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The mammalian intestine is colonized by over a trillion microbes that comprise the

“gut microbiota,” a microbial community which has co-evolved with the host to

form a mutually beneficial relationship. Accumulating evidence indicates that the gut

microbiota participates in immune system maturation and also plays a central role in

host defense against pathogens. Here we review some of the mechanisms employed by

the gut microbiota to boost the innate immune response against pathogens present on

epithelial mucosal surfaces. Antimicrobial peptide secretion, inflammasome activation

and induction of host IL-22, IL-17, and IL-10 production are the most commonly

observed strategies employed by the gut microbiota for host anti-pathogen defense.

Taken together, the body of evidence suggests that the host gut microbiota can elicit

innate immunity against pathogens.
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INTRODUCTION

The mammalian intestine is home to a complex and dynamic population of microorganisms,
termed the “gut microbiota” (1, 2). These microorganisms, which co-evolved with the host as part
of a mutually beneficial relationship (3), include bacteria, fungi and viruses (4, 5). Accumulating
evidence indicates that the gut microbiota can participate in the maturation and function of
the innate immune system, while also playing many complex roles in the host defense against
pathogens (6). On the one hand, the gut microbiota can help repair intestinal mucosal barrier
damage (7, 8); on the other hand, gut microbiota mediates host anti-pathogen defenses (9).

In the past decade, studies of germ-free (GF) mice have provided clues to elucidate the
complexity of the intestinal microbiota (10, 11) and its importance to host health (12, 13).
Mounting research shows that at least a thousand different gut microbiota species, such as
Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and others, contribute to host defense
against harmful microorganisms (14, 15).

Recently, several studies have begun to elucidate the molecular mechanisms underlying how
the gut microbiota regulates host innate immunity against pathogens (16, 17), including a role in
helping the host resist pathogen colonization. In this review, we summarize the main mechanisms
by which commensal bacteria, including certain probiotic species, actively prevent pathogen
colonization of the host.
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GUT MICROBIOTA AND ANTIMICROBIAL
PEPTIDES

Defensins
The α-defensins, microbicidal peptides mainly produced by
Paneth cells, are key components of innate immunity. They
control pathogen growth within the intestine (18–20) and

their production can be directly elicited by both Gram-

negative and Gram-positive bacteria, as well as by bacterial
metabolites (e.g., lipopolysaccharide, lipoteichoic acid, lipid A,
and muramyl dipeptide) (21–23). By contrast, live fungi and

protozoa do not appear to stimulate Paneth cells and thus fail
to elicit Paneth cell degranulation (21). Nevertheless, recent
research has found that the gut microbiota plays an important
role in induction of α-defensins expression against pathogens
(24). In one in vitro study, live E. coli or S. aureus, live
or dead S. typhimurium, lipopolysaccharide (LPS), lipid A,
lipoteichoic acid (LTA), or liposomes could stimulate isolated
intact intestinal crypts, demonstrating that intestinal Paneth
cells may contribute to α-defensins secretion by sensing the
presence of exogenous bacteria and bacterial antigens (21).
To investigate whether gut microbiota possess the same or
similar functions, Shipra Vaishnava and colleagues used a CR2-
MyD88 Tg mouse model, whereby Paneth cells were the sole cell
lineage expressing MyD88, to demonstrate that Paneth cells may
directly sense enteric bacteria to trigger the MyD88-dependent
antimicrobial program. Furthermore, increased numbers of
Salmonella were observed to be internalized by mesenteric
lymph node (MLN) cells of MyD88−/− and germ-free mice
as compared to corresponding numbers observed for wild-
type mice (25). Similarly, transcriptional profiles have shown
that α-defensin gene (Defa) transcripts were less abundant in
intestinal microbiota-free mice and TLRs-deficient or MyD88-
deficient mice, but could be recovered after stimulation with
toll-like receptor (TLR) agonists, specifically agonists of TLR2
or TLR4 (26). Thus, commensal microbiota appears to protect
the host against pathogen invasion by triggering enteric Paneth
cell TLR-MyD88 signaling. Notably, this mechanism is distinct
from the NOD2-dependent antimicrobial response (25, 27, 28),
since the former mechanism entails triggering of expression of
multiple antimicrobial factors (25). However, several human-
based studies have demonstrated that mutations in the NOD2
peptidoglycan sensor actually did reduce secretion of α-defensins
(29–33). Therefore, these contradictory human and mouse study
results warrant further research. Notably, another study has
demonstrated that Cd1d−/− mice exhibited a defect in Paneth
cell granule ultrastructure that specifically resulted in an inability
to degranulate after bacterial colonization, with an increased load
of segmented filamentous bacteria (SFB) also noted (34). Thus,
no clear evidence demonstrates that CD1d mediates regulation
of gut microbiota via α-defensins expression.

Meanwhile, more recent research has begun to examine the
mechanism of how the gut microbiota influences α-defensins
secretion. Studies using the Caco-2 IEC line have demonstrated
that lactic acid strongly suppresses transcription of the α-
defensin gene, while cecal content may include as yet unidentified
factors which enhance concomitant α-defensin 5 expression (35).

However, contrary to the aforementioned results, Menendez
et al. found that Defa expression was partially restored in
vivo by lactobacillus administration to antibiotic-treated mice
(26). Notably, an emerging role of vitamin D, a lactobacillus
metabolite, has been recently discovered that exerts an effect
opposite on α-defensins expression to that exerted by lactate (36,
37). To reconcile these results, Su et al. used a mouse model and
certain feed formulations to demonstrate that VDD- and HFD
± VDD-fed mice exhibited reduced levels of expression of α-
defensin andMMP7 (a metalloproteinase that can proteolytically
convert pro-α-defensins to their mature and active forms)
within ileal crypts as compared to results for control and HFD
groups. Moreover, their results demonstrated a critical role
of vitamin D signaling in maintaining steady-state expression
of α-defensins and MMP7 under physiological conditions.
Subsequently, Su et al. have demonstrated that dietary vitamin
D deficiency resulted in loss of Paneth cell-specific α-defensins,
which may lead to intestinal dysbiosis and endotoxemia (38). Of
note, oral administration of α-defensin suppressed Helicobacter
hepaticus growth in vivo (38). Meanwhile, using complementary
mouse models of defensin deficiency (MMP7−/−) and surplus
(HD5+/+), Salzman noted defensin-dependent reciprocal shifts
in proportions of dominant bacterial species within the small
intestine with no changes in total bacterial numbers observed
(Table 1). Upon further research, this group observed that mice
overexpressing HD5 exhibited a significant loss of segmented
filamentous bacteria (SFB), resulting in reduced numbers of Th17
cells within the lamina propria (48). However, direct evidence
implicating the involvement of SFB in α-defensin production
is still lacking and studies on α-defensin regulation by specific
commensal microorganisms are still rare, warranting further
research. Nevertheless, in view of existing research results, we
believe that the discovery of specific microorganisms through
research focusing on specific metabolic pathways may be a more
fruitful approach.

With regard to β-defensins, which directly kill or inhibit the
growth of microorganisms (49), these agents have been shown
to exert antimicrobial activity against some species of enteric
pathogenic Gram-positive S. aureus and S. pyogenes, as well as
against Gram-negative P. aeruginosa, E. coli and the yeast C.
albicans (50). In fact, accumulating evidence has shown that,
similarly to α-defensins, β-defensins secretion is also regulated
by the gut microbiota. For example, using in vitro studies of
HT-29 and Caco-2 human colon epithelial cell lines, human
fetal intestinal xenografts have been observed to constitutively
express hBD-1 but not hBD-2, with upregulation of only the
latter in xenografts intraluminally infected with Salmonella (51).
Meanwhile, it has been independently shown that preincubation
of Caco-2 cells with live E. faecium significantly reduced S.
typhimurium internalization by 45.8%, while heat-killed E.
faecium pretreatment had no effect on pathogen internalization
(49). This result aligns with the latest research, which has shown
that only live gut microbiota, as modeled using Lactobacillus
acidophilus PZ 1129 and PZ 1130, Lactobacillus paracasei,
Lactobacillus plantarum, E. coli K-12, and E. coli Nissle 1917,
can strongly induce expression of hBD-2 in Caco-2 intestinal
epithelial cells in a time- and dose-dependent manner (39–42)
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TABLE 1 | Gut microbiota protects the host against pathogen infections and the relevant mechanisms.

Pathogens Gut microbiota Mechanisms References

Helicobacter hepaticus Lactobacillus Inducing α-defensin production from Paneth cells (38)

S. aureus

S. pyogenes

P. aeruginosa

E. coli

C. albicans

Lactobacillus acidophilus PZ 1129

Lactobacillus acidophilus PZ 1130

Lactobacillus paracasei

Lactobacillus plantarum

E. coli K-12

E. coli Nissle 1917

Inducing β-defensin production (39–42)

Klebsiella pneumoniae

Citrobacter rodentium

Enterococcus

Plasmodium chabaudi

L. reuteri

Allobaculum spp

Clostridium spp

Bacteroides spp

Inducing IL-22 production (43–46)

Salmonella typhimurium Bacteroides Inducing IL-17 production (47)

(Table 1). Notably, the E. coli strainNissle 1917, a non-pathogenic
Gram-negative strain isolated in 1917 by Alfred Nissle, elicited
the most marked expression of induced β-defensin expression in
vitro (39–42). Interestingly, Schlee et al. constructed several E.
coli Nissle 1917 deletion mutants and pinpointed flagellin as the
major stimulatory factor for triggering of β-defensin secretion
in the presence of that strain (40). Meanwhile, Wehkamp et al.
and others have found that E. coli Nissle 1917-induced β-
defensin expression in cell culture was mediated by NF-κB-
and MAPK/AP-1-dependent pathways (39–42). Nevertheless, in
vivo studies are still needed to confirm if gut microbiota can
induce β-defensins expression to reduce pathogen colonization
and control gut homeostasis (Table 1). Recently, to further
clarify the relationship between gut microbiota and β-defensin
secretion, Miani et al. used a mouse model and antibiotic
treatment experiments to study the participation of dysbiotic
microbiota and a low-affinity aryl hydrocarbon receptor (AHR)
allele in the defective pancreatic expression of mBD14 observed
in NOD mice. By utilizing 16S rDNA gene sequencing and
AHR ligand activity measurements, they demonstrated that
gut microbiota-derived molecules, including AHR ligands and
butyrate, promoted IL-22 secretion by pancreatic ILCs that
subsequently induced mBD14 expression by endocrine cells.
Therefore, dysbiotic microbiota and a low-affinity AHR allele
appear to explain defective pancreatic mBD14 expression of
mBD14 in NOD mice (24). Because only live gut microbiota can
stimulate secretion of β-defensins, we believe that specific gut
microbiota that possess special metabolic pathway functionality,
including pathways for secretion of AHR ligands, may possess the
ability to regulate secretion of β-defensins.

C-Type Lectins
The C-type lectins, also key components of innate immunity
that control growth of enteric pathogens (52–54), are expressed
by multiple small intestinal epithelial lineages (55, 56). REG3γ
and REG3β, two C-type lectins, provide protection against
infection by specific bacterial pathogens, including Enterococcus
faecalis (57–59), Yersinia pseudotuberculosis (60, 61), and Listeria
monocytogenes (57). Notably, additional evidence suggests
that C-type lectins actually mediate syncytium endosymbiont
defenses through prevention of pathogen colonization. To

further demonstrate how these lectins control bacterial
colonization of the intestinal epithelial surface, Vil-Myd88Tg

mice (mice with IEC-restricted Myd88 expression) were used
to determine whether surface Myd88 present on epithelial cells
was sufficient to restrain bacterial colonization (55). The results
showed that secretion of C-type lectins required both activation
of the MyD88 pathway (62) and recognition of syncytium
endosymbionts by TLRs (63). Furthermore, Earle et al. used
a pipeline method to assess intestinal microbiota localization
within immunofluorescence images of fixed gut cross-sections.
The results indicated that elimination of dietary microbiota-
accessible carbohydrates (MACs) resulted in thinning of mucus
within the distal colon that increased microbial proximity to
the epithelium and heightened inflammatory marker REG3β
expression (64). These results align with those from an earlier
study of transcriptional profiles of duodenum, jejunum, ileum
and colon samples, which demonstrated that MyD88 was
essential for syncytium endosymbiont-induced colonic epithelial
expression of antimicrobial genes Reg3β and Reg3γ, with Myd88
deficiency associated with both a shift in bacterial diversity and
a greater proportion of SFB in the small intestine (65). In fact,
other research found that conventionally raised Myd88−/−

mice exhibited increased expression of antiviral genes in the
colon, which correlated with norovirus infection of the colonic
epithelium (65). Therefore, it can be concluded that both the
activation of the MyD88 pathway and recognition of syncytium
endosymbionts by TLRs are indispensable for triggering C-type
lectins secretion (Figure 1). Recently, Ju et al. used antibiotic-
treated mice to study differences between metronidazole-treated
and control groups, and observed reduced abundance of
Turicibacteraceae, overgrowth of E. coli and higher levels of
Reg3β and Reg3γ mRNA for the metronidazole-treated group
(66). These results provide a basis for the study of the effects
of specific gut syncytium endosymbiont organisms on C-type
lectins secretion.

Other accumulating evidence has shown that the mammalian
gut contains a rich fungal community that interacts with the
immune system through the C-type lectin receptor Dectin-1. To
demonstrate whether symbiotic fungi influence C-type lectins
secretion that prevents pathogen colonization, Iliev et al. studied
mice lacking Dectin-1 and observed increased susceptibility
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FIGURE 1 | Gut microbiota plays an important role in the induction of antimicrobial peptides expression against pathogens. Antimicrobial peptides are key

components of innate immunity to control pathogen growth within the intestine. Accumulated evidence identified that gut microbiota can contribute to the expression

of antimicrobial peptides and play a central role in host defense against pathogens. Paneth cells could directly sense gut microbiota through cell-autonomous myeloid

differentiation primary response 88 (MyD88)-dependent toll-like receptor (TLR) activation, triggering expression of α-defensins and C-type lectins. With regard to

β-defensin, gut microbiota induce β-defensin expression in cell culture mediated by NF-κB- and MAPK/AP-1-dependent pathways in vitro. Then β-defensin interacts

with intestinal epithelial cell (IEC) through CCR6 to activate epithelial restitution and barrier repair.

to chemically induced colitis due to altered responses to
indigenous fungi. Moreover, in humans they identified a gene
polymorphism for Dectin-1 (CLEC7A) that is strongly linked to
a severe form of ulcerative colitis (67). Independently, Eriksson
et al. found that CLR-specific intracellular adhesion molecule-
3 grabbing non-integrin homolog-related 3 (SIGNR3) is the
closest murine homolog to the human dendritic cell-specific
intercellular adhesion molecule-3-grabbing non-integrin (DC-
SIGN) receptor. Both receptors recognize similar carbohydrate
ligands, such as terminal fucose or high-mannose glycans.
Notably, using the dextran sulfate sodium-induced colitis model,
IGNR3 has been observed to recognize fungal members of
the commensal microbiota, with SIGNR3−/− mice exhibiting
a higher level of TNF-α in colon (68). Therefore, symbiotic
fungi appear to communicate with the host via the C-type lectin
receptor to maintain intestinal homeostasis. However, as yet no
direct evidence has been found to determine whether symbiotic
fungi can regulate selectin secretion, warranting further research.

GUT MICROBIOTA ELICITS
INFLAMMASOME ACTIVATION
AGAINST PATHOGENS

Inflammasome activation is an important innate immune
pathway that prevents pathogen invasion via secretion of
proinflammatory cytokines IL-1β and IL-18, as well as through
induction of pyroptosis (69–74). It is well-documented that

inflammasomes come from two main sources, namely myeloid-
and epithelial-derived inflammasomes. While they share several
common features, it should be noted that inflammasomes
of distinct origins may exhibit different features and effector
functions. For example, from amechanistic of view, macrophage-
and epithelial cell-derived inflammasomes are activated with
different intermediate processes. While IL-18 processing is
dependent on caspase-11 in IECs, caspase-1 is responsible for
the processing of IL-18 in myeloid cells (75). In addition,
compared with myeloid cells, IECs constitutively express IL-18,
while produce little IL-1β (76–78). Moreover, unlike myeloid
inflammasomes, IEC inflammasomes is capable of producing
considerable amounts of prostaglandin upon activation (79).
Intriguingly, the signaling circuitry between epithelial and
myeloid inflammasomes are also different. For example, in
homeostasis conditions, both NLRP3 and PYCARD genes
have been shown to be highly expressed in murine primary
macrophages, while mouse airway epithelial cells can only
express a low level of PYCARD and cannot express NLRP3 (80).

Accumulating evidence suggests that gut microbiota can
activate NLRC4 and NLRP3 inflammasome pathways against
pathogens (81–83). Enterobacteriaceae and the pathobiont
Proteus mirabilis, which are members of the normal flora of
the human gastrointestinal tract (84, 85), were shown to induce
robust IL-1β production through NLRP3 activation mediated
by intestinal Ly6Chigh monocytes (86, 87). Indeed, recruited
Ly6Chigh monocytes have been shown to express a variety of
inflammasome components, such as NAIPs (71, 88, 89), NLRC4
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(89), NLRP1 (90, 91), NLRP6 (92, 93), AIM2 (94), caspase-
1 (95), caspase-4 (96) (in humans), ASC (93), and IL-18 (87,
97, 98). Meanwhile, Seo et al. have also demonstrated that
Proteus mirabilis (a Proteobacteria phylum member) induced
NLRP3 activation and IL-1β production (86). Interestingly,
bacterial components from other Proteobacteria, such as LPS
produced by Pseudomonas spp., have even been shown to induce
host mental depression symptoms via NLRP3 inflammasome
activation (99). Other interesting lines of research have shown
that in addition to gut commensal bacteria, the mammalian
gut contains a rich fungal community which also appears to
activate the inflammasome pathway. This community includes
the human commensal fungus Candida albicans (C. albicans),
which colonizes gastrointestinal and vaginal tract mucosal
surfaces and appears to promote inflammasome activation
during AOM-DSS-induced colitis (100). In further support of
this finding, direct peptide administration experiments had
previously demonstrated that candidalysin, a peptide derived
from the hypha-specific ECE1 gene, acted as a fungal trigger for
NLRP3 inflammasome-mediated maturation that was sufficient
for inducing IL-1β secretion mature macrophages in an NLRP3
inflammasome-dependent manner (101).

In recent studies, numerous other gut microbiota metabolites
have also been demonstrated to elicit inflammasome pathways
against pathogens. For example, gut microbiota-derived
adenosine triphosphate (ATP) has been shown to co-operate with
NLRP3 (also known as CIAS1) (102) via the macrophage P2X7
receptor (103) to induce assembly of a cytosolic protein complex
containing ASK and caspase-1 (70, 104–106) that eventually
leads to inflammasome activation (106). Another important
gut microbiota metabolite, short-chain fatty acids (SCFAs), end
products of fermentation of dietary fibers by anaerobic intestinal
microbiota, have also been implicated in inflammasome
activation (107). SCFAs binding to GPR43 on colonic epithelial
cells to stimulate K+ efflux and hyperpolarization has been
shown to lead to NLRP3 inflammasome activation, with
subsequent acceleration of cell maturation and secretion of IL-1β
(108) and IL-18 (77, 109).

GUT MICROBIOTA CAN ENHANCE
INTERLEUKIN EXPRESSION TO CLEAR
INVADING PATHOGENS

IL-22
IL-22 is important in maintaining mucosal barrier integrity
and is produced by many different types of innate immune
cells (110–113). This cytokine has been shown to play a host-
protective role during infection by a wide range of pathogens,
including Klebsiella pneumoniae (114), Citrobacter rodentium
(115, 116), vancomycin-resistant Enterococcus (117, 118) and
Plasmodium chabaudi (119). One IL-22-dependent mechanism
involved in pathogen clearance involves the increased presence
of antimicrobial proteins within the mucosa (120) that include
the following: calprotectin and lipocalin-2, the latter of which
binds to the siderophore enterochelin, with both acting to
limit iron availability in the gut (120); C-type lectins, which

regenerate islet-derivative proteins Reg3β and Reg3γ that control
some components of the microbiota (58, 120, 121); and S100A8
and S100A9, two antimicrobial peptides that heterodimerize
to form calprotectin, an antimicrobial protein that sequesters
zinc and manganese to prevent microbial access to these
nutrients (122). Although epithelial antimicrobial defenses also
exist, many pathogens can still colonize mucosal surfaces
to establish infections (120, 123). Nevertheless, accumulated
evidence has shown that IL-22 is rapidly induced in response
to pathogen invasion through activation of host AhR via
specific gut microbiota-derived molecules (Figure 2) (124, 125).
For example, Lactobacillus species (specifically, L. reuteri) can
activate IL-22 production by gut type 3 innate lymphoid
cells (ILC3) (126–128), while other studies have shown that
supplementation with three commensal Lactobacillus strainswith
high tryptophan-metabolizing activities was sufficient to restore
intestinal IL-22 production (43, 129). Indeed, additional work
has shown that Lactobacillus species could utilize tryptophan as
an energy source and produce a metabolite, indole-3-aldehyde
(IAld), which could then activate AhRs present on ILCs (126,
130). In addition to Lactobacillus strains, other recent studies
have shown that Allobaculum spp. (43), Escherichia coli (44),
Clostridium spp. (45), and Bacteroides spp. (46) can also utilize
tryptophan to produce IAld and elicit IL-22 production (Table 1).
Meanwhile, other studies have shown that activated ILCs secrete
IL-22 to protect the host against opportunistic pathogens by
reducing pathogen colonization (120, 131). In fact, other innate
immune cells, such as NKT cells, γδ T cells and macrophages,
have very recently been shown to secrete IL-22 under regulation
by gut microbiota via the AhR pathway (132). Therefore,
gut microbiota may prevent pathogen infection by collectively
enhancing IL-22 expression via the AhR pathway.

IL-17
IL-17 is a well-established crucial cytokine that is involved in
limiting invasion and dissemination of pathogens, including
Salmonella typhimurium (133), by both recruitment of
neutrophils and by the induction of production of antimicrobial
peptides (131, 134). Recent studies have demonstrated that
both the abundance and activation status of IL-17-producing
intraepithelial lymphocytes (IELs) are modulated by commensal
bacteria, with enrichment of the γδT cell population of IELs
representing an important source of innate IL-17 production
(135, 136). Notably, a comparative study of GF mice and SPF
mice has shown that the number of TCRγδ IELs is decreased
in GF mice (133). Moreover, in addition to the regulation of
IELs numbers, the gut microbiota may also regulate activation of
TCRγδ IELs, as reflected by a report showing that production of
IL-17 by TCRγδ IELs is decreased in GF mice (137). Meanwhile,
antibiotic-treatment and monocolonization of mice have been
used to demonstrate that the great majority of γ/δ T cells
within peritonea of SPF mice are CD62L− γδT cells, which
are activated γδT cells, with GF mice possessing far fewer
CD62L− γ/δ T cells than SPF mice (47). Notably, additional
research suggests that specific commensal bacteria, excluding
metronidazole-sensitive anaerobes, such as Bacteroides species,
are required for maintaining IL-1R1± γδT cells (47), a result
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FIGURE 2 | Gut microbiota enhance the expression of IL-22 against invading pathogens. IL-22 is important in maintaining the integrity of mucosal barriers and can be

produced by many different types innate immune cells, which induce the expression of various antimicrobial proteins, including lipocalin-2, calprotectin, C-type lectins,

S100A8, S100A9, and so on to clear pathogens. Increasing evidence identified that gut microbiota enhances the expression of IL-22 to protect the host against

pathogens. The results show that gut microbiota utilize tryptophan as an energy source and produce a metabolite, indole-3-aldehyde (IAld), which in turns activated

Ahr on innate immune cells. Once activated, innate immune cells will secrete IL-22, which protects the host against opportunistic pathogens by reducing their

colonization.

that aligns with previous research results by another research
group (138) (Table 1). In conclusion, gut microbiota influences
the abundance and activation status of IL-17-producing TCRγδ

IELs to protect the host from pathogen infection and to maintain
intestinal homeostasis. In addition, lymphoid tissue inducer
(LTi) cells and NCR− ILC3 cells also appear to function as
important sources of innate IL-17 production (127). However,
few studies have investigated how gut microbiota regulate these
cell types, warranting further research in this area.

IL-10
IL-10 is an anti-inflammatory cytokine that plays a central
role in regulating the host immune response to pathogens,
thereby preventing host damage and maintaining normal
tissue homeostasis (139–141). Accumulating evidence suggests
that macrophages are an important source of innate IL-10
and that the gut microbiota plays a vital role in mucosal
innate IL-10 generation under homeostatic conditions (142–
144). For example, studies in GF mice and SPF mice have
shown that colonic lamina propria from germ-free mice
exhibited lower IL-10 production (142), a reduction later
confirmed to be a 50% reduction in steady-state IL-10
levels (142–144). To elucidate the mechanism by which gut
microbiota regulate intestinal macrophage IL-10 production,
Hayashi et al. used macrophage-specific IL-10-deficient mice
to demonstrate that Clostridium butyricum (CB), a distinct
cluster I Clostridium strain, induces IL-10 production to

ultimately prevent acute experimental colitis. However, while CB
treatment had no effects on IL-10 production by T cells, IL-10-
producing F4/80±CD11b±CD11cint macrophages accumulated
within inflamed mucosa after CB treatment. Subsequently,
more rigorous examination demonstrated that CB directly
triggered IL-10 production by intestinal macrophages there
via the TLR2/MyD88 pathway (144). Meanwhile, Ochi et al.
recently found that dietary amino acids directly regulate Il-10
production by small intestine (SI) macrophages. Using mice
fed via total parenteral nutrition, a significant decrease of IL-
10-producing macrophages in the SI was observed, while IL-
10-producing CD4± T cells remained intact. Likewise, enteral
nutrient deprivation selectively decreased IL-10 production
by the monocyte-derived F4/80± macrophage population, but
had no effect on non-monocytic precursor-derived CD103±

dendritic cells. Notably, in contrast to regulation of colonic
macrophages, replenishment of SI macrophages and their IL-
10 production were not regulated by gut microbiota (145).
Contrary to results obtained under steady-state conditions, an
injury model used to study participation of microbiota to explain
observed IL-10 increases post-injury yielded different results.
Specifically, comparison of Il10 mRNA levels in uninjured
intact tissue and day-2 post-wound tissue isolated from SPF
or GF mice indicated that IL-10 mRNA was induced in
post-wound colonic tissue isolated from both SPF and GF
mice. Therefore, injury-triggered IL-10 increases appeared to
be largely microbiota independent (146), although the reasons
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remain unclear regarding the differing effects of the gut
microbiota observed in different model systems. Nevertheless,
we hypothesize that local damage-associated molecular proteins
(DAMPs) may regulate immune cells more rapidly and strongly
post-intestinal damage, resulting in either a failure of gut
microbiota to temporally adjust or a masking of any microbiota-
based regulatory effect.

CONCLUDING REMARKS

Gut microbiota resists colonization and growth of invading
pathogens through the induction of expression of antimicrobial
peptides, IL-22, IL-17, and IL-10 while eliciting inflammasome
activation. Because the underlying mechanisms of how
the gut microbiota resists pathogenic invasion still remain
obscure, future studies are clearly needed to identify gut
microbiota functions against various pathogens toward
the development of promising strategies to treat infectious
diseases. For instance, E. coli Nissle 1917 can induce
β-defensin expression mediated by NF-κB- and MAPK/AP-
1-dependent pathways (39), while Lactobacillus spp. activate
IL-22 production against opportunistic pathogens to reduce
colonization (147, 148). Therefore, transplanting suitable
specific gut microbiota to compete with specific pathogens
could be an effective defense strategy. However, since this
strategy poses new disease risks, strategies that restore

intestinal homeostasis and promote host immune system
may serve to more safely clear pathogens. To this end,
identifying specific gut microbiota functions and defining
normal gut microbiota populations are necessary first steps
toward development of safer strategies for strengthening
host defenses against pathogens. Moreover, research on the
function and mechanisms of gut microbiota metabolites may
facilitate development of novel therapeutic strategies to combat
drug-resistant pathogens.
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