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With salt stress presenting a major threat to global food production, attention has turned
to the identification and breeding of crop cultivars with improved salt tolerance. For
instance, some accessions of wild species with higher salt tolerance than commercial
varieties are being investigated for their potential to expand food production into
marginal areas or to use brackish waters for irrigation. However, assessment of individual
plant responses to salt stress in field trials is time-consuming, limiting, for example,
longitudinal assessment of large numbers of plants. Developments in Unmanned Aerial
Vehicle (UAV) sensing technologies provide a means for extensive, repeated and
consistent phenotyping and have significant advantages over standard approaches.
In this study, 199 accessions of the wild tomato species, Solanum pimpinellifolium,
were evaluated through a field assessment of 600 control and 600 salt-treated plants.
UAV imagery was used to: (1) delineate tomato plants from a time-series of eight
RGB and two multi-spectral datasets, using an automated object-based image analysis
approach; (2) assess four traits, i.e., plant area, growth rates, condition and Plant
Projective Cover (PPC) over the growing season; and (3) use the mapped traits to identify
the best-performing accessions in terms of yield and salt tolerance. For the first five
campaigns, >99% of all tomato plants were automatically detected. The omission rate
increased to 2–5% for the last three campaigns because of the presence of dead and
senescent plants. Salt-treated plants exhibited a significantly smaller plant area (average
control and salt-treated plant areas of 0.55 and 0.29 m2, respectively), maximum growth
rate (daily maximum growth rate of control and salt-treated plant of 0.034 and 0.013 m2,
respectively) and PPC (5–16% difference) relative to control plants. Using mapped plant
condition, area, growth rate and PPC, we show that it was possible to identify eight
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out of the top 10 highest yielding accessions and that only five accessions produced
high yield under both treatments. Apart from showcasing multi-temporal UAV-based
phenotyping capabilities for the assessment of plant performance, this research has
implications for agronomic studies of plant salt tolerance and for optimizing agricultural
production under saline conditions.

Keywords: UAV, imagery, phenotyping, wild tomato, Solanum pimpinellifolium, salt tolerance, growth, yield

INTRODUCTION

Approximately 20% (45 million ha) of irrigated land is salt-
affected (Machado and Serralheiro, 2017). Salt stress, caused by
either saline or sodic soils, represents a major threat to global
food production (Rao et al., 2013), with estimates of up to $30
billion in agricultural losses annually (Qadir et al., 2014). The
problem is particularly acute in arid and semiarid environments,
where irrigation associated with insufficient drainage of water
from the sub-soil causes saline waters to rise into the root zone
(Pitman and Lauchli, 2002). Salinity also occurs in irrigated soil
because of the accumulations of soluble salts introduced via
the continuous use of irrigation waters containing medium to
high quantities of dissolved salts (Al-Hassoun, 2007; Ferchichi
et al., 2018). Ultimately, excess salts cause a water deficit in
plants due to osmotic stress and lead to the accumulation of
sodium ions in plant shoots where they disrupt key biochemical
processes (Zhang and Blumwald, 2001; Rao et al., 2013),
resulting in yield losses. With estimates of global crop production
needing to increase by more than 60% by 2050 (United
Nations World Water Assessment Programme [WWAP], 2014;
Senthilnath et al., 2016), breeding crops with improved salt
tolerance represents a research priority (Munns and Tester, 2008;
Messerer et al., 2018).

The commercial tomato is one of the world’s major
horticultural crops, with a global annual production of
approximately 178 million tons (FAOSTAT, 2016). Tomato
varieties generally tolerate salinity levels up to 2,500 µS/cm,
but above this level, the quality and yield often declines. To
overcome yield losses due to salinity, the use of salt-tolerant wild
tomato species as a genetic resource for improving commercial
varieties has been explored. Indeed, some accessions of the wild
tomato species S. pimpinellifolium, have shown traits of increased
salt tolerance, representing a potential candidate for breeding
(Zhang and Blumwald, 2001; Rao et al., 2013; Razali et al., 2018).
As it is closely related to S. lycopersicum, S. pimpinellifolium
has been used as a donor for many commercially important
tomato traits (Zuriaga et al., 2009; Rao et al., 2013; Razali
et al., 2018). S. pimpinellifolium is native to Peru and Ecuador,
where it is adapted to diverse environmental conditions, ranging
from coastal desert climates to humid and foggy conditions at
higher altitudes (Zuriaga et al., 2009; Rao et al., 2012). With this

Abbreviations: CHM, Canopy Height Model; DSM, Digital Surface Model; DTM,
Digital Terrain Model; IQR, interquartile range; NDVI, Normalized Difference
Vegetation Index; NIR, near-infrared, Q1, first quartile; PPC, plant projective
cover; Q3, third quartile; RE, red edge; RGB, red-green-blue; RMSE, root mean
square error; S. pimpinellifolium, Solanum pimpinellifolium; UAV, Unmanned
Aerial Vehicle; UgCS, Universal Ground Control Software.

diversity of environmental adaptions, some S. pimpinellifolium
accessions might be suited to arid environments with saline soils
elsewhere in the world.

Field trials are used to assess plant responses to soil
conditions, fertilizers, diseases, abiotic stressors (e.g., heat, water,
nutrients, wind, salinity) and many other growth factors in
agriculturally and economically relevant settings (Singh et al.,
2016). Plant phenotyping, i.e., the assessment of a plant’s
observable characteristics and traits, such as its architecture, and
biochemical and biophysical properties, is performed in order
to identify key determinants of growth and yield (Yang et al.,
2017). Effective field-based phenotyping is still considered a
bottleneck to improve efficiency in breeding programs (Singh
et al., 2016). While field trials are an effective setup for assessing
plant traits and responses to different types of abiotic stress
factors, phenotyping large numbers of plants in the field is often
time-consuming, labor-intensive and subjective, especially for
collection of time-series data that demand repetitive collection
procedures (Sugiura et al., 2015; Holman et al., 2016). Given that
abiotic stresses adversely affect photosynthesis and the growth
of stems, leaves, and roots and, consequently, yield and fruit
quality, there is potential for remote sensing technologies to
measure these manifested characteristics in a more efficient
and consistent manner. Indeed, a number of remote sensing
approaches have already been developed for rapid and non-
destructive assessment of responses to biotic and abiotic stress in
tomato plants (Li et al., 2014).

Zhang et al. (2002, 2003, 2005) used field spectroscopy,
airborne hyper-spectral and airborne multi-spectral imagery to
map tomato plants with late blight infection, finding that only
those plants with middle to late stages of infection could be
mapped. Their assessment, however, focused on patches in a
field rather than individual tomato plants, because of insufficient
spatial resolution of the airborne imagery available. More recent
developments in the use of Unmanned Aerial Vehicles (UAV)
provide the capability to obtain imagery with a much higher
spatial and temporal resolution, allowing individual plants and
their properties to be clearly differentiated (Shi et al., 2016;
Patrick and Li, 2017; Jung et al., 2018). Candiago et al. (2015) used
a UAV-mounted Tetracam to calculate three different vegetation
indices for assessment of tomato plants. However, they did
not invert the indices to estimate biophysical or biochemical
properties, and their assessment was not carried out at the
individual plant level. Therefore, these results may have been
affected by exposed bare ground in between plants. Senthilnath
et al. (2016) used two UAV-derived images to map individual
tomato fruits of each plant, testing different segmentation and
classification approaches. They found this task to be difficult,
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as many fruits were hidden by the leaves and stalks. Moeckel
et al. (2018) estimated crop height and biomass of eggplant,
tomato and cabbage plants from UAV-based Red-Green-Blue
(RGB) imagery and Structure-from-Motion and found a good
correlation with manual field observations. Enciso et al. (2019)
used RGB and multi-spectral UAV imagery collected during
the growing season of eight difference tomato varieties to
estimate plant height, canopy cover and NDVI, and found
that height could be accurately estimated and that canopy
cover was highly correlated with field-based LAI measurements.
However, this assessment was performed at the plot and not
individual plant level.

With an increasing number of studies focusing on UAV-based
high-throughput phenotyping of agricultural crops, methods
that might be appropriate for studies of tomato plants are also
increasing. For instance, Makanza et al. (2018) used UAV-based
RGB imagery to assess crop cover and canopy senescence in
a maize field trial and found that the UAV imagery-derived
plant traits showed moderately high heritability values for both
traits. Holman et al. (2016) used multi-temporal UAV-based
RGB imagery to measure wheat plant height, and found the
image time-series useful for estimating growth rates in relation
to fertilizer rates. Tattaris et al. (2016) obtained statistically
significant correlations between UAV-based thermal and multi-
spectral image-derived canopy temperature and Normalized
Difference Vegetation Index (NDVI) values in relation to biomass
and yield of wheat. Patrick and Li (2017) used UAV-based
RGB imagery to successfully measure structural parameters
(height, extent, canopy area, crown diameter and width) of
25 blueberry bushes. Many other recent examples of UAV-
based applications for high-throughput phenotyping exist, e.g.,
for responses to drought and nitrogen deficiency in dry bean
(Sankaran et al., 2018), vigor of different barley genotypes (Di
Gennaro et al., 2018), drought adaptive traits in durum wheat
(Condorelli et al., 2018), sorghum breeding for estimation of
plant height (Watanabe et al., 2017; Hu et al., 2018), black poplar
response to drought (Ludovisi et al., 2017), and for estimating
the intra-field crop height variability at commercial farm scales
(Ziliani et al., 2018). The reviewed literature on UAV-based high-
throughput phenotyping demonstrates the capability of multi-
temporal RGB and multi-spectral imagery for assessing growth
rates, architectural parameters and plant cover under abiotic
stress and control conditions.

While there has been a recent increase in agronomic research
using UAV-based high-throughput phenotyping of agricultural
crops (Shi et al., 2016), a survey of the literature indicates that
our study is the first one to interrogate individual tomato plants
in detail and demonstrate the utility of phenotyping tomato
plant traits toward assessing yield and salt tolerance. The aim
of this research was to develop and demonstrate a UAV-based
method for effective assessment of phenotypic characteristics
and salt tolerance of 199 wild tomato (S. pimpinellifolium)
accessions in a field trial. Specific objectives were to: (1)
automatically delineate tomato plants from a time-series of
eight RGB and two multi-spectral UAV image datasets, using
an automated object-based image analysis approach; (2) assess
plant area, growth rates (defined as daily changes of plant

area), condition and Plant Projective Cover (PPC, i.e., the
vertically projected leaves, suckers, flowers, stem and fruit)
over the growth season; and (3) identify the best-performing
accessions in relation to yield and salt tolerance. Additional
research contributions include using UAV-based image time-
series analysis for multi-temporal plant trait analysis and
determining their relations to salt tolerance and performance in
terms of yield. The developed UAV-based methods provide the
foundation to support more detailed plant phenotyping using
remotely sensed mapping and monitoring of plant area, growth
rates, biophysical and biochemical traits and health status of
different tomato plant varieties at the individual plant and even
sub-plant level.

MATERIALS AND METHODS

In this study, four phenotypic traits were mapped from multi-
temporal UAV imagery, including plant area, growth rate,
condition and PPC. While not previously explored for tomato
plants using UAV data, these traits were selected due to
their previous correlation with plant yield in other crop types
(Peñuelas and Filella, 1998; Holman et al., 2016; Lootens
et al., 2016; Jung et al., 2018; Makanza et al., 2018). To
assess these traits at the individual plant level, an object-based
image analysis approach was used as this technique has proven
most suited for imagery with high spatial resolution, where
mapped features may consist of hundreds or thousands of pixels
(Blaschke, 2010).

Study Area and Experimental Design
The study area was located at the King Abdulaziz University
Agricultural Research Station in Hada Al-Sham (21◦47′48′′N,
39◦43′35′′E), approximately 60 km east of Jeddah, Saudi Arabia.
The site is located in a tropical arid climate that receives less
than 100 mm of rainfall annually, and has a predominantly sandy
loam soil type. An area of 75 m × 75 m was established for the
experiment, comprising four plots of approximately 30 m× 30 m
per plot, with each containing 15 rows of 20 tomato plants
(Figure 1). A total of 1,200 tomato plants were planted, consisting
of 200 genotypes that included 199 S. pimpinellifolium accessions
(Supplementary Table S1) and one S. lycopersicum accession (the
commercial tomato, Heinz 1706). The 199 S. pimpinellifolium
accessions were originally collected in the 1950s and 1960s from
different sites in Peru and Ecuador. The seeds for these accessions
were obtained from the Tomato Genetics Resource Center at the
University of California Davis and propagated at King Abdullah
University of Science and Technology (KAUST) to generate a
stock of fresh seeds for use in this experiment.

All tomato plants were sown between October 1–2, 2017 at
a greenhouse nursery at KAUST and transplanted, following a
randomized design, 1 month later between November 1–2, 2017
into two control and two salt-treated plots. Each of the 200
accessions had three replicates in each of the two treatments. The
two control plots were irrigated solely with low salinity water
(approximately 27 mM NaCl, 900–1000 ppm), while the two
salt-treated plots were irrigated with water of increasingly saline
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FIGURE 1 | Overview of study site at King Abdulaziz University Agricultural Research Station in Hada Al-Sham on the January 14, 2018, showing the four plots and
four water tanks for irrigation as well as 36 plants with low, medium and high salt tolerance selected for focused field analysis.

concentration. In those plots, the salt concentrations ranged from
the original low salinity water to 127 mM NaCl (4500 ppm) from
November 14 2017, 197 mM NaCl (7000 ppm) from December
4, 225 mM NaCl (8000 ppm) from December 10, 254 mM NaCl
(9000 ppm) from December 18, and 183 mM NaCl (6500 ppm)
from January 12 2018 until the time of harvest (between January
16–22). Drip irrigation occurred twice daily, first in the morning
around sunrise and then in the evening after sunset, with both
lasting for 10 min in the first week, 15 min from the second week
(November 9), and 30 min from the eighth week (December 17)
until harvest, in line with the increasing water requirements of
growing plants. To ensure pure vegetation signals from the plots,
any weeds were removed manually before each of the UAV flights.
Maximum day and minimum night temperatures ranged from 27
to 37◦C and 12 to 24◦C, respectively, with a mean temperature
of 25.67◦C during the growing season. No rainfall was recorded,
but several sandstorms occurred during the growing season,
including on December 8 and 16 2017, on January 4, and between
January 8–10 2018. Workers washed the plants with non-saline
water and cleaned the plots after each event to prevent reflectance
attenuation of the plants.

Field Data for Geometric and
Radiometric UAV Image Calibration
Eight field campaigns were undertaken on November 9, 16, 23,
and 30 and on December 6 and 20 2017, together with January
7 and 14 2018. To support the UAV-based imagery, a range of
in situ data were collected concurrently, including ground control
points (GCPs) for geometric correction of the UAV, spectrometer
measurements of radiometric calibration panels, measurements
of plant dimensions, visual assessment of plant condition, and
ground-based plant photography for PPC measurements. Five
GCPs were installed and measured on the November 2 planting
date using a Leica GS10 base station with an AS10 antenna and
a Leica GD15 smart antenna as a rover (Leica Geosystems, St
Gallen, Switzerland). A single GCP was placed in the center of
the field site, and another at each of the four corners of the
study domain. All raw data from the base station and rover
were post-processed using Leica Geo Office (Leica Geosystems,
St Gallen, Switzerland). Six radiometric calibration panels were
produced using oak plywood boards painted with three coats
of matte paint in white, four shades of gray, and also in
black (Johansen et al., 2018). The reflectance values of the six

Frontiers in Plant Science | www.frontiersin.org 4 March 2019 | Volume 10 | Article 370

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00370 March 27, 2019 Time: 17:51 # 5

Johansen et al. UAV-Based Phenotyping of Tomato Plants

targets were measured with an ASD FieldSpec4 spectrometer
(Malvern Panalytical, Malvern, United Kingdom) and confirmed
to be near Lambertian. The root mean square error (RMSE) of
reflectance (scaled from 0 to 100%) was 0.17%, between 450 and
850 nm, corresponding to the spectral range of the collected
UAV RGB and multi-spectral imagery. The RMSE was based on
spectrometer measurements obtained at 13 different elevation
and azimuth angles, i.e., at nadir and at approximately 15, 30 and
45◦ off-nadir angles viewed from north, south, east and west, as
suggested by Johansen et al. (2018).

Field-Based Plant Phenotypic
Measurements
Measurements of morphometric features, condition and PPC
were undertaken on January 7, 2018 for 36 selected tomato plants
in the field. These tomato plants belonged to six accessions,
deemed to have high (2 accessions), medium (2 accessions)
and low (2 accessions) tolerance to saline irrigation (based on
results from an earlier field trial). Each of the six accessions
had six replicates (i.e., 36 plants in total), with three replicates
of each of the six accessions (i.e., 18 plants) planted in both
the control and salt-treated plots (for a total of nine plants in
each of the four sub-plots) (Figure 1). It should be noted that
because of the uneven number, i.e., three, of control and salt-
treated replicates, these were split unequally between plots, i.e.,
one salt-treated replicate in one salt plot and two salt-treated
replicates in the other salt plot. The selection of nine plants per
plot used for focused analysis was a compromise between the
number of plants that were practically feasible to assess within
a day and obtaining sufficient information on plant biophysical
and biochemical characteristics every second week during the
growing season for calibration/validation purposes.

While the area of each plant was difficult to estimate in the
field, ground-based measurements of the length and width of
the tomato plants provided quantitative measures that could be
directly compared against the UAV imagery. The length of each
of the 36 plants were measured along the plants’ longest axis,
with the longest width measured perpendicular to this axis. To
measure the PPC for the same 36 plants, one representative photo
was taken at midday on January 7 from a position vertically
above each tomato plant, after black material had been placed
underneath the plant canopy. The black background more easily
enabled the separation of plant material and gaps within the
canopy. Prior to analysis, each photo was cropped to exclude
any edge effects from irregularly shaped tomato plants and to
enable subsequent analysis to correspond to the UAV-based plant
delineation. To be consistent, an ellipse was drawn along the
approximate perimeter of the tomato plants and a rectangle
was placed within the ellipse and used for cropping the photos
(Figure 2). This ensured that the inclusion of areas with no
plant material along the tomato plant perimeter (cyan ellipse in
Figure 2) was minimized, while still including the majority of
the plant for assessment. Measurements of PPC were derived
following Scarth (2003) that converts vertical digital photos into
measurements of PPC, based on the principle described in Van
Gardingen et al. (1999).

FIGURE 2 | (A) Tomato plant with black material as background. The yellow
ellipse shows the approximate perimeter of the plant, while the black square
shows the part of the photo analyzed in (B). The cyan ellipse shows how
areas with no plant material were excluded to correspond with the UAV-based
plant delineation results. In this particular example, the studied plant had a
PPC of 91.31%.

The physical condition of each plant in the trial was assessed
visually on January 7. Senescent plants were labeled as “poor”
condition, while plants with no visibly green photosynthetically
active leaves and branches were labeled as “dead.” All other green
plants were labeled as being in “good” condition. Based on these
observations, empirical relationships were assessed between the
field data and UAV imagery.

Yield was measured from each of the harvested tomato plants
between January 18–26. This was done by manually counting
the number of both mature and immature fruits on each plant
and weighing them. Fruit maturity was assessed based on color,
with immature fruits being green and fruits with some redness
characterized as mature. For small plants (<1 kg shoot mass),
all fruits > 3 mm in diameter were counted and weighed. For
large plants (>1 kg shoot mass), a representative subset of the
whole shoot was selected, and all fruits > 3 mm in diameter were
counted, weighed and this subset data was used to extrapolate
overall yield by multiplying the measured yield by the ratio of the
whole shoot mass and the shoot mass of the selected subset. The
number of fruits ranged from 1 to 3349 per plant with an average
number of 528 fruits/plant. Yield ranged from 0.1 to 1433 g per
plant with an average yield of 227 g/plant.

UAV Image Collection and
Pre-processing
UAV-derived RGB imagery was collected using a Zenmuse X3
camera (Dà-Jiāng Innovations, Shenzhen, China) for all of the
eight field campaigns, while additional multi-spectral green (530–
570 nm), red (640–680 nm), red edge (730–740 nm) and near
infrared (NIR) (770–810 nm) imagery were collected with the
Parrot Sequoia sensor (Parrot SA, Paris, France) for the last
two campaigns. Both cameras were mounted on a DJI Matrice
100 (Dà-Jiāng Innovations, Shenzhen, China) Quadcopter for
coincident data capture. All UAV imagery were collected close to
solar noon under clear sky conditions at a speed of 2 m/s and a
height of 13 m. The Universal Ground Control Station (UgCS)
Client application (SPH Engineering, SIA, Riga, Latvia) was used
to autonomously collect the multi-spectral imagery with 68%

Frontiers in Plant Science | www.frontiersin.org 5 March 2019 | Volume 10 | Article 370

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00370 March 27, 2019 Time: 17:51 # 6

Johansen et al. UAV-Based Phenotyping of Tomato Plants

sidelap and 83% along-track overlap, recording photos once every
second. The RGB imagery was collected with an 82% sidelap
and 78% along-track overlap, recording photos every 3 s. The
sidelap was constrained by the field of view of a simultaneous
thermal image data capture (not presented in this research).
The RGB and multi-spectral imagery was processed in Agisoft
PhotoScan (Agisoft LLC, St. Petersburg, Russia) to produce a
georeferenced orthomosaic and Digital Surface Model (DSM) for
each data capture. A 13 m flying height produced a pixel size of
0.5 and 1.12 cm for the RGB and multi-spectral orthomosaics,
respectively. Based on the relationship between the field-derived
spectrometer measurements and the digital numbers of the
six radiometric calibration panels within the orthomosaics, the
digital numbers were converted to at-surface reflectance for
the RGB and multi-spectral imagery, using an exponential and
linear empirical line correction, respectively (Ahmed et al.,
2017; Johansen et al., 2018). This produced coefficients of
determination (R2) > 0.98 for all band combinations. In order
to produce a DSM, a dense point cloud was required. The dense
point cloud was produced from Structure-from-Motion at “high”
quality and using “mild” depth filtering to avoid removing points
representing the tomato plant canopies. A Digital Terrain Model
(DTM) was produced based on RGB imagery collected for the
bare ground prior to planting. A Canopy Height Model (CHM)
was produced by subtracting the DTM from the DSM.

Object-Based Image Analysis for
Delineation of Tomato Plants
An object-based approach was developed in the eCognition
Developer 9.3 software (Trimble, Munich, Germany) to delineate
all tomato plants from each of the eight RGB and two

multi-spectral image captures (Figure 3). First, a fine scale
segmentation (multiresolution segmentation algorithm, scale
factor = 6, shape = 0.1, compactness = 0.5) based on the
three visible bands and the Green-Blue index (Table 1) for
the RGB imagery, was performed to cluster pixels together
with similar spectral information. The multi-spectral bands
and all five band combinations reported in Table 1 were
used to segment the multi-spectral imagery with the same
multiresolution segmentation settings as the RGB imagery.
Objects representing the green parts of the tomato plants were
identified using empirically defined thresholds for a number
of spectral band combinations (see Table 1: Thresholds 1 and
Figure 4A). The identified areas were then expanded using a
region-growing algorithm to grow into neighboring objects as
long as slightly more relaxed thresholds (see Table 1: Thresholds
2) were fulfilled. A restriction imposed on this region-growing
was that unclassified objects could only be classified as tomato
plants if they bordered objects already classified as tomato
plants (Table 1: Thresholds 2 and Figure 4B). This procedure
was looped until the threshold conditions were no longer met
to ensure all objects belonging to an individual tomato plant
were encapsulated into a single large object. Unclassified objects
surrounded by tomato plant objects were then classified as,
and merged with, the respective tomato plant objects. Objects
classified as tomato plants with an area < 150 cm2 and
occurring more than 30 cm from a larger tomato plant object
were labeled as unclassified, as these represented incorrectly
classified objects.

A pixel-based object resizing algorithm was then used to
grow the tomato plants classified in the above steps beyond
their perimeter, to ensure that all parts of the individual plants
were included within the expanded objects (Figure 4C). This

FIGURE 3 | Flowchart showing the individual steps in the object-based image analysis process used for delineating the tomato plants.

TABLE 1 | Band combinations and associated thresholds (TH) used for the initial tomato plant identification in the object-based image analysis for the RGB and
multi-spectral UAV imagery.

RGB band combinations TH 1 TH 2 Multi-spectral band combinations TH 1 TH 2

Red-Green <22 <40 NDVI: (NIR-Red)/(NIR+Red) >0.26

RGB Brightness: >45 >45 Brightness: >33 >30

(Red+Green+Blue)/3 <160 <160 NIR+RedEdge+Red+Green

Green-Blue Vegetation Index: (Green-Blue)/(Green+Blue) >0.19 >0.19 NIR-RE-NDVI: ([(RedEdge+NIR)/2]-Red)/
([(RedEdge+Red)/2]+Red)

>0.30 >0.22

Green-Red Vegetation Index: (Green-Red)/(Green+Red) >−0.06 RE-NDVI: (RedEdge-Red)/(RedEdge+Red) >−0.23 >0.17

(Red-Green)/Blue <0.37 <0.7 (NIR+RedEdge)/2 >10

Relative border to tomato plants >0.001 Relative border to tomato plants >0.001
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FIGURE 4 | Individual steps in the object-based image analysis used to
automatically delineate the tomato plants from the UAV-based RGB and
multi-spectral imagery, using (A,B) various band combinations and thresholds
of these (green objects), and pixel-based object resizing to (C) expand and
subsequently (D) shrink plant objects (yellow outlines).

object expansion was only permitted into unclassified pixels to
prevent neighboring tomato plants from merging. These large
objects were then shrunk pixel by pixel in multiple loops, into
areas of either bright bare ground or dark shaded ground, while
smoothing the object perimeter and preventing shrinking into
plant parts of the objects with NDVI values > 0.20 (Figure 4D).
Finally, the CHM was used to expand the tomato plants into
areas with a CHM value > 15 cm, if these were bordering
the delineated tomato plants. Dead plants were identified based
purely on the CHM and a height threshold of 15 cm. Each of
the UAV-based delineation results were visually assessed and
manually edited as necessary. The field-derived measurements
of plant dimensions were used for evaluation of the UAV-based
delineation results.

Extraction of Phenotypic Traits
The delineation of individual tomato plants allowed for an
assessment of plant area. Plant area calculations were undertaken
both at the plot level and at the individual plant level. From each
plant object, it was possible to automatically derive a measure
of object area, length (longest axis), and width (perpendicular to
longest axis). Plant growth rates were assessed using the mapped
plant area from the eight UAV campaigns. To calculate growth
rate, the change in plant area between individual UAV campaigns
was divided by the number of days between the campaigns. This
provided seven growth rate measurements per plant through
the growing season.

To map plant condition, an empirical relationship was
developed between the field observations and derived vegetation
indices (Table 1). To do this, 50% of randomly selected
observations were used to empirically set NDVI and RE-NDVI
values to < 0.35 and < 0.22, respectively, based on the multi-
spectral imagery (Robson et al., 2017) to map plants that
were either dead or in poor condition. These values were set
to minimize errors of commission (incorrect inclusion of an
observation, causing overestimation) and omission (incorrect
exclusion of an observation, causing underestimation) based
on the field assessment of plant condition carried out on

January 7. For the RGB imagery, a Green-Red Vegetation Index
(Motohka et al., 2010) threshold value was set to −0.19 for
discriminating between plants in good and poor/dead condition.
Field observations of dead plants and plants in poor condition
were treated as one category because of the difficulty of spectrally
discriminating these two categories in the imagery. As all image
datasets were normalized to at-surface reflectance, the empirically
set thresholds were applied to all other image dates to map plants
in poor/dead condition.

The average value per plant of a range of vegetation indices
(Table 1) were correlated against field-derived measurements
of PPC, using linear and quadratic regression analysis, with
predictive performance examined based on the calculation of
RMSE. The vegetation indices producing best-fit equations with
the largest R2 value and the lowest RMSE for both the RGB and
multi-spectral imagery were used to predict PPC for all other
dates. This was deemed appropriate as all image datasets were
normalized to at-surface reflectance.

Identifying the Best-Performing Tomato
Plant Accessions
Each of the UAV-based phenotypic traits were first correlated
against field-harvested total yield mass (mass of mature and
immature tomato fruit) per plant to determine their suitability
for predicting the best-performing accessions. Jung et al. (2018)
used a sequential procedure for cotton genotype selection based
on UAV-derived canopy cover and open boll related phenotypic
features. They compared the selected UAV-based entries to
the highest yielding entries, with the UAV-selected entries
matching 80 and 73% of the minimum and average lint yield,
respectively. We adopted a similar approach to Jung et al. (2018)
in this research, using a sequential procedure whereby tomato
plant accessions were gradually eliminated based on the four
UAV-derived phenotypic traits (condition, plant area, growth
rate and PPC) to identify the best-performing accessions in
relation to yield. Thresholds for this elimination process were
set empirically.

To identify the best-performing tomato plant accessions, the
time-series information on plant condition was used first. All of
the plants that were initially classified as being in good condition,
but proceeded to either poor/dead condition or went missing
(e.g., due to wind damage or removal if dead), were identified
based on the UAV-based condition classification results. When
evaluating the UAV-based condition results for each of the 200
accessions (each accession had three replicates in each of the
two treatments), those accessions with ≥ 2 (with ≥ 1 of these
being salt-treated to incorporate salt tolerance into the condition
assessment) of the six plants classified as either poor/dead
condition or missing, were omitted from further analysis, as it
was deemed undesirable to have only≤ 4 out of 6 plants surviving
the growing season. The remaining accessions were then used for
the next elimination stage.

In the next stage, the mean area of the five or six tomato
plants per accession for the last UAV data collection on January
14 was used. To establish a threshold based on plant area to
identify the best-performing tomato plants, the tomato plants
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with the top 10% highest yield were identified based on the field
data of total yield mass per plant. These 120 tomato plants (out
of a total of 6 plants × 200 accessions; i.e., 1200 plants) were
then sorted based on UAV-derived plant area to identify the
smallest plant area, which was then used as a threshold. Plant
accessions with a mean plant area below this threshold on January
14 were eliminated.

For each tomato plant, seven growth rate measurements were
then obtained from the eight UAV datasets. The maximum value
of these seven measurements was assigned to each plant. The
maximum growth rate occurred within a short period around
the end of November for the majority of plants. The tomato
plants with the top 10% highest field-assessed yield were then
selected, and out of these 120 plants, the smallest maximum
growth rate value was used as a threshold. The average value for
the maximum growth rate of the five or six plants belonging to
each accession was then used to omit accessions if the average
value fell below this threshold.

PPC was then used for the eight UAV image data captures.
PPC values varied throughout the growing season with 25 and 75
quantiles ranging from around 66–86% and 82–91%, respectively.
The mean PPC per accession was first calculated for each of the
UAV datasets. Then, the number of PPC occurrences over both
85 and 80% were counted for the eight data captures. These
thresholds were empirically set based upon the UAV-derived
PPC values. Plant accessions with mean PPC values under 80%
occurring in at least four out of the eight data captures, were
excluded unless at least three out of the eight captures had PPC
mean values over 85%. These thresholds were set empirically
against the field-derived yield data. The remaining tomato plant
accessions that were not eliminated based on their condition,
area, growth rate and PPC values, were then compared with
the ranked list of yield performance per accession based on
field-derived data.

A similar approach was used for assessment of control and
salt-treated plants separately. As there were only three plants per
accession for each treatment, accessions with two or three plants
in poor/dead condition or missing were omitted. Thresholds
for plant area, maximum growth rate and PPC were obtained
as described above, but only based on 600 plants split between
the two treatments.

To gain further information on similarities and differences
between the evaluated phenotypic traits of the 200 accessions
mapped from the UAV imagery (i.e., condition, area, maximum
growth rate, PPC), a principal component analysis was
undertaken, using (1) all accessions and all plants (i.e., up to
six plants per accession); (2) all accessions and all salt-treated
plants (i.e., up to three plants per accession); and (3) all accessions
and all control plants (i.e., up to three plants per accession).
For the principal component analysis, the average plant area
on January 14, average PPC for all eight campaigns, and the
average value of the maximum growth rate were derived for each
accession. Condition was given a number from 0 and 6 based
on the number of plants in good condition on January 14 per
accession. For the separate analysis of the salt-treated and control
plants, the condition number ranged from 0 and 3, with only
three plants per accession.

RESULTS

Delineation of Tomato Plants
Object-based image analysis was used to delineate all tomato
plants from the 10 UAV image datasets. For the first five
campaigns, > 99% of all tomato plants were automatically
detected, with 7–12% of the automatically detected plants
requiring manual editing to ensure accurate delineation of the
perimeter of the tomato plants. The omission rate increased to
between 1.7–5.4 and 0.96–2.1% for the last three campaigns for
the RGB and multi-spectral imagery, respectively. The increased
rate was due to the presence of dead and senescent plants
exhibiting reflectance characteristics similar to neighboring bare
ground and falling below the 15 cm CHM threshold used to
discriminate plants from rocks and other small features above
ground level (Table 2). Consequently, this increased the need
for manual editing, with 9–16% of plants requiring adjustment
for the RGB imagery, respectively. In comparison, adjustments
of 5–12% of plants were required for the multi-spectral imagery.
The NIR and red edge bands of the multi-spectral imagery
facilitated the mapping of senescent plant parts as well as shaded
leaves compared to the RGB imagery, explaining the difference
in the plants requiring adjustment, although the higher spatial
resolution of the RGB imagery improved the ability to map small
senescent plants in some cases. For example, the use of the higher
spatial resolution RGB imagery enabled identification of three
plants that were incorrectly omitted using the multi-spectral
imagery of January 7, 2018 (Table 2). However, the RGB image
color and texture, i.e., spatial arrangement of color, of senescent
plant parts appeared very similar to that of disturbed bare ground
and bare ground with scattered shadows from plant branches
and leaves. Commission errors also occurred on a few occasions,
where weeds were not correctly removed. In such cases, these
were manually deleted. When comparing the area of those plants
that were manually adjusted to the automatically delineated area
prior to adjustment, it was found that ≤ 10% of the plant area
was adjusted in 88.7% of cases. Using measured plant length and
width for comparison with the automatically delineated plant
area, an R2 value of 0.85 (n = 132) with an RMSE of 0.052 m was
achieved, with smaller plants slightly overestimated and larger
plants slightly underestimated in length.

From Table 2 it can be seen that the number of delineated
plants increased from November 9–16 as a result of some plants
being too small to identify in the first collected UAV dataset
after manual editing. The number of plants started decreasing
significantly after December 20 as a result of the destructive
effects of a number of sandstorms, breaking plant stems and
contributing to the death of about 10% of plants prior to harvest.
Dead plants were removed prior to harvest to enable their yield
to be assessed, and hence some plants were absent in the last two
UAV data captures.

Assessment of Plant Growth
The time-series of delineated tomato plants derived from the
eight UAV campaigns, allowed an assessment of growth rates on
an individual plant and per plot basis. The dominating conditions
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TABLE 2 | Number of plants delineated per plot for the RGB and multi-spectral (MS) imagery for each of the eight campaigns and in brackets, number of plants omitted
by the automatic delineation process validated against visual assessment of the RGB and multi-spectral imagery.

Sensor Date Control plot 1 no.
of plants

Salt plot 1 no. of
plants

Salt plot 2 no. of
plants

Control plot 2 no.
of plants

Total no. of
plants

RGB 9 Nov 275 (2) 287 (2) 260 (3) 261 (3) 1083 (10)

RGB 16 Nov 294 (1) 294 (0) 291 (0) 293 (0) 1172 (1)

RGB 23 Nov 295 (0) 294 (0) 291 (0) 294 (0) 1174 (0)

RGB 30 Nov 295 (0) 294 (0) 292 (0) 294 (0) 1175 (0)

RGB 6 Dec 296 (0) 294 (0) 292 (0) 291 (1) 1173 (1)

RGB 20 Dec 294 (6) 291 (7) 291 (5) 289 (2) 1165 (20)

RGB 7 Jan 293 (16) 285 (15) 281 (6) 268 (2) 1127 (39)

MS 7 Jan 290 (8) 285 (9) 281 (5) 268 (2) 1124 (24)

RGB 14 Jan 256 (6) 254 (27) 267 (16) 268 (7) 1045 (56)

MS 14 Jan 256 (5) 255 (4) 267 (4) 268 (1) 1046 (10)

affecting the phenotypic traits were saline irrigation and high
wind speeds associated with sandstorms. As can be seen in
Figure 5, the steady increase in plant area per plot over time was
evident until December 6, but with a smaller increase for the two
salt plots. Saline irrigation was initiated on November 14, and
already by the following week, a clear distinction in plant area and
daily growth rates could be observed between the plants in the
control and salt plots. By December 6, the median plant area for
control plots 1 and 2 and salt plots 1 and 2 was 0.68, 0.45, 0.27 and
0.28 m2, respectively. Significant sandstorm damage with wind
gusts > 15 m/s occurred between December 6–20, resulting in
a reduction in plant area per plot. These winds caused branches
to break as well as damage to the stems of several plants. Between
December 20 and January 7, some recovery and continual growth
of plants was observed in the two control plots and salt plot 2,
whereas a slight decrease in plant area per plot occurred for salt
plot 1. After January 7, plant area per plot became difficult to
interpret due to the removal of dead plants. However, on average
the remaining plants still continued to grow slightly, even in the
two salt plots, until January 14 (Figure 5). At this time, the RGB
imagery showed an overall smaller plant area (370.63 m2 for all
four plots) than that mapped using the multi-spectral imagery
(404.52 m2 for all four plots): again the result of both senescent
and dead parts of the plants being difficult to either automatically
or manually delineate. On January 7, the difference in mapped
plant area between the RGB and multi-spectral imagery was
smaller (412.2 versus 420.57 m2, respectively) because of the
removal of several dead plants prior to UAV data collection.

While the two control plots had a significantly larger average
plant area and daily growth rate than the two salt plots for
individual plants from November 9 to December 6 (Figure 5),
there were still discernable differences between the two control
plots and between the two salt plots. Control plot 1 had the
highest growth rate between November 23–30 (0.0336 m2/day)
and the second highest growth rate between November 30 and
December 6 (0.0286 m2/day), both of which were higher than
the highest growth rate of control plot 2 (0.0228 m2/day),
which occurred between November 30 and December 6. These
differences in growth rates were likely due to differences in
environmental conditions between the plots (e.g., exposure to
wind). Salt plots 1 and 2 had similar growth rates between

November 9 to December 6, with their highest growth rate
of 0.0124 and 0.0135 m2/day, respectively, occurring between
November 30 and December 6. A common characteristic for all
four plots was the increase in plant area variability of individual
plants from November 9 to December 6 (Figure 5). Between
December 6 and 20, salt plot 1 sustained more damage and
a reduction in average plant area and growth rate than salt
plot 2 due to a strong sandstorm on December 19. With a
wind direction from the northeast, salt plot 1 experienced direct
exposure, whereas salt plot 2 was sheltered behind control plot
2. Control plot 2, facing northeast, was less impacted by the
sandstorm than control plot 1 in terms of average plant area
(Figure 5). This was attributed to the larger plant area in control
plot 1, with more force behind the movement from side to
side of larger plants due to wind gusts. The sandstorm caused
a significant decrease in plant area variability (Figure 5) and
physical movement of individual plants toward the southwest
(Figure 6). From December 20, the growth rates remained low
for the remainder of the growing season, with little variation in
plant area within the individual plots, and even less variability in
the area of individual plants toward January 14 (Figure 5).

Assessment of Tomato Plant Condition
For the January 7 campaign, 62 plants were visually classified as
being either dead or in poor condition, while 56 were missing
and 1006 plants were identified as being in good condition
(Figure 7). Using 50% of these data for training, empirical
thresholds were established from the coincident UAV-based
vegetation indices to maximize the number of plants mapped
correctly. Based on the Green-Red Vegetation Index (for the
RGB imagery) and NDVI and RE-NDVI (for the multi-spectral
imagery), 29 out of the 31 plants used for validation were
correctly mapped as being in poor/dead condition (omission
error = 6.5%). The two plants that were not identified had
index values close to the set thresholds. The set thresholds
were a compromise to reduce both omission and commission
errors. The commission error of the RGB and multi-spectral
imagery were 13.9% (5 incorrectly classified plants) and 8.8%
(3 incorrectly classified plants), respectively. This was because
some plants (RGB: 3, multi-spectral: 3) consisted of dead or
senescent plant material, while still having some remaining green
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FIGURE 5 | Box-and-whisker plots, showing the variation throughout the growing season in area of individual plants, occurring within each of the four plots. The
boxes cover the data from first quartile (Q1) to third quartile (Q3) (interquartile range (IQR)) with the line through each box and the X, displaying the median and mean
values, respectively. The whiskers show the limits of Q1–1.5(IQR) and Q3+1.5(IQR) and dots indicate outliers from the population of plants.

leaves, whereas other plants (RGB: 2) were very sparse but
spread out, so that the delineated plant area included background
reflectance characteristics from the soil, which reduced the
index values. A deterioration of plant condition started from
December 20 after the first sandstorm. This, combined with
additional subsequent sandstorms, resulted in 130 plants missing
(removed if dead) and 32 being in poor/dead condition on
January 14 (Figure 7).

Plot and Plant Analysis of Plant
Projective Cover
To predict PPC for all tomato plants within the plant trial,
a relationship between field measured PPC and a range of

vegetation indices was determined for the January 7 campaign.
For the multi-spectral imagery, the NIR-RE NDVI (Table 1)
produced the best correlation and the lowest RMSE, while
the Green-Red Vegetation Index best predicted PPC for the
RGB imagery (Figure 8). Employing a second order polynomial
prevented overestimation of PPC for plants with Green-Red
Vegetation Index values > −0.05 for the RGB imagery.
Comparing the predicted PPC values derived from the best-fit
equations from the RGB and multi-spectral imagery collected on
January 7 yielded similar results (RMSE = 5.31%, n = 1124). As
all image datasets were normalized to at-surface reflectance, the
best-fit equations were applied to all the other datasets to assess
PPC variation for the UAV image time-series (Figure 9).
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FIGURE 6 | Shifts in tomato plant location due to sandstorms occurring between December 6 and 20, 2017.

FIGURE 7 | (A) Cumulative number of plants either missing or being in a poor/dead condition throughout the growing season; and (B) mapped plants in either good
or poor/dead condition on January 7, 2018. Missing plants were either blown away during the sandstorms or removed if they were dead to allow their yield to be
assessed prior to harvesting the plots. At the time of flight on January 7, all dead plants had been removed in control plot 2.

Variation in PPC between plants within the two control plots
and salt plot 2 decreased gradually from November 9–30 and
from November 9–23 for salt plot 1 (Figure 9), suggesting
that the plants with initial low PPC caught up within three
weeks, while plants with initial high PPC did not increase as
much in terms of the absolute amount of PPC. PPC peaked
between November 23–30 for the four plots (Figure 9), which
was 1–2 weeks prior to the maximum recorded plant area, as
shown in Figure 5. This might have been attributed to compact
plants (around November 23) becoming more spread out due
to growth of longer branches (around December 6), and hence
decreasing the average PPC. Another contributor might have
been the occurrence of a shift in plant energy resources away
from the transfer of water and nutrient uptake toward producing
fruit rather than foliage at the end of November, which may

have contributed to the subsequent reduction in PPC per plant
(Davies et al., 2000; Kavvadias et al., 2017). Similar to our study,
Enciso et al. (2019) also found canopy cover of tomato plants
to peak approximately 1 month prior to harvest. The effects of
the sandstorms in combination with the two different treatments
may have caused the variation in PPC to increase more for the
salt plots than the control plots from December 20 to January
14. Similarly, the decrease in PPC between the time of the
maximum recorded PPC and January 14 was larger for the salt
plots (17.02%) than the control plots (10.42%). The median PPC
on January 14 for control plots 1 and 2 and salt plots 1 and
2 was 79.47, 79.24, 65.31 and 68.30%, respectively. Despite the
overall larger decrease in PPC for the salt plots toward the time
of harvest, Figure 9 shows that some plants in the salt plots
maintained high PPC, indicating that some accessions may be
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FIGURE 8 | Relationship between field measured PPC and (A) the Green-Red Vegetation Index and (B) NIR-RE NDVI derived from the UAV RGB and multi-spectral
imagery, using a second order polynomial and linear regression, respectively. The best-fit equations were used to predict PPC for all tomato plants. These
relationships were based on field and UAV imagery acquired on January 7, 2018.

more salt tolerant, in terms of their ability to maintain a high
PPC, than others.

Identification of the Best-Performing
Plant Accessions
The results presented here illustrate just one of many pathways
for assessing accession performance. To evaluate the ability to
use plant condition, area, growth rate and PPC for prediction
of plant performance in terms of yield, the phenotypic traits
derived from the UAV imagery were assessed against field-derived
total yield mass of tomato fruits (Figure 10). As can be seen
in Figure 10A, plant accessions sustaining ≥ 5 plants in good
condition on January 14 produced a significantly larger total
yield mass (median of 232 g per plant) than those accessions
with≤ 4 plants maintaining good condition (median of 146 g per
plant). Figures 10B–D indicate that the total yield mass per plant
increased with increasing UAV-derived plant area, maximum
growth rate throughout the time-series, and PPC. Hence, the four
phenotypic traits presented in Figure 10 were used to eliminate
plant accessions to identify the best-performing accessions in
relation to yield out of the initial 200 accessions. As three out
of the six plants per accession were salt-treated, the sequential
elimination approach provided an indication of salt tolerance as
well. Figure 10 also shows the number of accessions eliminated at
each sequential step, using the four UAV-based phenotypic traits.

Mapped plant condition was used first to eliminate poorly
performing accessions, because of the high mapping accuracy
of plant condition and the clear distinction between total yield
mass per plant based on the number of plants (i.e., ≤ 4 or ≥ 5
plants) in good condition for each accession. Seventy-nine out of
the 200 accessions maintained good condition for all six plants.
Another 41 accessions had one of the three salt-treated plants
either missing (15 accessions) or ascribed as poor/dead condition
(26 accessions), while the corresponding three control plants
per accession remained in good condition. Thirty-one accessions

had either one plant missing (15 accessions) or representing
poor/dead condition (16 accessions) in the control plants with
all three salt-treated plants being in good condition on January
14. The remaining 49 accessions had two or more plants missing
or representing poor/dead condition out of the six plants per
accession. These 49 accessions were eliminated from further
analysis (Figure 10).

To reduce the remaining 151 accessions further, the tomato
plants with the top 10% highest field-assessed yield were selected
to determine the average plant area and maximum growth rate
per accession below which plant accessions should be eliminated,
as described in section 2.7. Based on plant area, a further 86
plant accessions were eliminated. Using maximum growth rate,
the number of plant accessions was further reduced from 65 to
56. PPC was used as the final phenotypic trait to further eliminate
11 accessions. As a result of the sequential elimination process, 45
out of the 200 accessions were identified as the “best-performing”
in terms of condition, area, maximum growth rate and PPC,
which were all related to yield (Figure 10).

Based on the field-derived yield data collected at harvest, it
was found that eight out of the top 10 highest yield-producing
accessions were identified based on the sequential elimination
process, using the four UAV-based phenotypic traits. The two
out of the top 10 highest yielding accessions that were incorrectly
omitted occurred with two and three plants, respectively, mapped
as poor/dead condition on January 14. Despite the high average
yield of the three and four remaining plants for the two omitted
accessions, it is clearly not desirable if 33 and 50% of plants do
not survive the growing season. A total of 14 out of the 20 highest
yield-producing accessions were identified, with four out of the
six accessions omitted due to poor/dead condition of ≥ 2 plants
per accession. The remaining two out of the six accessions were
omitted due to either their small plant area or limited growth rate.

A similar approach was used for a separate assessment of
the control and salt-treated plant accessions. The sequential
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FIGURE 9 | Box-and-whisker plots, showing the variation throughout the growing season in PPC of individual plants, occurring within each of the four plots. The
boxes cover the data from Q1 to Q3 with the line through each box and the X, displaying the median and mean values, respectively. The whiskers show the limits of
Q1–1.5(IQR) and Q3+1.5(IQR) and dots indicate outliers from the population of plants.

elimination process for the control and salt-treated plants
identified 36 and 46 out of the 200 accessions, respectively,
as the “best-performing.” Among these, the control and salt-
treated accessions had 14 in common. However, only five
accessions obtained a high ranking in terms of yield for both
the control and salt-treated plants, including control accessions
ranked as 2, 6, 8, 13 and 32, which corresponded to salt-
treated accessions ranked as 11, 1, 23, 13, and 6, respectively,
indicating high yield performance for these five accessions
under both treatments. Eight and 15 out of the 10 and 20
highest yielding accessions, respectively, were identified for
the control plants, whereas nine and 16 of the top 10 and

20 highest yielding accessions, respectively, were detected for
the salt-treated plants. These observations demonstrate that
phenotypic traits mapped from UAV-based RGB and multi-
spectral imagery can be directly applied for selection of accessions
for yield optimization.

A principal component analysis was performed to obtain
information on similarities and difference between the evaluated
phenotypic traits for each of the 200 accessions. Principal
components 1 and 2 in Figure 11 show similar trends in the
contribution of the phenotypic traits toward explaining variance
using all plants (Figure 11A), salt-treated plants (Figure 11B)
and the control plants (Figure 11C), with principal component
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FIGURE 10 | Relationship of field-derived total yield mass per plant with (A) plant condition at harvest, (B) plant area at harvest, (C) maximum daily growth rate
throughout growing season and (D) PPC of tomato plants at harvest, and the number of accessions eliminated from using each phenotypic traits to identify the
best-performing accessions in terms of yield.

FIGURE 11 | Contribution of plant condition, area, maximum growth rate and PPC for all 200 accessions to principal components 1 (x-axis) and 2 (y-axis) for (A) all
plants; (B) salt-treated plants; and (C) control plants. The values between the brackets indicate the percentage of variance explained by the individual principal
components. Each trait’s contribution to the selected principal component is indicated by the length and color of the arrow.

1 explaining between 54.4 and 57.7% and principal component
2 explaining between 25.5 and 29% of the variance. Explaining
approximately 83% of the total variance, the first two principal
components clearly show the relationship between the variables,
with (1) area and growth rate, and (2) condition and PPC
being highly correlated. This makes sense as a high growth rate
can be assumed to produce a large plant area, and plants in
good condition will appear with a denser plant cover. These
observations can be directly related to Figure 10, where plant
condition and area eliminated 49 and 86 plants, respectively,
when identifying the best-performing accessions in relation
to yield. Subsequently, the use of maximum growth rate and
PPC only eliminated an additional nine and 11 accessions,
respectively, because the prior use of the plant condition and
area traits had already provided similar information for the
elimination process. If focusing purely on the control plants
(Figure 11C), plant area and maximum growth rate provide very
similar information, whereas for salt-treated plants they are less
correlated. Hence, based on the principal component analysis,
the UAV-based phenotypic traits to be used for identifying the
highest yielding accessions are condition, PPC and either plant

area or maximum growth rate, although for salt-treated plants,
some additional information is achieved if including all four
phenotypic traits.

DISCUSSION

We sought to address if four phenotypic traits, i.e., condition,
plant area, growth rate, and PPC, of tomato plants could be
monitored from a time-series of UAV-based RGB and multi-
spectral imagery, and if these traits could be used to assess
yield performance and salt tolerance in 200 accessions. Eight
of the top 10 highest yielding accessions were identified as
the best-performing ones in terms of yield. Interestingly, in a
related study, Rao et al. (2013) found no correlation between
physiological traits (chlorophyll content, leaf sodium content,
leaf potassium content, shoot dry mass and plant height) and
yield or yield-related traits for S. pimpinellifolium. As such,
our results present something of a contrast to those in Rao
et al. (2013). It is worth noting that their measurements were
derived at a single point in time and for individual leaves,
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which may not be representative of a whole plant, whereas the
results presented here were based on the whole plant and their
average trait properties, which were assessed eight times during
the growing season.

Based on the results from the UAV time-series collected
over the growth of the 199 S. pimpinellifolium accessions, it
seems likely that some of these can be successfully grown
in the harsh environments characteristic of Saudi Arabia and

FIGURE 12 | Various reporting scales of PPC based on the RGB imagery collected on January 14, 2018, showing (A) PPC for all four plots, (B) average PPC of
individual plants for an image subset and (C) sub-plant PPC distribution of individual plants for an image subset.
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the entire Middle East and North Africa region (Pena and
Hughes, 2007). Similar studies of wild barley varieties have
shown adaptive responses to salt stress in hot dry environments
(Ferchichi et al., 2018). This may promote opportunities for
enhancing food security in a region with challenging agricultural
conditions. In areas that are in short supply of fresh water, any
possibility to reduce demands on fresh water by substitution with
brackish water can contribute to water and food security efforts.
Therefore, identifying accessions that can grow and produce
acceptable yield under an irrigation regime of moderately saline
water (85–282 mM NaCl or 3,000–10,000 ppm) is of both
scientific and practical interest, as they can provide genetic
resources to improve commercial varieties. Understanding the
mechanisms of plant tolerance to abiotic stressors such as salinity
requires identification of the best-performing accessions and
their traits. With the use of genomics, the accessions can be
sequenced for identification of genetic markers such as single
nucleotide polymorphisms (SNP) to genetically map salinity
tolerance and the traits contributing to salinity tolerance for
introgression into commercial lines (Rao et al., 2012). Such
genetic examination is currently being undertaken for the dataset
used in this plant trial, with the support of the UAV-based
phenotyping presented here.

Field-based phenotyping is time- and labor-consuming and
may lack consistency in multi-temporal data acquisition and
for large plant trails (Sugiura et al., 2015; Holman et al., 2016).
In this research, it was only possible to field-assess nine plants
from each of the four plots in a day. The use of UAV-based
monitoring provided a useful tool to scale up the measurements
to encompass the entire plant trial of 1200 plants. It also allowed
the measurements of phenotypic traits at the plot, plant and
even sub-plant level, which is difficult for field-based studies.
Figure 12 provides an example of PPC, where statistics can be
used to assess all plants in a plot, the average PPC per plant can
be derived, and PPC values per pixel within a plant can be used
to understand the distribution and condition of foliage. With
Structure-from-Motion information derived from multiple UAV-
based viewing angles, the 3-dimensional structure of foliage can
also be assessed to determine the distribution of biomass and the
shape of individual plants (Moeckel et al., 2018; Ziliani et al.,
2018). In general, the multi-spectral imagery, including the red
edge and NIR bands, was found more feasible than the RGB
imagery for mapping traits such as PPC and condition relying
directly on spectral information, whereas the RGB data produced
near identical results to the multi-spectral imagery for assessment
of plant area and growth rates.

While UAV-based phenotyping has demonstrated value for
plant trials and agricultural monitoring (e.g., Holman et al., 2016;
Burkart et al., 2017; Makanza et al., 2018; Ziliani et al., 2018), there
are limitations and assumptions associated with these mapping
approaches. The time of the day, resulting in different sun
elevation and azimuth angles, may affect mapping results due
to changing shadows and bidirectional reflectance distribution
function effects (Tu et al., 2018). In this study, we reduced these
effects by collecting UAV imagery around solar noon for all eight
campaigns. However, seasonal solar elevation angle variations
could not be avoided during the growing season. To optimize

results and ensure reflectance consistency, all UAV-based datasets
were converted to at-surface reflectance using an empirical line
correction. However, this approach may also have limitations,
as it relies on recorded image digital numbers and their color
consistency and constant illumination throughout each flight
(Tu et al., 2018). UAV flying height, speed, direction, flight
line location, along-track overlap and sidelap were all kept the
same for consistency. However, environmental variables such
as temperature, humidity and wind speed and direction may
introduce data collection variations in an image time-series. The
impact of these variables are difficult to quantify and often sensor
dependent. This research study provided a near ideal example of
UAV-based time-series monitoring of phenotypic traits, as each
of the eight campaigns were undertaken with clear sky conditions
and low wind speeds, with a sandy soil background, providing a
clear contrast to green plant foliage. In addition, all weeds were
removed prior to UAV data collection and all plants were hosed
down after each sandstorm to avoid reflectance attenuation from
sandy leaves. The developed UAV-based approach remains to be
tested in more complex and less ideal conditions.

CONCLUSION

Plant responses to abiotic stress require systematic testing in
field trials to determine desirable phenotypic traits. We presented
a novel approach that exploits the use of RGB and multi-
spectral UAV image time-series to measure plant area, growth
rate, condition and PPC of 199 accessions of the wild tomato
species S. pimpinellifolium in low salt and high salt-irrigated
conditions within an environment with several other significant
environmental challenges. The purpose was to use collected
data for the selection of the “best-performing” accessions in
terms of yield. An object-based image analysis approach to
delineate individual tomato plants was found to be useful for
this purpose, as our plant level assessment provided significantly
better results than previous studies, focusing on field-based
leaf-level measurements. Our UAV-based experiment allowed
phenotypic assessment of a large number (in this case 1200) of
tomato plants on a routine and repeatable basis. The research
provides a method to undertake plant trial assessments in a
more effective and consistent manner at spatial and temporal
scales that, until recently, were not possible to obtain. Our results
provide insight into the effects of salt stress on plant area, growth,
condition and PPC, of tomato plants, and establish a foundation
for further assessment of plant trials at the plot, plant and sub-
plant level to facilitate phenotyping and provision of information
potentially suitable for plant breeding.

Phenotyping of plants and relating observable traits with
yield and salt tolerance can be employed to optimize growth,
increase production, promote food security and reduce pressure
on freshwater resources. Arid environments such as those found
in the Middle East and North Africa, which often face the
combined stressors of heat and salinity, are obvious examples of
regions requiring specially adapted crops that tolerate high levels
of abiotic stress. More generally, improving the productivity of
marginal lands and environments is one approach to increasing
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agricultural production on a global scale: an issue of critical
importance to meet the food demands of growing populations.
To advance the opportunities that UAVs provide for plant
phenotyping studies, further research should focus on deriving
additional traits, including biomass, plant height, leaf area index,
chlorophyll concentration, and metabolic markers to assess if
their inclusion can improve the ability to discriminate the most
promising accessions for cultivation. Supplementing the optical
imagery used herein with thermal data, or even hyperspectral
imagery, is likely to provide additional insights into plant
health and function.
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