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Recent advances in high-throughput sequencing have accelerated the accumulation

of omics data on the same tumor tissue from multiple sources. Intensive study of

multi-omics integration on tumor samples can stimulate progress in precision medicine

and is promising in detecting potential biomarkers. However, current methods are

restricted owing to highly unbalanced dimensions of omics data or difficulty in assigning

weights between different data sources. Therefore, the appropriate approximation and

constraints of integrated targets remain a major challenge. In this paper, we proposed

an omics data integration method, named high-order path elucidated similarity (HOPES).

HOPES fuses the similarities derived from various omics data sources to solve the

dimensional discrepancy, and progressively elucidate the similarities from each type

of omics data into an integrated similarity with various high-order connected paths.

Through a series of incremental constraints for commonality, HOPES can take both

specificity of single data and consistency between different data types into consideration.

The fused similarity matrix gives global insight into patients’ correlation and efficiently

distinguishes subgroups. We tested the performance of HOPES on both a simulated

dataset and several empirical tumor datasets. The test datasets contain three omics

types including gene expression, DNA methylation, and microRNA data for five different

TCGA cancer projects. Our method was shown to achieve superior accuracy and high

robustness compared with several benchmark methods on simulated data. Further

experiments on five cancer datasets demonstrated that HOPES achieved superior

performances in cancer classification. The stratified subgroups were shown to have

statistically significant differences in survival. We further located and identified the key

genes, methylation sites, and microRNAs within each subgroup. They were shown

to achieve high potential prognostic value and were enriched in many cancer-related

biological processes or pathways.

Keywords: similarity integration, omics data, survival analysis, DNA methylation, gene expression, miRNA

1. INTRODUCTION

In current clinical practice, cancer is typically categorized based on its tissue source and
pathological histology. However, cancer is also known as a well-characterized pathological system
among the molecular level. Most cancers emerge along with complex molecular alterations at the
germ and/or somatic level (Kristensen et al., 2014). Molecule-level cancer re-classification and
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subtyping based on genome-scale data sets can act as a sally
port for precision oncology (Wu et al., 2017), such as for
evaluating the metastatic potential of patients and selecting
the most promising treatment (Forbes et al., 2010). Although
enormous quantities of molecular data have been accumulated
from various cancer profiling projects, for example, the Catalog
of Somatic Mutations in Cancer (COSMIC) database (Forbes
et al., 2008), the International Cancer Genome Consortium
(ICGC) (International Cancer Genome Consortium et al., 2010),
and The Cancer Genome Atlas (TCGA) (Weinstein et al.,
2013), interpreting such data is difficult. In recent years, many
sophisticated statistical and mathematical models have been
proposed to analyze biological data, most of which are based on a
single data type (e.g., gene expression, methylation). However, all
biological mechanisms consist of multiple molecular phenomena
and genomes exhibit variation owing to gene mutations,
epigenetic changes, individual differences and environmental
influences. It is difficult for conventional analysis based on data
from a single genome to capture the heterogeneity of all biological
processes and clearly differentiate phenotypes. Thus, the focus
has now been shifted to how to integrate multi-omics to achieve
more promising and stable cancer classification results.

To perform such simultaneous interrogation, there are two
major challenges. First, distinct omics data are heterogeneous in
scale, dimension, and quality, and such heterogeneity requires
subtle processing. Second, there are internal relationships
between single data layers (e.g., the promoter DNA methylation
may suppress expression). As such, information on these
regulatory patterns can improve our integrated analysis.
Existing methods can be roughly divided into three categories
based on their methodology: latent variable representation
methods, probabilistic modeling methods, and network-based
methods (Huang et al., 2017; Rappoport and Shamir, 2018).
Latent variable representation are mainly committed to mapping
diverse features from different data types into a shared low-
dimension common space under the assumption that a set of
latent variables is shared across multi-omics data. For example,
iCluster+ employs an expectation-maximization (EM) algorithm
to build regularized regression in modeling latent variables
and observed data (Mo et al., 2013). A joint non-negative
matrix factorization (jNMF) method is used to detect the
shared characteristic space (Zhang et al., 2012). A moCluster
algorithm can define a joint latent variable using the modified
consensus PCA (CPCA) (Meng et al., 2015). The major drawback
of these methods is that, when dimensions and variances of
different omics datasets differ greatly, the basic assumption
may be unexplainable. The unobserved latent variables possess
little biological meaning and have far fewer dimensions than
original spaces. Probabilistic models always presume different
prior distributions of multi-omics data, constructing a mixture
model, and then estimate the parameters and mixture ratios.
For instance, a Beta-Gaussian mixture model can integrate
gene expression data and protein-DNA binding probabilities
into a single probabilistic modeling framework (Dai et al.,
2009). Except for modeling original data, we can also model
the probability of clusters distribution on the local and global
level using the hierarchical Dirichlet mixture model (Gabasova

et al., 2017). However, the accuracy relies heavily on the
inherent distribution of data and overfitting may occur when
sample size far less than features. Instead of searching common
latent variables in measurement space, network-based methods
begin with each single data layer and propagate information
through interactions between samples to construct a global graph
structure. A previous work named similarity network fusion
(SNF) (Wang et al., 2014) follows this route using the message-
passing theory to fuse similarities of each available data type
into one network by iteratively updates every network as the
similarity matrix product of a single layer and the average of the
rest layers. Network structure can effectively handle differences
in dimension and scale. However, the main difficulty lies in how
to determine the contributions of each local pattern and how to
interpret the clustering result in terms of the original features.
Hence, there are still-strong demands for efficient and precise
multi-omics data integration methods that can overcome the
dimension variance and heterogeneous scale.

In this paper, we proposed a method to interrogate omics
data simultaneously to achieve multi-scale cancer subtyping.
The proposed high-order path elucidated similarity (HOPES)
integrates the similarities for each type of omics data into
a unified and stable one, thus achieving a simplified link of
the underlying mechanism of various types of expression. We
modeled integrated similarity as the approximation to various
high-order paths across each local dataset, the progressively
increased high-order path can represent different consistency
requirements. We especially emphasized interaction within
each pair of local layers rather than updates using a single
layer and average of the rest layers. HOPES models such
similarity integration as a minimization problem consist of
three subobjective functions, for which an efficient numerical
algorithm was designed to obtain the solution. Through the
optimization procedure, we strengthened the strong correlation
between patients and removed the weak ties mainly caused by
noise. Thereby, we successfully subtype cancers with significant
clinical differences. Real experiments on five cancer projects
of TCGA and a normal control set for cancer diagnosis and
prognosis tasks demonstrated the excellent performance of
HOPES in subtyping and identifying key oncogenesis pathway.
The subsequent biological analysis of the resulted key pathway
was shown to possess potential prognostic value and biological
significance.

2. MATERIALS AND METHODS

2.1. Tumor Datasets With Comprehensive
Omics Measurements
We tested the proposed HOPES on five distinct tumor datasets,
downloaded from TCGA. The tested samples consisted of five
tumor types: glioblastoma multiforme (GBM), lung squamous
cell carcinoma (LUSC), kidney renal clear cell carcinoma (KIRC),
colon adenocarcinoma (COAD), and a cervical cancer dataset
(CESC). Each tumor was measured by DNA methylation,
gene expression, and miRNA expression. The overall survival
information corresponding to each sample was also considered.
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The first four projects were the same as the experimental data
obtained in a previous study (Wang et al., 2014). The gene
expression data for GBM and LUSC were collected using the
Broad Institute HT-HG-U133A platform, while COAD was
collected by the UNC-Agilent-G4502A-07 platform, and KIRC
by the UNC-Illumina-Hiseq-RNASeq platform. The miRNA
expression data for GBM were collected by the UNC-miRNA-
8X15K platform, while those for LUSC, KIRC, and COAD
were collected by the BCGSC-Illumina-GA-miRNAseq. The
methylation for GBM was analyzed by the JHU-USC-Illumina-
DNA-Methylation platform, while for the others the JHU-USC-
Human-Methylation-27 platform was used. The fifth CESC
dataset contains data on clinical and pathological features,
genomic alterations, DNA methylation profiles, and RNA and
proteomic signatures, and is available from TCGA (Cancer
Genome Atlas Research Network et al., 2017). We collected
gene expression profiles, DNA methylation expression, miRNA
expression, and clinical data from the Broad Institute TCGA
Genome Data Analysis Center (Broad Institute TCGA Genome
Data Analysis Center, 2016). A total of 284 samples with these
four types of data were included in the study. For each data
type, we removed signatures with a missing rate among all of
the samples higher than 20%. For the remaining missing-value
data, a K-nearest neighbor (KNN) imputation (Troyanskaya
et al., 2001) scheme was used to complement it by filling the
empty area with the mean value of non-empty neighbors. Finally,
we normalized each dataset across samples and obtained a gene
expression dataset of 20,118 genes, a methylation dataset of
396,065 CpG sites, and a miRNA dataset of 885 miRNAs. To
reduce computational cost, for analysis involving methylation
data, the 1,000 most variable CPG sites based on the standard
deviation of beta values were selected.

2.2. Comparative Healthy Dataset as a
Control
Besides the tumor samples, we also prepared normal samples
as a control set to evaluate the capacity for using HOPES in
diagnosis. A few healthy cases with data on gene expression,
methylation, and miRNA expression are also included in TCGA.
Finally, we merged 35 samples derived from several normal
tissues adjacent to cancerous tissue among the six TCGA
disease projects(BRCA, GBM, KIRC, COAD, LUSC, and CESC).
Preprocessing as mentioned above was also performed on the 35
normal controls. Although we simply integrate healthy samples
from different tissues as a control set, the normalization step
can remove differences between different tissues, and ensure the
separability between cancer samples and healthy controls.

2.3. Methods
2.3.1. SNF
Similarity network fusion(SNF) is a novel algorithm which
integrates different omics data through computing and fusing
patient similarity networks. SNF conduct the similarity fusing
by iteratively updating every similarity network, making it more

similar to the others with every iteration as follows:

P(v) = S(v) ×

(
∑

k 6=v P
(k)

m− 1

)

× (S(v))T , v = 1, 2, ...,m

where P represent the similarity matrix derived from each
datasets, S represent the local affinity which only contains the
nearest neighbors’ information, andm is the number of different
data types. Actually the iteration process means updating the
similarity between node i and node j in P(v) as the weighted sum
of similarities between the K nearest neighbors of node i and
those of node j. While neighbors’ similarities are derived from
the otherm− 1 datasets.

Themain contribution of SNF is it can solve the discrepancy of
dimensions and variances in different omics datasets which may
be the biggest challenge for omics data integration. And it has
been widely used in many practical biological tasks. However, it
still exists some limitations in this algorithm. (1) This procedure
treats each network as the same without weights constraints. (2)
There is only one connection path between different datasets that
across two intermediate nodes which is insufficient for depicting
complex network interaction. (3) The information exchange only
exists in one dataset and the average of the others. There are
no direct mutual adjustments between different datasets which
may cover some interconnection between specific data types.
The incomplete network connection model makes it difficult
to recover the most precise global similarity pattern or resist
high-level noise in biological data.

2.3.2. Similarity Fusion Through High-Order Path
To have a consistent and highly representative global similarity,
HOPES simulate three different network connection models
with different path length and try to find the fused pattern
which retains the maximal commonality. As it was depicted in
Figure 1, (1) Path-0 similarity preserves the characteristics of
each local affinity obtained using K nearest neighbor, (2) Path-1
similarity import one intermediate node to enhance the effect of
each local affinity, (3) Path-2 similarity import two intermediate
nodes to integrate interaction between different local affinity to
enhance the commonality. The detailed numerical expression
and constraint of the different order paths are as follows.

Suppose we have C different omics datasets, and their
local affinities Si(i ∈ 1, ...,C) were evaluated by a scaled
exponential similarity kernel (Wang et al., 2014) see details
in Supplementary Methods. First, for the path-0 similarity, the
fused similarity is required to be close to each underlying affinity
which can be simply characterized by minimizing average losses
as follows:

min
W

C
∑

i=1

‖W · �i − Si‖
2
F (1)

where W is a n × n fused similarity matrix, Si is local affinity
extracted from i-th omics data, and �i is a n × n matrix whose
entries denote whether corresponding entries in Si are equal to 0.
There are C types of omics data.
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FIGURE 1 | Overview of HOPES. (A) Illustrative example of input multi-omics data, including gene expression, DNA methylation, and miRNA expression data sets for

the same sample cohort. (B) Local affinity of each data type was defined as part of the global similarity matrix that only contains edges among K nearest neighbors

(K = 2). (C) Simplified illustration of path-1 elucidated similarity. We used matrix multiplication to transform the directed distance between samples to weighted

one-hop distance. The purple edges represent correlations shared by two data types. (D) A path-2 elucidated similarity, in which only those edges with large similarity

are preserved. Such edges are highlighted in yellow.

Different from the path-0 similarity, we further propose path-
1 similarity to retain the maximal commonality when filtering
through each underlying affinity. Thus we assume the fused
global similarity to be close to every one step transformed
similarity by multiple each local affinity.

min
W

C
∑

i=1

‖W − SiW‖2F (2)

It can be noted that (SiW)(m,n) =
∑

Si(m, k)W(k, n) can be
interpreted as the weighted sum of distance between the K nearest
neighbors of node m and node n while neighbors’ information
are from dataset i, which represents W filtered by Si. Therefore,
the aim of Equation (2) is to ensure proximity between the global
affinity and the transformed affinity after it has been weighted
by each local affinity. One can impose a stricter requirement that
the fused global similarity is closed to the transformed similarity
which has been filtered by each underlying local affinity through
higher-order paths. For example, with path-2 proximity,

min
W

C
∑

i=1

C
∑

j=1

‖W − SiWSTj ‖
2
F (3)

Where (SiWSj)(m,n) =
∑

Si(m, k)W(k, l)Sj(l, n), It also represents
the weighted sum of the distance between the K nearest
neighbors of node m and those of node n, while neighbors’
information of two vertexes is from two different datasets. This
interactivity between different local affinity sharply strengthens
the commonality requirement. The filtration process is supposed
to weaken the original edges in W unless the correlation between
node i and j is simultaneously supported by each pair of
data types.

Finally, combining the aforementioned constraints for
modeling proximities of various path orders, we propose the
determination of the global affinity by minimizing the following
energy function:

min
W

C
∑

i=1

(‖W ·�i−Si‖
2
F+α‖W−SiW‖2F+β

C
∑

j=1

‖W−SiWSTj ‖
2
F)

(4)
where α and β are hyperparameters that adjust the weight of
different order constraints and can be empirically set. Details on
parameter tuning was attached in the Supplementary Methods.
The optimization problem can be solved through a consensus
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alternating direction minimization method (ADMM)(see
Supplementary Methods for detailed solution procedure).

In conclusion, the three different order paths represent an
incremental relationship from specificity to commonality and
from weak constraint to strong constraint. They can simulate
much more complex network connection models and set
increasing consistency requirements on the global similarity.
Therefore, we can take all the specialty of every single dataset,
the interconnection between datasets, and global consistency into
consideration and construct a more comprehensive and robust
global similarity network. Moreover, the weights can be adjusted
manually based on the real world condition whichmakes HOPES
more flexible.

2.3.3. Downstream Applications
Once we have the fused global similarity matrix, it can be the
fundamental structure for much downstream analysis. The most
directly is applying the spectral clustering to cluster the samples

into different subgroups which can be used for cancer diagnosis
or molecular subtyping. In this paper, to eliminate the variations
due to clustering initialization, the consensus clustering (Monti
et al., 2003) was used to enhance the reliability performance. It
records the consensus across multiple clustering repeated trials
based on one certain global similarity matrix to assess the stability
of the clustering results.

Except for clustering, we also tried to project the global
structure into specific characteristics in every single dataset.
Since these features are the most relevant to the fused results,
they can not only be prognostic valuable but also may indicate
some interconnection between different omics layers. We located
these features using MCFS, an unsupervised feature selection
algorithm for multi-cluster data (Cai et al., 2010). After providing
our fused similarity matrix W and the original omics data
as input, the feature selection task can be modeled as a
L1 − regularized regression problem that exports the sparse
coefficient vectors of features. In this case, we can easily select

FIGURE 2 | Synthetic data integration. Heatmaps of similarity matrix distinctly derived from RNA (A), methylation (B), miRNA data (C), and fused data (D), for which

samples were arranged in the order of spectral clustering results.

TABLE 1 | Performance measured by NMI on simulated datasets.

SimData1 SimData2

Low noise Moderate noise High noise Low noise Moderate noise High noise

HOPES 0.972 ± 0.025 0.921 ± 0.044 0.858 ± 0.060 0.889 ± 0.056 0.838 ± 0.072 0.799 ± 0.071

SNF 0.954± 0.061 0.811± 0.088 0.750± 0.075 0.822± 0.109 0.668± 0.095 0.619± 0.054

moCluster 0.864± 0.113 0.778± 0.088 0.748± 0.104 0.815± 0.015 0.786± 0.076 0.731± 0.108

iCluster+ 0.710± 0.008 0.707± 0.008 0.693± 0.016 0.659± 0.026 0.617± 0.028 0.595± 0.036
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a series of most relevant features(corresponding to the non-zero
coefficients).

3. RESULTS

We designed a series of experiments to demonstrate the progress
of HOPES by comparing it with four representative methods
belong to three kinds of popular integration framework: network
fusion-based SNF (Wang et al., 2014), joint latent variables-
based iCluster+ (Mo et al., 2013), moCluster (Meng et al., 2015),

and probabilistic model-based Clusternomics (Gabasova et al.,
2017). Simulations and real data experiments were performed to
evaluate the performance on global cluster structure detection
and usability in clinical practice, respectively.

3.1. Experiments to Demonstrate the
Accuracy and Robustness of HOPES With
Simulated Data
To demonstrate the performance of HOPES in fusing multi-
omics data, we first tested it on simulated datasets and

FIGURE 3 | Cluster accuracy comparison between different methods on different simulation datasets. The upper panel represents the NMI of HOPES, SNF, and

moCluster in SimData1 (A) and SimData2 (B) under incremental standard deviation of Gaussian noise. The lower panel shows the NMI boxplots in SimData1 (C–E)

and SimData2 (F–H) among three methods under different noise levels (from left to right in the order of low, intermediate, and high), measuring their accuracy and

stability on recovering the integrated pattern through partial layers.
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FIGURE 4 | Venn diagram of the overlapping measurements among LUSC, COAD, and KIRC projects for the biological features of (A) gene expression,

(B) methylation, and (C) miRNA expression.

TABLE 2 | The accuracy for cancer diagnosis of different methods.

COAD KIRC LUSC

Gene expression 0.8740 0.5159 0.8865

Methylation 0.4882 0.6433 0.6667

miRNA expression 0.8504 0.8471 0.8652

HOPES(fused) 0.8976 0.9236 0.9286

SNF(fused) 0.8976 0.9172 0.9078

iCluster+(fused) 0.6299 0.5923 0.6383

moCluster(fused) 0.7559 0.707 0.7801

Clusternomics(fused) 0.5276 0.6433 0.8865

compared it with SNF and moCluster. The simulated dataset
was generated similarly to the one reported elsewhere (Shi
et al., 2017). The simulated dataset was created to recapitulate
the features of actual genomic data by combining biological
variation levels from real data and a pre-defined cluster structure.
The actual genomic profiles were downloaded from GEO
(Barrett et al., 2013) with the following GEO codes: GSE51557,
GSE73002 and GSE106453. These three were focused on DNA
methylation (Conway et al., 2015), RNA expression (Nakagawa
et al., 2008) and miRNA expression (Shimomura et al., 2016),
respectively. Based on these actual genomic data we used
the singular value decomposition (SVD) to fuse them with
pre-defined cluster structure, and constructed two synthetic
data sets (SimData1 and SimData2). SimData1 has a clear
boundary between each cluster while SimData2 possesses fuzzy
boundaries(see Supplementary Methods for more details).

We tested HOPES and the other methods on both simulation
datasets under different levels of noise intensity to assess the
information integration capability and robustness. We used
the normalized mutual information (NMI) as a criterion for
performance, and for each noise condition we ran repeated
trials 20 times to eliminate accidental error. Collectively, all
simulation results suggested that HOPES can always successfully
recover the four pre-defined clusters from incomplete layers

(Figure 2). As we demonstrate in data construction, the three
single layers each contained an indivisible part. To dig out
the real cluster information, an effective integration method
was required. The proposed HOPES used the high order path
distance among different data types to approximate the global
similarity. The correlation information of nodes i and j will be
weakened if it exists in only a single data layer, which ensures
the separation of mixed groups in a single data source. Moreover,
the progressive proximity model not only sets constraint on
the high-order path distance, but also reconcile the extremely
specific characteristics in each single data layer. Thus, it is
promising for detection of the hidden cluster structure shaped by
multi-source data.

The numerical results are shown in Table 1 and Figure 3,
which suggest that HOPES outperformed the compared methods
irrespective of the set signal and noise conditions, highlighted
in bold in Table 1. It should be noted that Clusternomics show
little tolerance on noise, because the lack of modeling for noise.
For the rest three methods we can add the variance of Guassian
noise to 3, while Clusternomics can only resist noise with
variance lower than 1 (see Supplementary Figures for more
details). In this section, we mainly discuss the performance
on the rest four methods. It can be demonstrated that SNF
achieved high precision when the noise level remained low;
however, its robustness upon exposure to noise was insufficient.
The low stability may be ascribed to SNF updating a fused
network through a single local affinity and the other average
similarity at every iteration. The update rule raises concern
about the enhancement of erroneous information derived from
one data layer, especially when edge points exist. However,
HOPES provided path-2 elucidated similarity determined by
each pair of data types which effectively solve it. In contrast,
the latent variables-based methods such as iCluster+ and
moCluster showed fairly good stability but poor accuracy for
both of the synthetic datasets as noise increased. The iCluster+
modeled continuous variable as the linear combination of specific
intercept term, common latent variables, and residual variance
which all follow normal distribution. This assumption can fits
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FIGURE 5 | Comparison of classification performance based on single and fused data. Heatmap of similarity matrix derived from (A) gene expression data,

(B) methylation data, (C) miRNA expression data, and (D) fused data where samples were gathered by classification results on the corresponding dataset. (E) Venn

plot shows the distribution of mis-assigned specimens in all of the four data sets.

our noise and original data setting, however, it can not accurately
model the distribution of latent variables as a discrete sequence.
So iCluster+ show good performance on dealing noises but

unable to capture the global structures. The moCluster is based
on a joint latent variable derived by consensus PCA, so it strongly
relies on the selection of principal components. Moreover, the

Frontiers in Genetics | www.frontiersin.org 8 March 2019 | Volume 10 | Article 236

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Xu et al. Simultaneous Interrogation of Cancer Omics

FIGURE 6 | Clustering results of CESC and KIRC. The Kaplan-Meier survival curves P-values are recorded in Table 3 for (A) CESC and (B) KIRC, and 3D scatter

plots for (C) CESC and (D) KIRC. Vertexes of scatter plots represent samples colored by their cluster label; the x-, y-, and z-axis represent the first three principal

components of the fused data matrix.

large gap between feature magnitude of distinct data types also
affects the accuracy. More specifically, the boxplots indicate
the degree of dispersion and skewness in the data, and show
outliers during 20 repeated trials under low, medium, and high
noise levels. As depicted in Figures 3C–H, HOPES achieved
higher accuracy and more stable results within all three methods
in SimData1. However, the results of moCluster were highly
dispersed during repeated trials which makes the results less
credible. After we imported edge points in SimData2, the
discreteness of every method slightly increased, but HOPES
still performed best, in accordance with the previous results.
Interestingly, moCluster appears to be very stable when the noise
level is low, but with moderate noise, almost half of the trials were
quantified as outliers, which suggests this method exhibits large
fluctuations.

3.2. Experiments for Cancer Diagnosis on
Actual Cancer Datasets
We then tested whether the proposed method HOPES can
distinguish tumor samples from normal controls based on
their omics measurements. We applied the HOPES and other
comparative methods to combinations of COAD (92 samples),

TABLE 3 | Survival analysis by Log-rank test on five tumor datasets.

CESC COAD GBM KIRC LUSC

HOPES 0.000248 0.00918 0.000224 0.0417 0.00132

SNF 0.000626 0.038 0.000621 0.124 0.00551

iCluster+ 0.63 0.00316 0.751 0.206 0.0082

moCluster 0.0567 0.139 0.0207 0.0667 0.00193

Clusternomics 0.162 – 0.048 0.129 0.00504

KIRC (122 samples), LUSC (106 samples) and 35 normal
controls. The gene expression, methylation, and miRNA
expression data for these case/control sets and the overlap among
them are shown in Figure 4. It can be noted that the amounts
and proportion of common variables vary between different data
types. The normal samples tested in this work were selected
to have the matching characteristics. It can be noted that the
amounts of variables vary from the expression of 280 miRNAs
to 23,360 methylation sites, and miRNA measurements are
shown to have the largest proportion of overlap among all of
cancer types.

Frontiers in Genetics | www.frontiersin.org 9 March 2019 | Volume 10 | Article 236

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Xu et al. Simultaneous Interrogation of Cancer Omics

FIGURE 7 | Patient similarity networks for 284 CESC samples of each single data type independently compared to the fused similarity network. Heatmaps on

similarity for (A) gene expression, (B) methylation, (C) miRNA expression, and (D) integrated matrix are shown.

We calculated the classification accuracy on the collected
tumor vs. normal samples. Table 2 shows the classification
performance either by one single set of data or by the fused
methods, in which the most highest accuracy were highlighted
in bold. The results reflect that, at the single data level, miRNA
with the smallest number of measurements showed the best
performance regarding sample classification while methylation
showed the worst performance. On average, the performance on
fused data derived by HOPES and SNF is uniformly better than
that for a single source. The good performance of data fusion is
attributed to its capability of resisting erroneous correlations or
even negative effects, which not only enhances accuracy but also
generates more stable results.

Nevertheless, integration methods such as iCluster+ which
splices all of the features, strongly rely on a priori gene selection;
therefore, if the number of variables is imbalanced, it will be
difficult to retain positive information. Thus, the classification

accuracy falls in between the worst and best of single level
analyse, so as for moCluster. The Clusternomics extract the
global assignment based on the mixture of local partitions, so
if clustering results were obscure in single data layer the global
performance can not be satisfied. The sample size also influence
the performance of Clusternomics a lot. We take an example
of KIRC dataset for further analysis. One can see that the fused
data clustered tightly and uniformly, as shown by the heatmap of
the similarity matrix (Figure 5). One can see that the clustering
result by the proposed HOPES achieved superior performance
(Figure 5D) to that by each single source (Figures 5A–C). In
Figure 5D shows distinct boundaries between different clusters
and uniform structure within each cluster. The fused similarity
between healthy samples is far greater than cancer samples, which
demonstrates the heterogeneity of cancer.We also created a Venn
diagram to examine the sample assignment by each single source
or by the fused one. We found that the fused data by HOPES
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FIGURE 8 | Multiplatform integrative clustering of cervical cancer. Clustering of 284 cervical cancer samples was performed based on different datasets (i.e., gene

expression, methylation, miRNA, and fused data) using different methods(HOPES, SNF, iCluster+, moCluster). Moreover, the histological type and clinical stage of

patients are also indicated in the legends. The heatmaps show the selected top 15 mRNAs, CpG sites, and miRNAs that are either significantly associated with

HOPES groups or have been identified as markers in previous analyses; different datasets correspond to distinct color scale bars.

are robust to mistakes in each single source. More precisely, for
65% (102 of 157) of samples, there were incorrect assignments
in at least one single data type analysis, while for 33% (53 of
157) of cases, the classification results were wrong in at least two
single data types. However, only 7.6% (12 of 157) of cases were
mis-assigned by our method (Figure 5E).

3.3. Prognostic Performance on Actual
Cancer Datasets
To illustrate the prognostic ability of the elucidated similarity,
we applied HOPES to five tumor omics datasets, namely CESC,
GBM, COAD, KIRC, and LUSC. The similarities obtained by
SNF and HOPES were used to cluster each tumor sample into
three subtypes. Their corresponding survival curves were drawn
and quantified by the log-rank test. The statistical significance
of differences between them was denoted by the P-value. To
facilitate visual comparisons, the results on both the survival
curves and the first three principal components are shown
in Figure 6 and Supplementary Figure 3. The survival curves
resulting from HOPES can be observed to achieve the smallest
P-value, highlighted in bold in Table 3. Consistent with the
results in synetic experiments, HOPES show the most clinical
significant and reliable performance in all datasets. Since COAD

only contains 92 samples with more than 20,000 gene features,
the Clusternomics can not fit a mixture model for COAD.

To clarify the beneficial characteristics of the similarity
elucidated by HOPES, we took another example of CESC for
further analysis. We compared the clustering results on each
single type of omics data alone with those for the elucidated
one. The results are plotted in a heatmap as shown in Figure 7.
Notably, it is difficult to cluster each single type of omics data into
sub-clusters. There are no legible block structures in Figure 7A,
or only tiny sub-clusters in Figures 7B,C. Between different
clusters, the cross section shows small differences in color,
implying that the differences were negligible. In comparison,
the clustering results after HOPES were shown to feature three
distinct sub-clusters. The last sub-cluster in the bottom-right
corner exhibits a fairly homogeneous color within the clusters.
Moreover, we can deduce that there are two clusters, upon
clustering by gene expression, as shown in Figure 7A. There are
no obvious sub-clusters either by methylation level (Figure 7B)
or by miRNA expression (Figure 7C). In comparison, the
clustering results after HOPES were shown to feature three
distinct sub-clusters. The last sub-cluster in the bottom-right
corner exhibits a fairly homogeneous color within the clusters.
The elucidated similarity makes it markedly easy to find
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FIGURE 9 | Survival curves of top 3 most significant features in genes, CpG sites, and miRNAs respectively The Kaplan-Meier survival curves for the top 3 most

significant genes, namely, LOC84931, TUBB3, and DBN1 (A–C), the top 3 most significant CpG sites, namely, cg1596687, cg07258916, and cg11796219 (D–F),

and the top 3 most significant miRNAs, namely, hsa-miR-767, hsa-miR-483, and hsa-miR-9-2 (G–I).

sub-clusters that were concealed in the analyses for each type of
omics data alone.

We also found that the elucidated similarity highlights the
molecular heterogeneity in cervical carcinomas. The subtyping
by HOPES differed depending on the histological classification,
showing a discrepancy between phenotype and gene-level types.
For instance, the sub-clusters by HOPES largely corresponded
to those by methylation level. The CESC project classified
samples into six subgroups by histology. To determine the
correspondence between the histological classification and
HOPES, we merged four different types of adenocarcinoma into
one type, as used in studying cervical cancer (Cancer Genome
Atlas Research Network et al., 2017). The clusters produced by
HOPES strongly correlated with the histological types, but were
not the same; our cluster 3 contained all of the adenosquamous

cases, while cluster 2 mainly consisted of cervical squamous cell
carcinoma samples. We used the χ2 test to determine whether
the two clustering results are significantly associated, and our
cluster results showed a strong correlation with each single
genomic data cluster, with small P-values (gene expression P =

1.28 × 10−6; methylation P = 7.94 × 10−9; miRNA expression
P = 2.2× 10−16).

3.4. Functional Annotation of Relevant
Features Among Cervical Cancer Subtypes
To demonstrate the biological significance of subtype derived by
HOPES, we extracted the subset of the most relevant features
among the original features and conducted a series of functional
analyse on it. We chose the 15 most relevant features in gene
expression, methylation, and miRNA data for further analysis.
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FIGURE 10 | GO biological process enrichment analyses of set of 173 core genes gene count, p-value, and fold enrichment of GO biological process terms with

P-value< 10−6.

First, we constructed a corresponding heatmap with
different clustering labels, In Figure 8, selected signatures
of all three data types are merged, showing a clear block
form corresponding to the HOPES subgroup. As long as
these selected features are differentially expressed following
our clustering result, their biological annotation can help
us to confirm that the separation created by HOPES is not
only clinical meaningful but also biologically significant.
In terms of the gene expression pattern, subtype 1 (red),
corresponding to lower expression in EPCAM, PPP1R9A,
DDAH1, C17orf28, RICH2, and DNALI1, showed a longer
survival time, while subtype 2 exhibited completely the
opposite performance in the same gene set. The subgroup with
the poorest prognosis (blue) significantly corresponded
to LOC84931, PRAME, DBN1, SCAND3, and TUBB3
over-expression. The methylation data specifically highlight
subgroup 1 in the first five CpG sites(cg11796219, cg04778236,
cg00757822, cg06888746, cg08749305); subgroup 2 shows down-
regulation in the last three CpG sites (cg22958104, cg14193097,
cg04206484); while subgroup 3 is relatively down-regulated
in cg07258916, cg05869617, cg15966877, and cg22831949.
The heatmap of miRNA shows increased expression of hsa-
miR-767, hsa-miR3200, and hsa-miR-483, which correlates
with decreased survival probability and clearly up-regulated
expression of hsa-miR-10a, hsa-miR-194-1, and hsa-miR-375
in subgroup 2.

Second, we performed survival analysis on each single
feature using the kmeans as a general clustering method, and
found that more than 1/3 relevant features showed good
partition ability with a Log-rank test p-value< 0.05 including

five genes (LOC84931, DBN1, SCAND3, TUBB3, ICOS), six
CpG sites (cg11796219, cg08749305, cg07258916, cg05869617,
cg01762070, cg15966877), and six miRNAs (hsa-miR-767,
hsa-miR-3200, hsa-miR-483, hsa-miR-9-2, hsa-miR-584, hsa-
miR-342). Figure 9 shows the Kaplan-Meier survival curves
of the top 3 most significant features in genes, CpG sites,
and miRNAs. Among these genes, DBN1 was detected as a
useful oncofetal biomarker (Iyama et al., 2016). It is involved
in migration and invasion of glioma, colon, bladder and lung
cancer (Mitra et al., 2011; Terakawa et al., 2013; Lin et al., 2014;
Zwiener et al., 2014; Xu et al., 2015); TUBB3 was assessed as
one of the predictive and prognostic factors in cervical cancer
patients under different neoadjuvant regimens (Zwenger et al.,
2015). It was also defined to be a useful prognostic biomarker
in patients with advanced NSCLS (Li Z. et al., 2014). Moreover,
ICOS was also included in one of the genotype combinations
(CD28/IFNG/ICOS) that is associated with cervical cancer
(Guzman et al., 2008). In analyzing each single CpG site, an R
package, “IlluminaHumanMethylation450kanno.ilmn12.hg19”
was applied to match each CpG site with reference gene
region. The most significant features, included cg22831949,
falls in PTPRN2 , which was found to inhibit apoptosis and
promote cancer formation in breast cancer (Sorokin et al., 2015);
cg07258916 corresponding to PLXNA4 which belongs to the
plexin family, and was previously indicated to inhibit tumor
cell migration (Balakrishnan et al., 2009); cg11796219 matched
with C3orf21, while C3orf21 ablation was proved to promote
cell proliferation, inhibite apoptosis and accelerate cell migration
in lung cancer. Selected miR-767 contributes to the decrease
of TET activity, which is a hallmark of cancer (Loriot et al.,

Frontiers in Genetics | www.frontiersin.org 13 March 2019 | Volume 10 | Article 236

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Xu et al. Simultaneous Interrogation of Cancer Omics

FIGURE 11 | KEGG pathway enrichment analyses of set of 173 core genes

gene count, p-value, and fold enrichment of KEGG pathways with

P-value< 10−4.

2014). It also known as risky miRNA that significantly correlates
with clinical outcomes in GBM (Li R. et al., 2014). Moreover,
miR-483 can play the role of an antiapoptotic oncogene in
many human cancers, such as Wilms’ tumors, colon, liver, and
breast cancers (Veronese et al., 2010). It was also identified as
predictors of poor prognosis in adrenocortical Cancer (Soon
et al., 2009). miR-9 was proved to be correlated with MYCN
amplification, tumor grade, and metastatic status (Ma et al.,
2010), more specifically, it was found to be associated with clear
cell renal cell carcinoma, breast cancer, gastric carcinoma, and
brain tumors (Lehmann et al., 2008; Luo et al., 2009; Nass et al.,
2009; Hildebrandt et al., 2010).

To determine the functional relevance of the selected features,
the identified genes, target genes of CpG sites and miRNAs were
merged as a core set. We then performed the GO enrichment
analysis (Ashburner et al., 2000) and KEGG pathway analysis
(Kanehisa et al., 2011) on it using DAVID tools (Huang
et al., 2008, 2009). The genes targeted by miRNAs were
predicted by miRTarBase, an experimentally validated miRNA-
target interaction database (Chou et al., 2017). We only used the
interactions supported by strong experimental evidence (reporter
assay or western blot). Finally, the core gene set included 173
genes consisting of 15 original genes, 15 methylation related
genes, and 143 miRNA targets. We found that the whole core
gene set was enriched in 56 GO biological process terms, with
Benjamini-corrected p-value < 0.05. Figure 10 depicts GO
terms with p-value < 10−6, notably, these significant terms
strongly correlate with cancer. An example of this is the most
significant term, namely respond to hypoxia. Numerous research

has confirmed that pathological hypoxia plays a pivotal role in
cancer progression and migration (Muz et al., 2015). In addition,
the Hypoxia-inducible factor 1α, which regulates genes involved
in response to hypoxia was proved as a strong prognostic
marker in early stage cervical cancer (Birner et al., 2000).
The regulation of cell proliferation, regulation of transcription
from RNA polymerase II promoter, and regulation of apoptotic
process participate in the full life-cycle of tumors (Takeshima
et al., 2009; Vander Heiden et al., 2009; Wong, 2011). For
KEGG analysis, a total of 46 pathways (Benjamini-corrected p-
value < 0.05) were identified, Figure 11 shows pathways with
p-value <10−4. Among these pathways, cancer was the most
common subclass such as pathways in cancer, microRNAs in
cancer, Bladder cancer, colorectal cancer and pancreatic cancer.
Besides direct cancer pathways, the PI3K-AKT-FoxO signaling
cascade was identified, which has been previously identified to be
involved in cancer and aging (Zhang et al., 2011). The PI3K/Akt
signaling pathway leads to the inhibition of the downstream
targets FoXO transcription factors, while FoXO is associated with
cell cycle progression (Medema et al., 2000), apoptosis (Urbich
et al., 2005), and angiogenesis (Tang and Lasky, 2003). There is
another research revealed that the activation of AMPK impedes
cervical cancer cell growth through this PI3K-AKT-FoxO axis
(Yung et al., 2013).

In conclusion, we performed survival analysis, GO
enrichment analysis, and KEGG pathway analysis on a
subset of the most relevant features of gene expression,
methylation and miRNAs corresponding to our HOPES
subgroups. We found that these selected features were of
great significance in cancer clinical outcomes and biological
function such as cancer cell proliferation, apoptosis, and
angiogenesis. These findings not only demonstrate the biological
meaning of our integrated clustering results, but also indicate
that HOPES can act as the anterior work for prognostic
biomarker detection.

4. DISCUSSION

The integrated analysis of multi-omics data can facilitate
the study of molecular events at different periods of cancer
progression and development, and complementary information
can remove the effect of noise, leading to precise and
useful classification results. Our proposed HOPES method
integrates the similarity of different data layers to overcome
the dimension and scale heterogeneity that hinders latent
variable-based methods. The progressive fusion model based
on high-order path similarity can evaluate the strength of
single data level specificity and global level consistency together
for a consistent and highly representative global similarity.
The derived global similarity can filter erroneous or single
level specific ties. This procedure can solve the issue of
inducing too much noise or distortions by partial structures
in a single data set, when we integrate all of the similarity
information from each data type. Downstream consensus
spectral clustering contributes to the obtainment of reliable
clustering results.
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In practice, our method shows superior capabilities in
distinguishing global patterns through multiple source data.
In addition, HOPES show great robustness compared to the
other methods which are constrained by sample size or priori
feature selection. Since HOPES only used the sample similarity
information, its performance is independent of the data source,
so it is promising for general usage. The fused similarity matrix
shows the higher accuracy of tumor classification than any
single data type or other integration methods. Moreover, the
clustering results of cancer patients feature significant separation
regarding a prognostic indicator (survival time), which can
contribute to cancer subtyping at the molecular level and further
clinical treatment. The obtained subgroups are also shown to
be promising for the identification of potential biomarkers
by revealing the key components that drive the differences
between subgroups. The enrichment analysis on the key
components confirmed the power of HOPES in discriminating
the biomarkers.
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