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Somatosensation is composed of two distinct modalities: touch, arising from sensors in
the skin, and proprioception, resulting primarily from sensors in the muscles, combined
with these same cutaneous sensors. In contrast to the wealth of information about
touch, we know quite less about the nature of the signals giving rise to proprioception
at the cortical level. Likewise, while there is considerable interest in developing encoding
models of touch-related neurons for application to brain machine interfaces, much
less emphasis has been placed on an analogous proprioceptive interface. Here we
investigate the use of Artificial Neural Networks (ANNs) to model the relationship
between the firing rates of single neurons in area 2, a largely proprioceptive region
of somatosensory cortex (S1) and several types of kinematic variables related to arm
movement. To gain a better understanding of how these kinematic variables interact to
create the proprioceptive responses recorded in our datasets, we train ANNs under
different conditions, each involving a different set of input and output variables. We
explore the kinematic variables that provide the best network performance, and find
that the addition of information about joint angles and/or muscle lengths significantly
improves the prediction of neural firing rates. Our results thus provide new insight
regarding the complex representations of the limb motion in S1: that the firing rates
of neurons in area 2 may be more closely related to the activity of peripheral sensors
than it is to extrinsic hand position. In addition, we conduct numerical experiments to
determine the sensitivity of ANN models to various choices of training design and hyper-
parameters. Our results provide a baseline and new tools for future research that utilizes
machine learning to better describe and understand the activity of neurons in S1.

Keywords: somatosensory cortex, limb-state encoding, single neurons, reaching, monkey, artificial neural
networks

INTRODUCTION

“Encoding” models, which describe neural firing as a function of externally observed variables,
have widespread utility in both basic neuroscience and neural engineering. The encoded variables
typically are measures of limb state, such as hand position or joint angles. Modeling these relations
serves as an engineering tool for quantifying a mapping between neural state and limb state, and
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can serve as the foundation for afferent brain machine interfaces
(Bensmaia and Miller, 2014; Saal et al., 2017). It can also
illuminate the way that neurons encode information within the
nervous system. Comparisons between models relating neural
activity to extrinsic representations of limb state such as hand
position, and those which use intrinsic representations of limb
state such as joint angles or muscle length, can provide insight
into the features of posture and movement encoded by neurons
at different CNS levels.

Here we focus on proprioception, the sense of limb position
and movement that is critically important in the control
of limb movement; patients who have lost proprioception
have great difficulty making precise, coordinated movements
(Sainburg et al., 1993, 1995). Proprioception derives from
sensors in the muscles, tendons, joints, and skin, with each
sensor type responding to different aspects of the mechanics
of limb motion, including both kinematics and kinetics. These
sensors project information differentially into the four areas
(1, 2, 3a, and 3b) of the primary somatosensory cortex (S1)
(Friedman and Jones, 1981; Pons et al., 1985; Krubitzer and
Kaas, 1990; London and Miller, 2013). Area 2 is the first
area in which signals from all these receptor types converge
on single neurons. This convergence suggests that activity
of neurons in this area may reflect a transformation of the
afferent information into a common code, perhaps encoding
task relevant extrinsic features such as hand position (Soechting
and Flanders, 1989; McIntyre et al., 1997; Lacquaniti and
Caminiti, 1998; Cohen and Andersen, 2002). However, these
prior works are limited by their exclusive reliance on few,
low dimensional, extrinsic signals such as Cartesian hand
position, only distantly related to the signals produced by the
afferent receptors.

Alternatively, neural activity in area 2 may instead represent
lower-level features of limb state, such as change in muscle
length or joint angles. If so, correlations with higher-level features
such as hand position might simply arise from the relation
between intrinsic and extrinsic coordinate systems. If area 2
somatosensory neurons respond to low-level features of the
proprioceptive input, variables such as muscle length might
provide superior prediction of neural activity than hand position.
This is the fundamental issue we seek to address.

In recent years there has been great interest in using machine
learning techniques to capture maps between neural state and
limb state (Benjamin et al., 2018). Advances in the application
of Artificial Neural Networks (ANNs) to neural data have
produced promising results in classification, detection, and
prediction for various tasks (Goodfellow et al., 2016). The main
advantage of using ANNs over other techniques such as Wiener
(Pohlmeyer et al., 2007) or Kalman filters (Wu et al., 2003) is
that they are more effective in learning intricate structures in
the data (Glaser et al., 2017) and in approximating complex
nonlinear functions. Recurrent Neural Networks (RNNs) have
been employed for modeling motor cortical data for decoding
applications where they have substantially outperformed linear
methods (Sussillo et al., 2012; Glaser et al., 2017; Han
et al., 2017). For proprioceptive neurons, current models are
largely limited to simple linear mappings from planar hand

position or interaction forces to the firing rate of single cells
(Prud’homme and Kalaska, 1994).

In this paper, we use ANNs to model the firing rates of
neurons in area 2. Our group has recently developed techniques
that allow us to record the full seven degrees of freedom
(DOF) configuration of the arms of monkeys as they reach,
simultaneously collecting the spiking activity from about 100
neurons. We use this rich dataset to investigate the ability of
ANNs to predict the recorded neural activity and to identify the
most relevant input features. We explore the kinematic features
that provide the best network performance, and find that intrinsic
parameters, like muscle length, are more informative than hand
kinematics; this suggests that the firing rates of neurons in area 2
may be more closely related to the activity of peripheral sensors
than to extrinsic hand position.

While there is great promise in applying machine learning
methods to neural encoding and decoding problems, there are
also great challenges. Unlike linear methods, the complex and
nonlinear nature of ANNs implies no guarantee that a network
will learn the appropriate function (Goodfellow et al., 2016).
Selection of datasets, data preprocessing, network architecture
design, and choice of training hyper-parameters may all affect
the performance of the resulting network. Because an exhaustive
search over the space of these options is computationally
intractable, modelers resort to a trial and error approach, based
on past experience and focused on a limited range of choices.
Since poor design choices may result in a subpar performance
that negates the potential benefits of the ANN approach, we
investigate how these training parameters affect the ability of
an ANN to predict neural activity. We experiment with various
choices of hyper-parameters and training protocols, such as the
amount of training data provided to the neural networks and
the choice of regularization during training. We also explore the
advantages of recurrence over the feature extraction approach of
feedforward network design.

We emphasize that the ANNs are not being used here as
models of the actual brain networks that connect limb receptors
and cortical neurons, but as tools for implementing a map
from potentially relevant inputs to neural activity in S1. The
comparative analysis of the performance of networks trained on
different subsets of inputs is then used to gain novel insights
on the encoding properties of S1 neurons. In addition to its
specific neuroscience interest, we use this case study to highlight
the usefulness of ANN models while emphasizing that their
implementation is not automated. There are many decisions
to be made when implementing these methods; we provide
information on which are the most important and what the
implications of the various choices are, so as to guide the selection
of appropriate parameters for the application of such machine
learning approaches to the analysis of systems neuroscience data.

MATERIALS AND METHODS

Ethics Statement
All animal care, surgical, and experimental procedures in this
study are consistent with the Guide for the Care and Use of
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Laboratory Animals and were approved by the Institutional
Animal Care and Use Committee of Northwestern University.
Nonhuman primates are an important experimental model
in the investigation of motor control and the somatosensory
system. The somatosensory and motor areas of the nervous
system, as well as the musculoskeletal system of these animals
are similar to humans, providing a good analog for the
human model. Macaque monkeys are not endangered and are
commonly used in laboratories studying motor control and brain
machine interfaces, allowing for ready comparison of results
across experiments. We take great care that these animals are
comfortable and remain in good health, both for humane reasons
and because animals that are stressed or in poor health do not
perform as well as healthy animals.

Data Collection
To collect the datasets, three male rhesus macaque monkeys were
trained to perform simple visually guided reaching tasks. The
monkeys gripped the handle of a robotic manipulandum, and
moved the handle within a plane to direct a cursor displayed
on a video monitor. The monitor displayed a sequence of
randomly placed targets; the monkeys were given a small liquid
reward after successfully moving the cursor through a short
sequence of targets.

After training, we surgically implanted 96-channel arrays
of recording electrodes (Blackrock Microsystems) into area 2.
Monkeys were anesthetized with isoflurane gas and a craniotomy
was performed above S1. We reflected the dura and isolated the
arm area of S1 by recording from the surface of cortex with
bipolar silver electrodes while palpating the arm to drive a neural
response. Once we located the portion of cortex responding to
arm stimulation, we inserted the recording array adjacent to the
post-central sulcus. We then replaced the dura and the original
bone flap to close the craniotomy, and sutured the skin closed.
After surgery, monkeys were provided antibiotics and analgesics
to prevent infection and pain.

Once the monkeys had recovered from surgery, we recorded
neural data during task performance. Data were bandpass filtered
between 250 and 7,500 Hz, and spiking of neurons was collected
as a waveform snippet surrounding each threshold crossings
of the extracellular voltage. After data collection, the snippets
were manually sorted using Offline Sorter (Plexon) to isolate
single neurons from background activity. Sorted units were then
imported into MATLAB, and spike times were grouped into
50 ms bins to provide a 20 Hz estimate of the firing rate.

To record the configuration of the monkey’s arm, we used
custom motion tracking software based on the Microsoft Kinect.
We shaved the monkey’s arm and applied paint markers to the
skin. Our software computed the three-dimensional position of
these markers. Offline, these data were imported into OpenSim
(Delp et al., 2007) and the marker locations were registered to
a seven DOF model of the monkey’s arm (Chan and Moran,
2006). Using the 7DOF model, we computed the time-varying
joint angles and muscle lengths. These data were also resampled
at 20 Hz. We modeled one dataset from each monkey, with 60
neurons (length 49 min), 79 neurons (11 min), and 14 neurons
(33 min), respectively, and referred to as Datasets H, C, and L.

Network Training and Performance
Measure
To model the mapping from the kinematic variables to the
neural firing rates, we used a fully connected feedforward neural
network architecture. The number K of input units equaled the
number of kinematic variables chosen as predictors. The network
then consisted of two hidden layers, each composed of 64 units,
followed by an output layer with as many units as the number
N of recorded neurons whose activity the network was trained to
predict. Units in the hidden layer used a rectified-linear activation
function (Nair and Hinton, 2010) as the static nonlinearity;
units in the output layer used an exponential nonlinearity. To
establish a baseline for performance comparison, we also trained
a Generalized Linear Model (GLM), equivalent to a network
without hidden layers, which finds a linear map from K input
units to N exponential output units. Supplementary Figure S1
shows a number of examples of the performance advantage
of a multi-layer neural network compared to a GLM, which
illuminates the intrinsic nonlinearity of the input-output map
captured by the network models.

The design decisions that led to the layered network
architecture described above resulted from exploring the ability
of the network to predict the activity of the recorded S1 neurons.
We explored decreasing and increasing the number of hidden
layers by one, and increasing and decreasing the number of
hidden units in each layer. We also explored using a hyperbolic
tangent nonlinearity for the hidden units. The architecture
described above provided the best performance among the
various alternatives we explored.

We implemented the networks using the Keras library with
Tensorflow v1.1 as a backend and a Titan X GPU card. We trained
the networks using the Adam optimizer (Kinga and Adam, 2015),
commonly used in the deep learning literature. We also explored
using the SGD optimizer (Bottou et al., 2018), but with less
successful results.

Given a K × 1 input vector xm at time step m, the neural
network learns a function fθ (·) which maps the K input variables
to the N × 1 vector of binned spike rates ŷm for all N
neurons, i.e., ŷm = fθ (xm) at time step m. To solve for the
unknown parameters θ of the neural network, we considered
the likelihood of the data given the model under the Poisson
assumption of independent time bins and under the assumption
of statistical independence of neural activity conditioned on the
inputs, namely:

Prob
({
ynm

}
|θ
)
=

N∏
n=1

M∏
m=1

(
ŷnm

)ynm
ynm!

e−ŷnm (1)

Here ŷnm is the predicted firing rate of the n-th neuron at
time bin m (the n-th element of the vector ŷm), and ynm is the
measured firing rate of the n-th neuron at time binm.The Poisson
loss function to be minimized is minus the logarithm of the
likelihood of the data given the model, which is normalized by
the number N of predicted neurons and the number M of time
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bins (the number of samples in the dataset) to obtain:

L =
1

NM

N∑
n=1

M∑
m=1

(
ŷnm − ynm log

(
ŷnm

))
(2)

In this approach, instead of training a separate model for
each neuron n, we trained a single neural network to predict
the activity of all neurons simultaneously. Therefore, for each
time bin m, the network takes a K × 1 vector xm as its input
and returns an N × 1 output vector ŷm of the predicted firing
rates of all neurons at that time. It is implicitly through these
outputs that the loss function depends on the parameters θ. As
has been established in many years of accumulated experience
training feedforward neural networks, a training approach such
as this one, based on fitting the firing activity of all neurons
simultaneously, allows the network to develop richer task-
appropriate internal representations, which in this case capture
information about the population firing rate covariance as well as
individual firing rates.

We trained the network by gradient descent using batch sizes
of 128 data points to perform our weight updates. We define
one epoch as the number of iterations necessary for the weight
updates to incorporate changes due to all data points in the
training set. We set the maximum number of training epochs
to 200, but training stopped earlier due to the use of an early
stopping procedure for regularization. A loss was computed at
the end of each epoch, as the average loss over a validation dataset
that comprised a randomly selected 20% of the training data. The
early stopping procedure halted the training when the validation
loss computed at the end of one epoch exceeded its value at the
preceding epoch. This procedure typically stopped the training
before 50 epochs.

The performance of the trained networks was evaluated using
a 10-fold cross validation procedure within each of the three
datasets. To implement cross validation, the data was randomly
divided into 10 subsets, the folds. In each experiment, one fold
was used as the test dataset, and the others were used for
training/validation. In all figures we report mean ± standard
deviation across the folds. Example learning curves, one for each
of the three datasets, are provided in Supplementary Figure S2.

We quantify the performance of the trained neural network
with the pseudo-R2 measure (pR2), denoted for each neuron n as
pR2

n, and defined as:

pR2
n = 1−

∑M
m=1(ynm log

(
ynm

)
− ynm)−

∑M
m=1(ynm log

(
ŷnm

)
− ŷnm)∑M

m=1(ynm log
(
ynm

)
− ynm)−

∑M
m=1(ynm log

(
ȳn
)
− ȳn)

(3)
Here, ȳn is the mean firing of neuron n over all M

time bins, the duration of the recording session. The pR2

measure is analogous to the variance-accounted-for (VAF)
metric, sometimes referred to as R2, and commonly used in
model fitting with Gaussian statistics. pR2 is generalized to
incorporate the approximate Poisson statistics of the neural
spiking data (Cameron and Windmeijer, 1997). In the ratio, the
numerator is the difference between the maximum log likelihood
achievable by an ideal model in which each prediction ŷnm
precisely matches the data ynm, and the log likelihood of the

fitted model being evaluated. In the denominator, the first term
is again the log likelihood of the ideal model, while the second
term is the log likelihood of a model that just predicts the mean
firing rate ȳn. As each network prediction ŷnm approaches its
true value ynm, the pR2 value approaches 1. If the deviations
from true values are larger than the fluctuations around the mean,
then the pR2 (like VAF) will be negative. When averaged across
all N neurons, pR2

n provides a principled way of quantifying
prediction performance.

RESULTS

Intrinsic Measures of Limb State Lead to
Better Predictions Than Extrinsic Hand
Kinematics
To explore the effect of limb state variables expressed in different
coordinate systems, we used as inputs both extrinsic hand
kinematics (i.e., the x-y positions, velocities, and accelerations
of the hand), as well as intrinsic measures of limb state (muscle
lengths, joint angles, and the first derivatives of these measures).
In addition, we explored combinations of these inputs. We
selected these variables as inputs because of their physiologic
relevance and pertinence to previous work.

We trained networks for each of the three datasets. Figure 1
shows the performance of the ANNs trained on a particular type
of input for each dataset. Prediction performance was higher
when using the intrinsic kinematics of muscle lengths and joint
angles, instead of extrinsic hand kinematics. Also, the use of
first order derivatives of the various kinematic signals instead
of the signals themselves resulted in a further improvement in
performance. For all three datasets, we observed a significant
increase in performance when using the first derivative of
the muscle length signal instead of the signal itself. We also
experimented with training ANNs with multiple types of inputs,
and observed that using a combination of all extrinsic and
intrinsic kinematic signals resulted in an improved performance
over separately using each type of signals. Finally, Figure 1 reveals
that training with a combination of all signals and their first
derivatives leads to a further increase in performance. Further
discussion of these results is included in the Discussion section.

We provide a more detailed visualization of ANN
performance in Figure 2. For dataset H, in particular, the
pR2 showed much variability over neurons, ranging from
0.026 to 0.37. A possible explanation for this broad range in
performance is the variability in firing rates across neurons.
The limited number of data points for neurons with low firing
rates may make training less reliable and hinder prediction
ability. Alternatively, neurons that fire infrequently might be
related to the input signals in a highly nonlinear fashion, in
a functional relation that is more difficult for the network to
capture. However, there was no correlation between the mean
firing rate of a neuron and the mean ability to predict it by using
an ANN (measured as pR2; Figure 3A).

A more interesting pattern can be seen in the relationship
between the mean firing rate of a neuron and the variation
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FIGURE 1 | Performance of the ANNs trained on different classes of inputs.
The first three bars correspond to networks trained to predict S1 neural
activity using different types of kinematic signals as inputs: extrinsic hand
coordinates (red), joint angles (blue), and muscle lengths (green). The next
three bars correspond to networks trained using the first derivative of these
signals. The last three bars indicate encoding performance with all kinematic
signals, their derivatives, and the full combination of signals and derivatives,
respectively. Each ANN model was trained on the simultaneous prediction of
the activity of all recorded neurons.

FIGURE 2 | Boxplots illustrate the prediction performance across all neurons
for all three datasets: H, L, and C. These results correspond to networks
trained with the full combination of signals X (hand position, joint angles, and
muscle lengths) and their derivatives Ẋ as inputs.

FIGURE 3 | Effect of the firing rate on measures of encoding performance.
(A) Relation between the firing rate of each neuron and the mean ability to
predict its activity as measured by pseudo-R2 (pR2). (B) Effect of the firing
rate of each neuron on the variability (standard error of the mean; SEM) of
prediction performance (pR2) for that neuron. Here SEM refers to fluctuations
across the 10-folds used for cross validation.

in the accuracy of the prediction performance across folds
(Figure 3B). Each training experiment for a new fold starts
from a new random initial point in the parameter space {θ};
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the solution could be vastly different across the different folds,
particularly when training with insufficient data. Specifically,
Figure 3B shows that the lower the mean firing rate, the larger the
variability. This indicates that lower firing rates do not provide
the ANN with enough data, eventually leading to instability
in ANN training.

Neural Population Covariance Improves
Prediction Performance
We expect the ANNs to be able to learn the correlations
between neurons, and to use this additional information to
make better predictions. To test this, we consider dataset H
and instead of fitting all N neurons together, we fitted an
ANN with two hidden layers on each neuron individually.
For each neuron n, we compare the performance on that
neuron achieved by the network trained to predict all
neurons, denoted by pR2

n, all, to that achieved by the network
trained to predict only the activity of neuron n, denoted
pR2

n, ind. For each neuron n, we compute the difference
1pR2

n = pR2
n, all − pR2

n, ind .
Figure 4 shows a histogram of the computed differences

for all 60 neurons recorded in dataset H. Positive value
means that performance increased when the network was
trained to predict all neurons simultaneously. Because most
of the differences 1pR2

n are positive, we conclude that the
neural network model does indeed benefit from a simultaneous
training that incorporates information about correlations in
the neural activities. Since the networks were trained using
early stopping regularization (see section on the Effect of
Regularization on the Predictive Performance of the Model),
this effect is not due to potential over-fitting when training
networks to predict the activity of single neurons. We restricted
this experiment to dataset H because of the high computational
demand of calculating 1pR2

n, which requires the additional
training of as many networks as the number N of recorded
neurons in the dataset.

FIGURE 4 | Histogram of 1pR2
n, the difference in pseudo-R2 for each neuron

in dataset H when subtracting the value obtained from a model that predicts
only this specific neuron from the value obtained by the model that predicts all
neurons together. A positive value implies an increase in performance in favor
of the model trained to predict the activity of all neurons simultaneously.

FIGURE 5 | Performance comparison between a recurrent ANN and a
feedforward ANN using the same input variables. Here X refers to using hand
position, joint angles, and muscle lengths as inputs; Ẋ refers to using the first
time derivatives of these signals as inputs; and X + Ẋ refers to using both the
signals and their temporal derivatives as inputs.

Recurrent Models Do Not Yield Better
Performance
Because our data consists of time sequences, it is natural to
ask whether network architectures with recurrence and memory,
such as RNNs, would better fit the data by exploiting time
correlations. Such architectures may be superior to simple feature
engineering approaches where time derivatives are explicitly
computed and provided as inputs to feedforward networks.

For these comparisons, we used an RNN with three hidden
layers, each composed of 32 units using the hyperbolic tangent
as the static nonlinearity. This choice of architecture followed
from experimenting with a varying number of hidden layers
and units per layer, and choosing the architecture with the best
average pR2 performance across folds. We investigated the role
of temporal correlations by first quantifying the performance of a
RNN with inputs given by kinematic signals but not including
explicitly calculated temporal derivatives, and comparing it to
the performance of a fully connected feedforward ANN with
the same inputs. Not surprisingly, the RNN outperformed
the feedforward ANN (Figure 5). This implies that the
RNN is capable of acquiring internal representations of the
temporal derivatives of its input signals to further improve its
predictive performance.

However, Figure 5 reveals that if the feedforward ANN
is given as inputs the temporal derivatives of the kinematic
signals, its performance matches that of the RNN based only
on the kinematic signals. We thus conclude that even though
the RNN was capable of learning to extract information about
temporal derivatives from the original inputs, it did not extract
any additional information beyond that available to a simpler
feedforward ANN to which these derivatives were explicitly
provided as inputs.

We also considered whether RNNs could learn more intricate,
higher order temporal information from the temporal differences
implicit in the first derivatives. To answer this question, we
compared the performance of an RNN to that of a feedforward
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FIGURE 6 | Dependence of the predictive performance of an ANN on the
amount of training data. Randomly selected increasingly large contiguous
subsets of the datasets H, L, and C were used to train a succession of ANNs.

ANN when both networks were provided with both the kinematic
signals and their temporal derivatives as inputs. Figure 5 reveals
that in this scenario, RNNs were competitive with fully connected
ANNs, but not better. This suggests that the RNN does not
extract useful higher order temporal information from these
inputs. Because of training difficulties typically associated with
RNNs, such as vanishing and exploding gradients (Pascanu et al.,
2013), we conclude that feedforward ANNs are a better model for
applying deep learning methods to neural encoding problems.

How Much Data Is Needed to Train an
ANNs for Neural Encoding?
With artificial neural networks, the amount of available training
data is a key factor that determines the network’s performance.
If the dataset is too small, the neural network is prone to
over-fitting. We have investigated how much data is needed
to appropriately fit a two layer ANN trained to predict neural
activity in S1. We artificially produced datasets of different sizes
by randomly selecting contiguous time windows of different
duration within the original training data. We used each of these
dataset to train an ANN; the hyper-parameters were kept fixed
across these training sessions. The results of these experiments
are shown in Figure 6.

As expected, for a given dataset, the more data points are
used to train the network, the better the performance. The results
for dataset H show that the performance of the ANN eventually
reaches an asymptote, beyond which adding more data does not
increase performance. Not enough data points were available
for dataset C to determine whether the model had reached its
asymptotic performance. From the results for datasets H and L,
we may conclude that at least 10 min of data are needed to train
an ANN to predict S1 neural activity.

The Effect of Regularization on the
Predictive Performance of the Model
In scenarios with short time segments of data available for
training, using regularization during ANN training is usually a
necessity to prevent over-fitting. Many regularization schemes
are available in the neural network learning literature. The
most commonly used one is early stopping (Caruana et al.,

2001), which uses a separate validation dataset to evaluate the
loss function during training. Once the validation loss stops
decreasing, training is stopped. All the results reported in
previous sections were based on neural networks trained using
early stopping, which halts the training procedure when the loss
on the validation dataset computed at the end of an epoch is
higher than its value computed at the end of the preceding epoch.
Another common regularization procedure is weight decay,
based on either L1 or L2 norms (Goodfellow et al., 2016). In this
approach, an additional term is added to the cost function so as
to penalize large values of the parameters {θ} . The added term is
either λ||θ ||1 or λ||θ ||2, with 0 < λ < 1. One major disadvantage
of weight decay over early stopping is that it requires the choice of
a value for the hyper-parameter λ, which determines the strength
of the regularization.

We compared the effect of these three different regularization
approaches (Figure 7). The performance of networks trained
using early-stopping regularization is shown for each of the three
datasets by the color-coded horizontal dotted lines. Using weight-
decay regularization increased performance only for λ below
a threshold that depended on the dataset. Since dataset H
included a large number of data points, less regularization was
needed to prevent over-fitting, and weight-decay was beneficial
only for λ < 10−5. In contrast, datasets C and L included a
smaller number of data points, and thus they benefited from
weight decay with larger values of λ. We noted no significant
differences between L1 and L2 weight decay. From these
experiments, we conclude that early stopping may be the most
reliable choice of regularization for training an ANN to predict
neural activity.

DISCUSSION

The number of studies of the predominantly tactile areas of
S1 (areas 3b and 1) greatly exceeds that of proprioceptive
areas. A rough indication is that searches for touch and cortex
yield more than three times more hits than proprioception and
cortex. Of those focused on areas 3a or 2, many have examined
movements of the hand or wrist rather than the more proximal
limb (Yumiya et al., 1974; Tanji, 1975; Gardner and Costanzo,
1981; Kim et al., 2015), or the grasping portion of a reach
(Iwamura and Tanaka, 1996). There is a small number of studies
of single-neuron discharge during reaching movements, which
conclude that the activity of most neurons in these areas is
well correlated with the duration and speed of hand movement
(Burbaud et al., 1991) as well as limb posture, often in a
nonlinear and spatially nonuniform manner (Tillery et al., 1996).
The most comprehensive study of neurons in 3a and 2 found
largely linear relations between activity and both movement and
endpoint force, as well as a nonlinear, direction-related hysteresis
in the tonic, position component (Prud’homme and Kalaska,
1994). More recently, several studies have used both linear and
nonlinear methods to decode kinematics from the activity of
multiple S1 neurons. Position predictions were either similar to
(Weber et al., 2011) or somewhat better (Carmena et al., 2003)
than velocity. In another study, linear predictions of hand velocity
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FIGURE 7 | Effects of early stopping, L1, and L2 regularization on the performance of ANN models for the three datasets: H, C, and L. No early stopping was used
when either L1 or L2 weight decay regularization was added to the loss function.

were more accurate than nonlinear, probably because the latter
were overfit (Averbeck et al., 2005).

In recent years there has been great interest in using
machine learning techniques, and more specifically layered
neural networks (Kietzmann et al., 2019), as models for the
prediction of neural activity from parameters of movement
(Glaser et al., 2019). This neural “encoding” problem is the
complement of the more typical computational problem of
“decoding” movement related signals from the activity of
many simultaneously recorded neurons. A previous study has
compared several different modern machine-learning methods
to GLMs in their success to predict the activity of neurons from
primary motor and sensory cortex, using hand position, velocity,
and acceleration as inputs (Benjamin et al., 2018). Here, we
compared the ability of recurrent and feedforward networks to
predict the activity of neurons in proprioceptive areas of S1 when
using several different types of kinematic signals as inputs. In this
approach, we exploit the ability of supervised machine learning
methods to identify predictive variables (Glaser et al., 2019).

While recurrent networks can identify and represent temporal
dependencies in the data, we noted that simply providing
a feedforward network with externally computed, first order
temporal derivatives as additional inputs resulted in performance
indistinguishable from that of an RNN. For physiologists and
neural engineers, this may present an attractive alternative:
rather than attempting to construct an RNN model, with all
the intricacies of design and training entailed, they may instead
provide more pertinent inputs to a feedforward ANN, and attain
the same performance. It is the ability of the feedforward ANN to
identify predictive variables that circumvents the need for a prior
identification of relevant input features.

We also explored the performance benefits of various
regularization techniques. Although there was no difference
between L1 and L2, there was a range of minimal weight
decay for which prediction slightly outperformed that of early
stopping. However, this slim advantage is likely outweighed by
the decreased performance with only slightly greater weight
decay. Furthermore, we monitored the sensitivity of the ANN

models to properties of the neural activity (e.g., whether neurons
with high firing rates can be better predicted), and investigated
whether performance can be enhanced by taking account of the
covariance present in the activity of the neural population.

Working with ANNs usually requires access to large datasets,
so that optimal fitting to the data does not result in over-
fitting and decreased ability to capture the true input-output
relation. In many fields, it is possible to synthesize such large
datasets artificially. For example, the training sets used for many
traditional machine learning tasks such as image recognition or
classification can be augmented by surrogate data obtained by
applying input transformations known not to modify the output
label. This is not possible in applications to neural encoding, as
we do not know the nature of variations in sensed input that
would not affect the resulting neural activity. It is thus important
to know whether the available neural data is sufficient. To answer
this question, we investigated the impact of the amount of
training data on performance, and found that 10 min of data is
adequate for training a two-layer feedforward ANN to predict
neural activity in area 2 neurons of S1.

In addition to exploring appropriate network design and
training strategies, we can use these results to hypothesize about
how neurons in S1 encode information about limb state. Our
models indicate that the classic view of neural modulation in
area 2, as being determined exclusively by motion of the hand
(Prud’homme and Kalaska, 1994), is incomplete. The accuracy
of our predictions was increased dramatically by the addition
of information about either joint angles or muscle lengths.
Furthermore, the activity of these neurons appears to be more
directly related to the length and change in length of muscles than
to either joint angles or hand position. In addition, we found that
the ANNs encoded firing rates more accurately when using the
temporal derivatives of the kinematics as their inputs instead of
the kinematic signals themselves. These results make good sense
given the strong response of muscle spindles to muscle velocity.

Our results suggest that the activity of proprioceptive S1
neurons is most directly a response to low-level information
about muscles’ length and change in length. To the extent that the
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conscious perception of limbs’ state relates to their position and
motion in extrinsic coordinates, the additional transformations
that map sensory information onto an extrinsic frame would
then take place in higher cortical areas (e.g., posterior parietal
cortex), presumably in combination with task relevant goals and
information from other sensory modalities, particularly vision.

Some of our experimental findings, such as velocity
rather than position leading to better performance, were not
unexpected. Others were less obvious. For example, the ANNs
had lower performance when trained with joint angles instead of
muscle lengths, even though the muscle lengths were computed
directly from joint angles. In principle, the networks could have
learned these relations and acquired internal representations
of muscle lengths, however, that was not the case. Similarly,
we found that using a combination of extrinsic and intrinsic
kinematic inputs led to better performance than either alone.
This was also unexpected, as the extrinsic hand position does not
provide additional information beyond that already present in
muscle length. We may thus conclude that ANNs do not learn
to model the relation between intrinsic and extrinsic variables
unless explicitly trained to do so.

These results provide a blueprint for the application of
machine learning techniques to modeling neural activity in
sensory cortices. Although restricted to S1, the implementation
issues discussed here should facilitate the application of machine
learning techniques to related problems in other areas of the
brain. As for S1, our results provide an intriguing hint that
this area may be involved in the representation of low-level
signals related to muscles’ length and change in length, rather
than the classic hand-centric model in extrinsic coordinates
(Prud’homme and Kalaska, 1994).

A rapidly emerging area of brain machine interfacing is the
development of afferent interfaces intended to restore sensation
of the limb to individuals with spinal cord injury or limb
amputation (Weber et al., 2012; Tabot et al., 2013; Tyler, 2015;
Lebedev, 2016). These afferent interfaces must transform limb
state information into stimulus trains applied to the peripheral
or central nervous system. The encoding models presented here
are well suited to that task.
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FIGURE S1 | Performance comparison between ANNs and a Generalized Linear
Model (GLM), essentially an ANN with without hidden layers. A separate ANN or
GLM was trained for each neuron in dataset H. We show the comparative
performance for those neurons where the GLM pseudo-R2 on the test sets was
greater than zero. The optimization of the GLM failed for many of the neurons; this
suggests that the intrinsic nonlinearities provided by hidden layers are crucial to
model the map from inputs to S1 neural activity.

FIGURE S2 | Example learning curves for datasets H, C, and L. These learning
curves correspond to models trained with the full set of inputs to predict the
activity of all recorded S1 neurons simultaneously. Early stopping regularization
was used to halt training automatically. The validation set consisted of a random
sample of 20% of the training data.
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