warmer conditions.

MATERIALS AND METHODS

Phenological Data
We used phenological observations of five tree and shrub
species that were available from the phenological network
of MeteoSwiss, the Swiss Federal Office of Meteorology
and Climatology (Defila and Clot, 2001). We considered
both broadleaved species (European beech, Fagus sylvatica L.;
horse chestnut, Aesculus hippocastanum L.; common hazel,
Corylus avellana L.) and conifer species (European larch,
Larix decidua Mill.; Norway spruce, Picea abies (L.) H.
Karst). The set of species ranges from early-leafing species
with high frost resistance during leaf unfolding (larch, horse
chestnut, hazel), to beech as an intermediate-leafing species
with intermediate frost resistance and Norway spruce as a
late-leafing species with low frost resistance (Lenz et al.,
2013; Vitasse et al., 2014a; Bigler and Bugmann, 2018). While
larch, horse chestnut and hazel rely mainly on temperature
as a trigger of leaf unfolding, beech and Norway spruce
rely on both temperature and photoperiod (Heide, 1993;
Basler and Körner, 2012).

We included only phenological series without missing
observations of leaf unfolding from 1972 to 2011 (i.e., 40 years of
data; Supplementary Table S1 and Supplementary Figure S1).
Phenological observations were conducted weekly by one
voluntary observer per station, applying the same protocol for
phenology monitoring across stations. The date of leaf unfolding
was recorded when approximately 50% of the leaves of one
or several trees or shrubs were unfolded, i.e., the leaf surface
and leaf base is visible in broadleaved species, or the young
needle bundles start to open and spread in conifer species.
The dataset included 5280 observed dates of leaf unfolding
from 42 phenological stations (beech: 26 stations; hazel: 23
stations; horse chestnut: 29 stations; larch: 35 stations; Norway
spruce: 19 stations; Supplementary Table S1). The data had
been checked for plausibility and consistency in a previous study
(Bigler and Bugmann, 2018). All five species were observed
jointly at five stations, four species at fourteen stations, three
species at nine stations, two species at ten stations, and at
four stations only one species was observed (Supplementary
Table S1). The stations were distributed across Switzerland
covering a perimeter of 12896 km2 and an elevational range
from 200 to 1800 m a.s.l. (beech: 200 to 1240 m a.s.l.; hazel:
350 to 1120 m a.s.l.; horse chestnut: 200 to 1120 m a.s.l.;
larch: 200 to 1800 m a.s.l.; Norway spruce: 200 to 1800 m
a.s.l.; Supplementary Table S1). The climate regimes included
mean annual temperature ranges from 2.9 to 12.4◦C, and annual
precipitation ranges from 751 to 1960 mm.

Weather Data
We used spatially interpolated daily temperature data
from 1 January 1972 to 31 December 2011 (i.e., 14610
values) at each of the 42 phenological stations. We selected
daily maximum temperature Tmax as predictor variable
(Supplementary Figure S1), because leaf unfolding responds
more to daytime temperature than to nighttime temperature
(Hanes, 2014; Piao et al., 2015; Fu et al., 2016). However,
because daily mean temperature generally provides more
accurate phenological predictions when using process-
based models, we have also tested daily mean temperature
(Tmean) as predictor variable to check the consistency of
the resulting patterns. The daily temperature data were
available for a grid of 100 m resolution across Switzerland,
and were derived using the DAYMET interpolation algorithm
(Thornton et al., 1997) applied to measured weather data
from MeteoSwiss climate stations and a digital elevation
model. The interpolated temperature data were provided
by the Landscape Dynamics group at the Swiss Federal
Research Institute WSL (Birmensdorf, Switzerland). For
each phenological station, we averaged Tmax (Tmean) of the
nearest grid cell and the surrounding eight neighboring
cells to get robust estimates of Tmax (Tmean). Although
the locations of the observed trees and shrubs may differ
from the coordinates of the phenological stations by several
hundreds of meters or in some cases even by several kilometers,
we assumed that the interpolated temperature data still
reflect relatively accurately the weather conditions of the
trees and shrubs.

Frontiers in Plant Science | www.frontiersin.org 3 March 2019 | Volume 10 | Article 398

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00398 March 26, 2019 Time: 18:46 # 4

Bigler and Vitasse Temperature Effects on Leaf Unfolding

Data Analysis
Rather than predicting leaf-out dates, we quantified the
probability of leaf unfolding to occur under specific weather
conditions. To quantify lagged temperature effects on leaf
unfolding, we combined several statistical methods that are
common in environmental epidemiology (Schwartz, 2000; Nitta
et al., 2010; Gasparrini and Armstrong, 2013) but that have not
been used in phenological studies (Hudson, 2010). We used the
following approaches (see below for further details): (1) a case-
crossover design to compare Tmax during case days (i.e., dates
when leaf unfolding was observed) with control days (i.e., dates
before or after leaf unfolding), accounting for lagged temperature
effects up to 60 days before each case and control (Figure 1); (2)
a conditional logistic regression to predict for each species and
phenological station the effect of Tmax on the probability of leaf
unfolding, which extends the logistic regression by accounting
for stratified data (i.e., sets of cases and controls); and (3)
multivariate meta-analyses to synthesize associations between
Tmax and leaf unfolding across multiple phenological stations.
The same approaches were used to analyze the data also based on
Tmean, which provided qualitatively similar results as with Tmax
as predictor variable (see Supplementary Figures S2, S3).

Time-Stratified Case-Crossover Design
Case-crossover designs allow to compare environmental
conditions during case days (i.e., dates when the phenological
event occurred) that are matched to one or several control
days (Maclure, 1991). This sampling design constitutes a
self-matching of each phenological station and thus controls

for time-invariant or only slowly time-varying confounders
such as topography, vegetation etc. Several strategies have
been proposed to match cases to controls. We selected the
time-stratified case-crossover design (Lumley and Levy, 2000),
i.e., each case (date of leaf unfolding) was matched to controls
of the same year, month and weekday (Figure 1). Each set
of 1 case and 3 to 4 controls is considered a stratum. The
gaps of 6 days between case and control days (see Figure 1)
reduce serial autocorrelation (Janes et al., 2005a). By restricting
the controls to the same month as the case, only periods are
considered when leaf unfolding of vegetative buds may actually
be observed. The time-stratified case-crossover design further
controls for potential bias due to seasonal and long-term
changes in Tmax (Janes et al., 2005a), which ensures unbiased
parameter estimates in conditional logistic regression (see
below). Sampling of control days only before rare or non-
recurrent events such as leaf unfolding would result in biased
parameter estimates (Janes et al., 2005b). The dataset across
all species and the entire 40-year period included 5280 cases
and 17931 controls (beech: 1040 cases, 3563 controls; hazel:
920 cases, 3113 controls; horse chestnut: 1160 cases, 3921
controls; larch: 1400 cases, 4726 controls; Norway spruce: 760
cases, 2608 controls).

Conditional Logistic Regression
Matched data from time-stratified case-crossover designs
are commonly analyzed using conditional logistic regression
(Breslow et al., 1978), which accounts for the non-independence
of the stratified data. The probability of observing a case in

FIGURE 1 | Visualization of the time-stratified case-crossover design. The example shows the observed leaf-out time of beech at the phenological station Liestal
(350 m a.s.l.; Supplementary Table S1) in Switzerland and Tmax (maximum temperature) from July 2006 until end of June 2007. The red dot indicates the case
(date of leaf unfolding: 17 April 2007), the black dots indicate the controls (dates before or after leaf unfolding: 3 April 2007, 10 April 2007, and 24 April 2007). The
arrows indicate the 60-day lags that are considered in the distributed lag models. April 2007 is delimited by a white shaded box.

Frontiers in Plant Science | www.frontiersin.org 4 March 2019 | Volume 10 | Article 398

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00398 March 26, 2019 Time: 18:46 # 5

Bigler and Vitasse Temperature Effects on Leaf Unfolding

stratum k (πk) may be defined as a stratum-specific logistic
regression (Breslow et al., 1978; Hosmer et al., 2013):

πk
(
y = 1 | x

)
=

eαk+βx

1+ eαk+βx (1)

where y is the dependent variable (y = 1: case, i.e., leaf unfolding
occurs; y = 0: control, i.e., leaf unfolding does not occur), x is
the predictor variable (e.g., Tmax or a function of Tmax), αk is
a stratum-specific constant, and β is the coefficient for variable
x, which is estimated across all strata. In this study, the strata
k correspond to the years during the observation period (i.e.,
k = 1972, . . ., 2011). Equation 1 may be rewritten as log-odds:

log
πk
(
y = 1 | x

)
1− πk

(
y = 1 | x

) = αk + βx (2)

Thus, a unit increase in variable x changes the log-odds by β.
Equation 2 contains no intercept, but a stratum-specific constant
αk, which cancels out in the conditional likelihood.

The effect of x on the probability of observing a case is typically
expressed as odds ratio, i.e., the ratio between the odds of a value
x1 and the odds of a reference value x0:

odds ratio =
πk
(
y = 1 | x1

)
/
(
1− πk

(
y = 1 | x1

))
πk
(
y = 1 | x0

)
/
(
1− πk

(
y = 1 | x0

)) = eβ(x1−x0)

(3)
We used the statistical computing software R (R Core Team,
2018), version 3.5.1, to fit conditional logistic regression models
(function “clogit” in the package “survival,” version 2.42-4).
We selected an exact calculation method to maximize the
conditional likelihood.

Distributed Lag Models
We expanded the conditional logistic regression (eq. 2) to
account for lagged effects of Tmax on leaf unfolding. In particular,
we fitted distributed lag non-linear models (DLNMs) to the
data, which allow for flexible and delayed associations between a
response variable and a predictor variable along time (Gasparrini
et al., 2010). The DLNM was defined as follows:

log
πk
(
y = 1 | xt, . . . , xt−l, . . . , xt−L

)
1− πk

(
y = 1 | xt, . . . , xt−l, . . . , xt−L

) = (4)

αk + s
(
xt, . . . , xt−l, . . . , xt−L; η

)
where the smoothing function s(. . .) was represented by a bi-
dimensional natural spline for the predictor variable xt (here
Tmax) at day t and lag days l (l = 0, . . ., L) and a vector of
coefficients η (Gasparrini et al., 2010). We used natural cubic
spline functions with two interior knots for both the predictor
variable Tmax and the lag dimension. Tmax was restricted to the
interval [0◦C, 25◦C] to prevent artifacts that may have occurred
at particularly warm or cool stations due to extrapolations of
temperature beyond the range of observed values. The maximum
lag L was set at 60 days (Figure 1) based on findings in previous
studies (Fu et al., 2015; Vitasse et al., 2018). The interior knots
were selected to evenly split the range of Tmax (knots at 8.3

and 16.7◦C) and lag dimension (knots at 20 and 40 days) into
three intervals. We calculated predictor-specific summaries at
Tmax of 5, 10, 15, and 20◦C. Odds ratios (eq. 3) were calculated
with respect to the reference value 0◦C. Thus, we predicted odds
ratios for lags from 0 to 60 days with Tmax set to 5, 10, 15 and
20◦C. We refer to Figure 2 for an illustrative example. Because
odds ratios not only depend on the estimated model coefficients
but also on the difference between Tmax and the reference value
of 0◦C (eqs. 3 and 4), comparisons of the odds ratios are only
valid across species, lags and elevations, but not across different
values of Tmax. However, significance of the odds ratios may be
compared at different values of Tmax. We used the R packages
“dlnm” (Gasparrini, 2011), version 2.3.4, and “splines,” version
3.5.1, to calculate the DLNMs.

Multivariate Meta-Analyses
A multivariate meta-analysis combines estimates of several
parameters (e.g., coefficients from a regression model) across
models from several sites, which allows to estimate average
parameters. We used multivariate meta-analyses to synthesize
lagged effects of Tmax on leaf unfolding across multiple
phenological stations (Jackson et al., 2011; Gasparrini et al.,
2012). Multivariate meta-analysis allows to (i) pool estimates
of multi-parameter associations and quantify between-station
variability, and (ii) consider meta-variables that vary across

FIGURE 2 | Visualization of a DLNM (distributed lag non-linear model). The
example shows the odds ratio of beech at the phenological station Liestal
(350 m a.s.l.; Supplementary Table S1) in Switzerland along Tmax (maximum
temperature) and lag dimension. A conditional logistic regression model was
fitted to time-stratified case-crossover data (Figure 1) from 1972 to 2011. The
odds ratios are interpreted as the ratio between the odds of a specific Tmax at
a specific lag compared to the odds of the reference Tmax (0◦C) at the same
lag (eq. 3). The red line indicates the odds ratio along Tmax at a lag of 0 days,
the orange lines indicate the odds ratios along the lag dimension at Tmax of
0◦C (odds ratio = 1), 5◦C, 10◦C, 15◦C, 20◦C, and 25◦C.
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stations. Based on the estimated coefficients η̂i (eq. 4)
and the corresponding variance-covariance matrix Ŝi from
each phenological station i, random-effects multivariate meta-
analyses were conducted (Gasparrini and Armstrong, 2013). We
further included elevation as a meta-variable in random-effects
multivariate meta-regression models (Gasparrini and Armstrong,
2013). The models were fitted to the data using restricted
maximum likelihood from the R package “mvmeta,” version
0.4.11 (Gasparrini et al., 2012).

RESULTS

Leaf unfolding was observed when relatively high daily maximum
temperatures (Tmax) prevailed, which increased from early- to
late-leafing species (Figure 3 and Supplementary Figure S1):
larch, 14.6± 4.7◦C (mean± standard deviation); horse chestnut,
15.0 ± 4.9◦C; hazel, 15.1 ± 5.0◦C; beech, 16.3 ± 4.9◦C;
Norway spruce, 17.0 ± 4.6◦C (species ordered from early-
to late-leafing; Bigler and Bugmann, 2018). However, in some
cases, leaf unfolding was recorded at low temperatures with
Tmax ≤ 5◦C (Figure 3): larch, 2.43% of all observations;
horse chestnut, 2.50%; hazel, 2.50%; beech, 1.63%; Norway
spruce, 0.26%. The expected Tmax during the day of observed
leaf unfolding decreased with increasing elevation for all
species (Figure 3): larch, −0.22◦C/100 m; horse chestnut,
−0.41◦C/100 m; hazel, −0.27◦C/100 m; beech, −0.38◦C/100 m;
Norway spruce,−0.25◦C/100 m. Because the distribution of daily
Tmax during the day of leaf unfolding does not provide a proper
account of temperature effects on leaf unfolding, we need to
investigate the temperature profiles before leaf unfolding, which
will be considered in the following analyses.

For each species and station, we fitted a conditional logistic
regression model with distributed lags (eq. 4) to the time-
stratified data over the entire 40-year period (see Figure 2 for an
example). The species-specific summaries of the odds ratios (eq.
3) for specific values of Tmax (5, 10, 15, and 20◦C) along the lag
dimension are shown in Figure 4. At relatively short lags (0 to ca.
10 days), the odds ratios of most phenological stations were larger
than 1, which tended to increase with decreasing elevation for
some species (e.g., beech). The odds ratios of many phenological
stations decreased with increasing lag (Figure 4), thus, the short-
term (0 to ca. 10 days) effects of Tmax ≥ 5◦C on the probability of
leaf unfolding were higher compared to the reference Tmax of 0◦C
than the longer-term effects. At longer lags (ca. 50 to 60 days), the
odds ratios were distributed around 1 when Tmax was 5 or 10◦C.
Particularly for warmer temperatures (Tmax of 15 and 20◦C),
the odds ratios dropped below 1 at longer lags for quite many
stations, i.e., the probability of observing leaf unfolding 50 to
60 days following a warm day was lower than at 0◦C. Such effects
may occur, when leaf unfolding has already occurred (Figure 1
and Supplementary Figure S1). Overall, there was a relatively
large variability among stations regarding the lagged association
between Tmax and leaf unfolding (Figure 4).

Based on the multivariate meta-analyses, the pooled estimates
and 95% confidence intervals of the odds ratios provide a general
overview on the change of the odds ratios and their significance

with increasing lags (Figure 4). The early-leafing species (larch,
horse chestnut, hazel) showed quite a similar pattern, i.e., short-
(0 to ca. 10 days) to long-term effects (ca. 50 to 60 days)
with significant odds ratios >1 were detected at Tmax of 5 and
10◦C, whereas short-term effects dominated at 20◦C. For the
later-leafing species beech and Norway spruce, the pooled odds
ratios at short lags (0 to ca. 10 days) were larger than for the
early-leafing species, but also suggest a higher variability among
stations as indicated by the relatively wide confidence intervals
(Figure 4). Larger odds ratios translate into more rapid leaf
unfolding under identical temperatures. For example, the pooled
odds ratio at Tmax of 15◦C and at a lag of 0 days (Figure 4)
increased from hazel (1.6), larch (1.7), horse chestnut (2.1),
beech (3.8) to Norway spruce (4.2), i.e., leaf unfolding of beech
and Norway spruce occurs more rapidly than for hazel, larch
and horse chestnut at this temperature. The pooled estimates
based on the multivariate meta-analyses using Tmean resulted in
qualitatively similar results (Supplementary Figure S2), though
the odds ratios at short lags (0 to ca. 10 days) were a bit lower than
for Tmax.

The pooled odds ratios based on the multivariate meta-
regression models showed distinct and significant effects along
elevation (Figure 5). Particularly the broadleaved species (horse
chestnut, hazel, beech) showed consistent elevational effects
within ca. 10 to 60 days, i.e., odds ratios generally decreased
from low elevation (300 m a.s.l.) to mid elevation (700 m
a.s.l.) and high elevation (1100 m a.s.l.), which translates into
more rapid leaf unfolding at lower elevations under identical
temperatures. For example, the pooled odds ratio for beech
at Tmax of 15◦C and at a lag of 0 days is 5.5 at 300 m
a.s.l. and 2.8 at 1100 m a.s.l. (Figure 5), i.e., leaf unfolding of
beech occurs more rapidly at lower elevations than at higher
elevations at this temperature. The pooled estimates based on the
multivariate meta-regressions using Tmean also resulted in similar
results (Supplementary Figure S3), but with slightly lower odds
ratios at short lags and generally wider 95% confidence intervals
compared to Tmax.

DISCUSSION

Long-term series of observed leaf-out timings from conifers and
broadleaved species provide evidence of species- and elevation-
specific responses to temperature. The time-stratified case-
crossover design combined with the statistical framework proved
to be a suitable approach to (i) describe simultaneously the
non-linear and delayed dependencies of leaf unfolding on daily
temperature, and (ii) synthesize lagged associations between
temperature and leaf unfolding across multiple phenological
stations. We detected a decline in the lagged effects of varying
maximum temperature (Tmax) on leaf unfolding. Thus, the
strongest effects of Tmax on the development of vegetative
buds are expected within a few days, while lagged effects
after ca. 30 days tend to fade out. Beech and Norway
spruce, which are both sensitive to photoperiod and tend
to leaf-out late, showed stronger short-term effects of Tmax
on leaf unfolding than larch, horse chestnut and hazel.
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FIGURE 3 | Change of Tmax (maximum temperature) during the day of leaf unfolding with increasing elevation for larch, horse chestnut, hazel, beech, and Norway
spruce. The species are ordered from early-leafing (top) to late-leafing (bottom). The blue lines indicate the regression lines based on the linear models.
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FIGURE 4 | Summaries of DLNMs (distributed lag non-linear models) based on conditional logistic regression for larch, horse chestnut, hazel, beech, and Norway
spruce. The odds ratios along the lag dimension are shown for Tmax of 5◦C, 10◦C, 15◦C, and 20◦C. The species are ordered from early- to late-leafing species (left
to right). The station-specific odds ratios are represented by the dark-blue lines (low-elevation stations) to light-blue lines (high-elevation stations). For sake of clarity,
no confidence intervals are shown for the station-specific odds ratios. The red lines are the pooled estimates of the odds ratios (including 95% confidence intervals)
from the multivariate meta-analysis. An inverse hyperbolic sine transformation has been applied to the y-axis to increase the visibility of smaller values.

Broadleaved species (horse chestnut, hazel, beech) showed a
stronger short-term response to Tmax at low elevations than at
higher elevations.

Lagged Effects of Temperature on Leaf
Unfolding
We established lagged and non-linear effects of Tmax on the
probability of leaf unfolding. Temperature effects decrease with
increasing lags as demonstrated by the pooled odds ratios of
the multivariate meta-analyses (Figure 4). Thus, immediate
temperature effects within ca. 10 days are more likely to induce
leaf unfolding than lagged effects after ca. 30 days or more.
Lower Tmax (5 and 10◦C) tends to stimulate leaf unfolding
even at longer lags (i.e., after more than ca. 30 days). In
contrast at Tmax of 20◦C this is the case only at relatively
short lags and after more than ca. 10 days even turns into
a lower odds compared to the reference Tmax of 0◦C. The
latter effect is known as “harvesting” (Gasparrini et al., 2010).
In other words, odds ratios decrease for events such as leaf-
out dates after the event has occurred, because they occur
only once per year.

Despite these relatively distinct effects of pooled odds ratios,
we observed quite a high variability of lagged associations
between Tmax and leaf unfolding among phenological stations
(Figure 4). Several reasons are likely to account for this
heterogeneity: (1) Environmental conditions at the phenological
stations do not only differ in terms of Tmax, but also with respect
to further influences such as precipitation, radiation, topography
or species composition, which may affect microclimate and site
conditions as perceived by the trees. (2) The observed trees of
the phenological network differ in terms of tree height, diameter,
age, genetic status, social position within the forest stand, and
the surrounding forest structure (e.g., forest edge vs. interior
stand). For example ontogenetic differences between adult trees
and seedlings may substantially affect the timing of leaf unfolding
in broadleaved trees (Vitasse, 2013). (3) The true positions
of the observed trees may differ from the coordinates of the
phenological stations, i.e., the interpolated weather data do not
fully represent the conditions experienced by the trees. (4) There
might be an observer bias, because phenological observers may
slightly differ in their assessment of the timing of leaf unfolding
(Bison et al., 2018; Güsewell et al., 2018). Overall, however, there
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FIGURE 5 | Summaries of DLNMs (distributed lag non-linear models) based on conditional logistic regression for larch, horse chestnut, hazel, beech, and Norway
spruce. The odds ratios along the lag dimension are shown for Tmax of 5◦C, 10◦C, 15◦C, and 20◦C. The species are ordered from early- to late-leafing species (left
to right). The odds ratios for three elevations (300 m, 700 m, 1100 m a.s.l.) and 95% confidence intervals were estimated from the multivariate meta-regression. An
inverse hyperbolic sine transformation has been applied to the y-axis to increase the visibility of smaller values.

seems to be a pattern of lagged and non-linear associations
between Tmax and leaf unfolding that is common across stations.

The preseason, which is related to the concept of lagged
temperature effects on leaf unfolding, is defined as the period
before leaf-out time when specific weather conditions are
associated with leaf unfolding (Güsewell et al., 2017). The length
of the preseason has been estimated in several studies during
which temperatures exert a statistically significant influence on
the timing of leaf unfolding. Correlation coefficients and partial
correlation coefficients, respectively, between mean dates of leaf
unfolding and temperatures averaged over varying periods before
leaf-out have been used to determine the length of the preseason.
Fu et al. (2015) found for seven broadleaved tree species across
Europe, including horse chestnut and beech among other species,
optimal preseason lengths of 45 to 60 days based on daily Tmean.
However, there was substantial within-species variability across
sites ranging from 15 days to 4 months. The preseason for 24
plant species across Europe was estimated based on monthly
Tmax to range between 0 and 3 months for most combinations
of species, sites and years (Piao et al., 2015). Using data from
the phenological network of MeteoSwiss, Güsewell et al. (2017)
estimated the optimal preseason to range between less than
60 days for beech and up to more than 70 days for Norway
spruce, while Vitasse et al. (2018) found the highest correlations

for the preseason to range from 40 to 50 days (beech) to ca.
65 days (Norway spruce). Thus, these estimates of preseason
length are generally consistent with the findings in our study,
even if methodologically quite different approaches were used.
However, correlations between mean leaf-out time and mean
temperature do not account for (i) variability of leaf-out time
across sites or years; (ii) daily resolution of temperature data; and
(iii) the time-ordered structure of the predictors (e.g., sequence
of daily temperature).

Lagged temperature effects on leaf unfolding such as based on
distributed lag models in our study or based on partial correlation
coefficients (Fu et al., 2015; Piao et al., 2015; Güsewell et al., 2017)
may be interpreted as indirect evidence of instantaneous thermal
effects on the continuous development, growth or physiological
activity of vegetative buds during dormancy and bud burst
(Clark et al., 2014b). Increasing temperatures in spring induce
deacclimation processes, whereby frost resistance decreases for
example due to decreased levels of soluble carbohydrates,
that finally result in bud burst (Pagter and Arora, 2013).
Deacclimation occurs with some lag following exposure to warm
temperatures, typically within a few days to weeks (Pagter and
Arora, 2013). While it would be desirable to take continuous
and more process-related measurements during dormancy and
bud burst, observational and experimental studies are restricted
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in this regard. Assessing the state of dormancy in vegetative
buds tends to be difficult, because molecular or physiological
markers are lacking (Cooke et al., 2012) and because changes
of bud morphology are hardly visible prior to bud break
(but see Basler and Körner, 2014).

Associations Between Temperature and
Leaf Unfolding Differ Across Species
The lagged associations between temperature and leaf unfolding
revealed differences between early-leafing, photoperiod-
insensitive species (larch, horse chestnut, hazel) and late-leafing,
photoperiod-sensitive species (beech, Norway spruce). Both
beech and Norway spruce showed stronger short- to mid-
term responses (i.e., within ca. 10 to 20 days) to any of
the specified temperatures (Figure 4). Thus, leaf unfolding
of beech and Norway spruce is expected to occur more
rapidly than for larch, horse chestnut and hazel when
periods with the same temperatures prevail. These patterns
may reflect different leafing strategies to reduce frost risk
following unseasonably warm spells, i.e., either by slow
deacclimation in the early-leafing species or by more
rapid deacclimation in the late-leafing species (Heide, 1974;
Pagter and Arora, 2013).

Beech and Norway spruce are sensitive to photoperiod
(Heide, 1974; Basler and Körner, 2012, 2014; Vitasse and
Basler, 2013), and both species tend to leaf out rather late
because of the lower frost resistance at leaf-out compared
to the other species (Repo, 1992; Taschler et al., 2004; Lenz
et al., 2013; Vitasse et al., 2014a; Bigler and Bugmann, 2018).
Leaf unfolding of beech lags the early-leafing species in this
study by ca. 1 to 2 weeks, Norway spruce by ca. 2 to
3 weeks or more (Bigler and Bugmann, 2018). Sensitivity to
photoperiod or high chilling requirement to break dormancy
may be considered as an additional safeguard allowing frost
sensitive species to further minimize the risk of frost damage
(Körner and Basler, 2010; Way and Montgomery, 2015), e.g.,
if a warm early spring or late winter is followed by a series
of severe frost events. Species-specific rates of deacclimation
in spring result in different development rates of vegetative
buds (Pagter and Arora, 2013). Thus, when the photoperiodic
and chilling requirements are fulfilled, the vegetative buds of
the trees respond more rapidly to increasing temperatures
(Körner and Basler, 2010).

The photoperiod-insensitive species and species having low
chilling requirements (larch, horse chestnut, hazel), respectively,
tend to leaf out rather early (Bigler and Bugmann, 2018). These
species mainly rely on forcing temperatures as a trigger of
bud burst and leaf unfolding (Basler and Körner, 2012). To
compensate for the higher frost risk, they maintain a higher
frost resistance during leaf-out. The weaker leaf phenological
response to warmth compared to the late-leafing photoperiod-
sensitive species may be interpreted as a further strategy to
reduce the risk of frost damages (Lenz et al., 2016), because
an overly rapid bud development may result in early leaf
unfolding occurring simultaneously with or shortly after severe
frost. Because the weather conditions may strongly change

during early spring, and because there is a particularly high
uncertainty regarding the occurrence of frost, plants have
to take precautionary measures to reduce the risk of frost
damages following early warm spells (Pagter and Arora, 2013).
Advancing the timing of leaf unfolding by just 1–3 weeks
strongly increases the risk of frost damages due to the shorter
return intervals of frost events during the leaf-out period
(Lenz et al., 2016).

Differences among tree species in terms of leaf-out times,
frost resistance at the time of leaf-out and lagged temperature
effects on leaf unfolding reflect varying strategies to cope
with uncertain environmental conditions. Particularly late frost
events in spring are considered ecologically and evolutionarily
important events that may have severe consequences for
the dynamics of tree populations, because physical and
physiological damages occur that affect parts of trees or
entire tree individuals (Inouye, 2000; Gu et al., 2008). Thus,
frost is a strong selective pressure (Lenz et al., 2013) and
is assumed to ultimately act as a key factor that determines
tree species ranges (Chuine and Beaubien, 2001; Chuine, 2010;
Körner et al., 2016).

Effects of Elevation on the Association
Between Temperature and Leaf
Unfolding
The lagged association between temperature and leaf unfolding
changes along elevation, particularly for broadleaved species
(horse chestnut, hazel, beech), less so for conifers (larch, Norway
spruce; Figure 5). The temperature effects increased for the
broadleaved species with decreasing elevation, particularly
within the first ca. 10 to 40 days, depending on species and
specified temperature. Thus, under identical temperature
conditions, leaf unfolding of these broadleaved species is
expected to occur more rapidly at low elevation than at
high elevation, assuming that chilling and photoperiod
requirements are fulfilled. Some of these elevational effects
may be explained with the decreasing Tmax with increasing
elevation (Figure 3 and Supplementary Figure S1), i.e., trees
at higher elevations tend to leaf out at lower temperatures than
trees at lower elevations.

The stronger response of horse chestnut, hazel and beech
to temperature at lower elevations may indicate that a lack of
chilling could be compensated by increased forcing temperatures.
Beech as a photoperiod-sensitive species is further known
to be more limited by daylength and chilling at lower
elevations than at higher elevations (Vitasse and Basler, 2013).
In this context, our findings may be interpreted that leaf
unfolding of low-elevation beech trees responds strongly and
relatively rapidly as soon as the photoperiodic and chilling
requirements are fulfilled.

Leaf unfolding is delayed with increasing elevation as a
consequence of the cooler temperatures (Lenz et al., 2016;
Bigler and Bugmann, 2018; Vitasse et al., 2018). While
temperatures generally decrease with increasing elevation,
temperature variability tends to increase, thus uncertainty
regarding the occurrence of frost is relatively high. Return
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intervals of frost events during the leaf-out period typically
decrease with increasing elevation (Lenz et al., 2016), therefore,
even relatively warm temperatures in spring or early summer at
high elevation do not guarantee absence of frost. We interpret the
lower odds ratios of the lagged association between temperature
and leaf unfolding at higher elevations in our study as an adaption
to reduce frost risk.

CONCLUSION

The findings from our study provide evidence of lagged,
non-linear temperature effects on leaf unfolding of temperate
broadleaved species and conifers with contrasting leaf-out
timing, frost resistance and photoperiodic requirements.
Maximum temperatures induce relatively strong effects on
leaf unfolding within a few days, while lagged effects over
more than 1 month are weaker. Our findings demonstrate
cumulative and long-term temperature effects on leaf
unfolding, whereby relatively high temperatures before
leaf unfolding accelerate bud development inducing rapid
bud burst. We assume that such effects are not observed
earlier in spring, because the buds are in a premature
developmental state. Tree species respond differently to the
impact of temperature: the immediate reaction of late-leafing,
photoperiod-sensitive species is stronger, i.e., leaf unfolding
occurs more rapidly than for early-leafing, photoperiod-
insensitive species. Broadleaved species further show stronger
temperature effects at low elevation than at high elevation,
which translates into more rapid leaf unfolding with decreasing
elevation under identical temperature conditions. The lagged
associations between temperature and leaf unfolding improve
our understanding on how the phenology of tree species
with differing ecological requirements that occur along
large elevational gradients respond to the cyclic, seasonal
course of weather.
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