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In recent years, studies have shown that phytopathogenic fungi possess the ability of
cross-kingdom regulation of host plants through small RNAs (sRNAs). Magnaporthe
oryzae, a causative agent of rice blast, introduces disease by penetrating the rice tissues
through appressoria. However, little is known about the transboundary regulation of
M. oryzae sRNAs during the interaction of the pathogen with its host rice. Therefore,
investigation of the regulation of M. oryzae through sRNAs in the infected rice plants
has important theoretical and practical significance for disease control and production
improvement. Based on the high-throughput data of M. oryzae sRNAs and the mixed
sRNAs during infection, the differential expressions of sRNAs in M. oryzae before and
during infection were compared, it was found that expression levels of 366 M. oryzae
sRNAs were upregulated significantly during infection. We trained a SVM model which
can be used to predict differentially expressed sRNAs, which has reference significance
for the prediction of differentially expressed sRNAs of M. oryzae homologous species,
and can facilitate the research of M. oryzae in the future. Furthermore, fifty core
targets were selected from the predicted target genes on rice for functional enrichment
analysis, the analysis reveals that there are nine biological processes and one KEGG
pathway associated with rice growth and disease defense. These functions correspond
to thirteen rice genes. A total of fourteen M. oryzae sRNAs targeting the rice genes
were identified by data analysis, and their authenticity was verified in the database
of M. oryzae sRNAs. The 14 M. oryzae sRNAs may participate in the transboundary
regulation process and act as sRNA effectors to manipulate the rice blast process.
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INTRODUCTION

Rice is one of the most important crops in Asia, its production
not only directly affects food security but also has a huge
impact on the local economy. Rice blast is a disease caused by
Magnaporthe oryzae attack, resulting in reduced yield. Because of
the importance of this crop, studies on how to control rice blast
are very popular.

M. oryzae is a heterotrophic fungal pathogen. It can reproduce
in the form of spores and spread between rice plants through
conidia. After germination, germ tubes form special infection
structures called appressoria which will penetrate host’s tissues.
Rice has two layers of innate immune mechanisms against
M. oryzae. The first layer of defense is activated when pathogen-
associated molecular patterns (PAMPs) are recognized on the cell
surface; thus, this PAMP-triggered immunity (PTI) is activated
(Hanae et al., 2006; Shimizu et al., 2010; Su et al., 2012). While
M. oryzae effectors that inhibit PTI can be recognized by rice
R proteins, which is the second layer of defense and called
effector-triggered immunity (ETI) (Liu et al., 2013). However, the
mechanism by which M. oryzae infects rice may not be limited
to the molecular aspect, but can also to genetic aspects, such
as RNA silencing.

RNA silencing or RNA interference (RNAi) is a regulatory
mechanism that specifically inhibits the expression of target
genes. In this process, double-stranded RNA (dsRNA) is
processed into sRNA under the action of the enzyme called RNase
III. One of the small RNA (sRNA) strands joins into an effector
complex RISC (RNA-induced silencing complexes) capable of
degrading the target RNA, therefore inhibiting the mRNA level
of the target gene and the subsequent protein biosynthesis
(Brodersen and Voinnet, 2006). sRNA is a short, non-coding
RNA that specifically expresses in certain physiological stages
of an organism and plays an important role in regulation
based on its target-mRNA cleavage. For example, miR393b is
specifically expressed in the reproductive stage, it cleaves target
genes to inhibit flower development; miR172c is specifically
expressed in the vegetative stage to inhibit the expression of
LOC_Os07g13170.1 (AP2 domain-containing protein) (Yijun
et al., 2012). RNAi plays a key role in gene regulation in a
variety of eukaryotes, and studies have shown that hairpin RNAs
(hpRNAs) can effectively silence the expression of target genes
(Chen et al., 2015).

In recent years, studies have found that RNA silencing exists
not only in the interior of organisms but also in the interaction
between organisms. Some sRNAs can be transferred between
interacting organisms and induce gene silencing in the counter
party; this mechanism is known as cross-kingdom RNAi (Cai
et al., 2018a). Arne et al. (2013) showed that in addition to
proteins, sRNA molecules can also act as effectors to inhibit
host immunity. sRNAs bind to AGO proteins and direct RISCs
to complementary genes to induce gene silencing. sRNAs of
Botrytis cinerea can inhibit the host plant’s immune response to
the pathogen at an early stage of infection by this mechanism,
demonstrating that sRNAs can act as effectors by silencing host
defense-associated genes, thereby disarming plant immunity and
achieving infection (Arne et al., 2013). Later, sRNA Bc-siR37 of

the pathogen was found to be delivered to plant cells to silence
host immune genes (Wang et al., 2017). This cross-kingdom
RNAi mechanism has proven in the process of fungal infection
of plants. Based on the results aforementioned, it is safe to
infer that the transboundary sRNA regulation of M. oryzae of
rice may exists.

Current researches on rice blast prevention are mostly focused
on the internal immune regulation of rice or M. oryzae.
For example, rice endogenous miRNAs, such as miR169, play
regulatory roles in rice immunity against M. oryzae (Li et al.,
2017). Endogenous sRNAs of M. oryzae may also play a role in
the transcriptional regulation of some genes, since these sRNAs
are involved in regulation of M. oryzae stress responses when
plant conditions change (Raman et al., 2013). However, little
is known about transboundary regulation of rice by M. oryzae
sRNAs during rice interaction with the rice blast fungus. Here,
the study analyzes the transboundary regulation of M. oryzae
sRNA on rice based on high-throughput data. By screening the
upregulated M. oryzae sRNAs during infection and their target
rice genes, as well as analyzing the functional enrichment of the
target rice genes, the study identifies M. oryzae sRNAs that may
directly participate in the regulation process of rice infection,
which inhibit the growth and the survival of the rice. The study
provides a theoretical basis for disease control and yield increase
in rice, as well as new ideas for innovative study on the processes
of plant infection by other phytopathogenic fungi.

DATA AND METHODS

The differentially expressed rice blast sRNAs during infection
were first analyzed through a big data-based method and then
the related software was used to predict their target genes in rice.
Functional enrichment analysis on the targets were performed to
predict gene functions closely related to rice growth and defense,
which then allows the experimenters to identify the M. oryzae
sRNAs that enforce a transboundary regulation on rice during
the infection process. The overview of the design roadmap for
this work is illustrated in Figure 1.

Data Source
The sRNA raw data of M. oryzae cultured on a complete medium
for 16 h, the mixed sRNA raw data of the rice samples infected
by M. oryzae for 72 h (Raman et al., 2013), the data of wild-
type rice leaves 48 h after water treatment, the data of wild-type
rice leaves 48 h after M. Oryzae infection (Chujo et al., 2013),
as well as the M. oryzae and rice genomic data and rice mRNA
data were used in the analyses. All of these were obtained from
NCBI. For the mixed sRNA raw data, we were able to find the
mixed sRNA raw data of rice samples infected by M. oryzae for 0,
72, and 96 h. M. oryzae invades the host through the infection
pegs from appressoria. For the molecules that act as effectors
during infection, the expression of these molecules takes a certain
time. For the rice sample infected by M. oryzae for 0 h, because
the infection time is too short, many molecules have no time
to express, so this sample is not suitable for use. In addition,
because LMg96 infects for too long, some molecules have been
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FIGURE 1 | Overall design roadmap for this work.

degraded, so it is not suitable for use, too. In contrast, for the
rice sample infected by M. oryzae for 72 h, the expression of the
molecule is the most active, so this sample is most suitable for
subsequent analysis. The data downloaded from NCBI is in SRA
format, they had to be converted to FASTQ format before the data
could be processed.

Data Preprocessing
Data preprocessing is a key step in data analysis and has a
significant impact on the effectiveness of subsequent analysis.
At present, the preprocessing of sRNA high-throughput data is
mainly divided into the following steps: filtering, alignment, and
normalization. First, high-quality data is obtained by removing

adapters and low-quality reads. Second, mapping the data to the
genome, the types and corresponding counts of sRNAs that can
be mapped to the genome are obtained. Finally, the counts of
sRNAs are normalized, and the standardized counts are used to
find differentially expressed sRNAs, or to analyze the distribution,
variance, and bias of the data (Tam et al., 2015).

Adapter and Quality Information
In the acquired high-throughput sequencing data, each sRNA
sequence is of the same length; this is because Illumina
performing adaptor ligation in the process of library preparation
(Tam et al., 2015). Therefore, almost every sequence obtained
has an adapter sequence of varying lengths. To obtain the
correct sRNA sequence, these adapters should be removed.

Frontiers in Genetics | www.frontiersin.org 3 March 2019 | Volume 10 | Article 296

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00296 March 28, 2019 Time: 18:54 # 4

Zhang et al. Magnaporthe oryzae sRNAs Transboundary Regulation

FIGURE 2 | Strategy for removing the adapters in raw RNAs.

The existing adapter removal tools are mainly FASTX-toolkit,
Cutadapt, and Trimmomatic. In this work, Cutadapt1 was
used to remove the adapters, which requires the knowledge of
the adapter sequence used for the high-throughput data. The
M. oryzae sRNA and the mixed sRNA data used in this work
were high-throughput sequencing data based on the Illumina
platform and incorporated the international standard adapter
“TCGTATGCCGTCTTCTGCTTGT”. In the resultant FASTQ
file after removal of the adapter by Cutadapt, the sRNA sequences
no longer contain the adapter. The process of the removal of the
adapters in sRNAs is illustrated in Figure 2.

In the data source article, although the wrong sequencing
data were filtered out by the script, there was no quality
control operation on the data (Raman et al., 2013). The length
distribution of the preprocessed data is shown in Figure 3. The
length distribution of the sRNA in the mixed or infection data
after removing the adapter with two peaks between 21 and
27 displays a high quality (Figure 3A). However, an error is
shown in the processed M. oryzae sRNA data (Figure 3B) due
to the M. oryzae data and the infection data originated from
the same place and using the same adapter. The experimental
error may be due to the strict setting of the parameters in the
process of removing the adapter. Adapters with more than three
mismatches were not removed. For the sake of experimental
rigor, the false positive result is minimized in the adapter
identification, and the setting of the mismatch parameter is
rigorous here. When the length control was performed later, the
sequence corresponding to this part of the error was discarded.

Data Mapping to the M. oryzae Genome
The main research object of this work is to identify M. oryzae
sRNAs with potential cross-kingdom regulation, it is thus
necessary to find the sRNA sequences of M. oryzae that
are differentially expressed before and during host infection.
However, some contamination is mixed in the M. oryzae sRNA
sequences’ data, and in the mixed data during infection. In
addition to the M. oryzae sRNA sequences and contamination,
many sRNA sequences of rice plants also appeared in the
data. The M. oryzae sRNA and mixed sRNA data of infection

1https://cutadapt.readthedocs.io/en/stable/

were mapped to the genome of M. oryzae by using the RNA
data without adapter sequences, and the portion of the sRNAs
belonging to M. oryzae was obtained. In this section, two tools,
Bowtie and Samtools, were used. First, the index library of the
M. oryzae genome obtained from NCBI was constructed, and the
index package was obtained. Both of these steps used bowtie (Jun
et al., 2012). Then the FASTQ file of the M. oryzae sRNAs and
the FASTQ file of the mixed sRNAs of infection were mapped
to the M. oryzae genome. The process was strictly matched, the
mismatch parameter was set to 0, and all matching information
was output as a SAM file. Then SAMtools software was used to
process the generated SAM file, filter out the redundancies, and
yield the FASTQ file that only retains the matching sequence (Li
et al., 2009). The process is shown in Figure 4.

Length Control and Sequence Expression Statistics
In order to find the differentially expressed M. oryzae sRNAs, we
need to know the expression level of each sRNA sequence before
and during infection, that is, the number of each sequence in
the data file. However, since each sequence may match multiple
locations of the genome during the mapping process, and all
matches will eventually be output to the result file, resulting in
an increase in the number of sequences in the resultant file, it is
inaccurate to count the expression level in the mapped result file.
To solve this problem, the following measures were taken:

First, a script was used to extract the sequence in the FASTQ
file from the M. oryzae sRNAs that had been removed from the
adapter but had not been mapped to the genome, to obtain a
text file only containing the sequence. Then, a script was used
to control the length and count the number of occurrences
(expression amount) of each sequence. Since the length of
miRNA (a sRNA that inhibits gene expression) is between 18 and
25 nt, it is believed that the length of theM. oryzae sRNA targeting
rice genes and producing transboundary regulation in rice should
also be in this range. Therefore, only the M. oryzae sRNA
sequences ranging from 18 nt to 25 nt in length were retained.
Finally, a table file (herein referred to as file A) containing the
sRNA sequences, the lengths of the sequences, and the expression
levels of the sequences was obtained.

The FASTQ file of M. oryzae sRNA data mapped to the
M. oryzae genome was handled by a script to obtain a text
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FIGURE 3 | Length distribution of the processed sRNAs. (A) Mixed sRNAs
after infection. (B) M. oryzae sRNAs.

file containing only the sequences; then, a script was used to
control the length and to remove duplicates to obtain a file, which
only contained sequences with a length between 18 and 25 nt
(herein referred to as file B, which does not contain length and
expression information, i.e., only sequences, and each sequence
appears only once).

Finally, the following processing was performed on file A and
file B through a script: if a line in file A appears in file B, then
the line is reserved; if a line is in file A, but its sequence does not
appear in file B, then that line is discarded.

The above process is illustrated as Figure 5. In the final file,
each sequence can be mapped to the genome of M. oryzae,

and the expression amount is accurate. The mixed sRNA data
file of infection was also processed by the above method.
Finally, the obtained M. oryzae sRNAs during infection could
be mapped to the genome of M. oryzae, and the expression
amount was accurate.

Elimination of Rice sRNA
M. oryzae has the same sequence as some sRNAs in rice; thus,
only mapping the data to the M. oryzae genome cannot guarantee
that all the sRNAs obtained belong to M. oryzae. Some rice
sRNAs may be mistaken as belonging to M. oryzae because their
sequences are identical to some M. oryzae sRNAs. This mistaken
identity will bring errors to future experiments. To address this
issue, the sRNAs that could be mapped to the M. oryzae genome
were then mapped to the rice genome and those sRNAs that
could be mapped to the rice genome were removed; thus, the final
sRNAs were solely from M. oryzae genome.

A Normalization Method Based on 3/4
Quantile Data
To find the M. oryzae sRNAs differentially expressed during
infection, the M. oryzae expression data must be normalized
before and during infection to make it comparable. Because
the number of species of M. oryzae sRNAs before and during
infection is quite different, and the number of M. oryzae sRNA
species during infection is much less than before infection, if
the per million counts normalization method is used, then after
normalization, the magnitude of the change in data expression
during infection will be much larger than that before infection,
which makes it impossible to accurately find the sRNAs with a
substantial increase in the expression level during infection. To
solve this problem, we adopted a normalization method based
on a 3/4 quantile. First, the sample data were sorted according to
the expression levels from high to low; then, the sRNA ranked at
3/4 was obtained. This sRNA’s expression amount can represent
the lower level of expression in this sample; then, the expression
amounts of other sRNAs were converted into multiples of the
expression amount of this sRNA. Because the expression levels
of the data in the sample were all converted to the multiple of
the sample’s lower expression level, this method not only avoids
the influence of different cardinalities between different samples,
but also evades the influence of the differences in the number
of species between different samples, thereby making different
samples comparable. This normalization method was used to
process the data of M. oryzae sRNAs before and during infection.
Then, the 6,100 sRNAs that appeared before and during infection
were extracted to compare their changes in the expression level.

The Selection of Differentially
Expressed sRNAs
Through statistics, it was found that the species of M. oryzae
sRNAs before and during infection did not completely coincide
(Table 1). According to the statistics, there were 87,314 species
of M. oryzae sRNAs before infection, and 11,033 species
during infection. There were 6,100 species of M. oryzae sRNAs
presenting in the two stages; moreover, 4,933 species of M. oryzae
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FIGURE 4 | Strategy for mapping data to the M. oryzae genome.

sRNAs were newly produced during infection (Figure 6). From
the above statistics, most of the M. oryzae sRNAs disappeared
during rice infection. In order to find M. oryzae sRNAs with
a significant increase in expression in infection, the 11,033
M. oryzae sRNA species were divided into two parts for analysis.

The first part is the 6,100 species of M. oryzae sRNAs
presenting before and during infection. To clearly observe the
changes of sRNA expression levels, the normalization method
based on the 3/4 quantile was used to extract the data of M. oryzae
sRNAs before and after infection; then, a total of 6,100 sRNAs that
presented before and during infection were extracted to compare
their changes in the expression levels. Since sRNAs regulate the
target genes by inhibiting their expression, we thus only screened
for the sRNAs which are significantly higher expressed than
before infection and their expressions are more than the others
after infection. The increase in the expression level was measured
by the growth rate using the following Equation (1):

Growth_Rate =
countafter − countbefore

countbefore
(1)

All the values in Equation (1) were standardized. For the sRNA
which showed growth during infection, the results of screening
based on the expression level after infection and the growth

rate of expression, are, respectively, shown in Figures 7A,B.
Both sRNAs serve to illustrate screening conditions, and the
distribution of screening results is shown in Figure 7C.

In the positively growing sRNAs, the percentage of sRNA with
an expression level greater than or equal to 9 during infection
was less than 50% (Figure 7A). The percentage of sRNA with
a growth rate greater than or equal to 2 was also less than 50%
(Figure 7B). Only a small number (220) of the sRNAs met both
the criteria. These 220 sRNAs can be considered as the most
obvious part of the difference in expression. For four sRNAs of
the 220 sRNAs were much high expressed than the others after
our sRNA expression level standardization, the comparisons of
the four sRNA expressions and the other 216 sRNAs’ expressions
are shown in Figures 8, 9, respectively. By comparison of the
expression level during infection to that before infection, the
growth ratio of these 220 sRNAs in infection is extremely high
(Figures 8, 9). From the apex of the blue columnar column and
the apex of the whole column, it is obvious that the expression
levels are dramatically higher than those before infection.

The second part is the 4,933 M. oryzae sRNAs newly produced
in infection. This part of sRNAs were extracted from the
standardized data and sorted from high to low in expression level.
One-hundred-forty-six sRNAs were selected according to their
expression levels.
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FIGURE 5 | Flowchart for length control and expression count statistics.

A total of 366 M. oryzae sRNAs screened in the above
two parts were used as differentially expressed sRNA for the
subsequent analysis.

SVM Model for Predicting Differential
Expression of M. oryzae sRNAs
Selection of Positive and Negative Samples
The SVM is a classic supervised machine learning model. SVM
model was used to predict differentially expressed and non-
differentially expressed sRNAs. A total of 366 differentially
expressed M. oryzae sRNAs were used as positive samples
and were removed from all M. oryzae sRNAs. The remaining
M. oryzae sRNAs were then used to randomly select the negative
samples, and the number of sRNAs in the negative sample was
twice as that of the positive sample.

Feature Extraction and Normalization
The negative and positive sample labels were set to 0 and 1,
respectively. The positive and negative samples were extracted
into a file. The RNAfold tool2 was used to predict the secondary
structure to obtain free energy information. The sequences and
their free energy for feature extraction were then extracted. In the
process of feature extraction, 1–25 bits (the sequences less than
25 bits in length need to be complemented with N), along with
the length, GC percentage, free energy, 5′ mo_base, 5′ di_base, 3′
mo_base, 3′ di_base, and motif of each sequence, were extracted
as features, and the features were represented by the letters
encoded in binary. In addition, the features were normalized by

2http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi

TABLE 1 | Statistical information on sRNA species before and during infection.

Raw data sRNA species before
mapping

sRNA species
mapped to the

M. oryzae genome

Species after
removal of rice

sRNA

M. oryzae 350,402 87,453 87,314

Infected 72 h
mixed data

120,8231 11,194 11,033

the normalization method of min-max as shown in Equation (2):

y =
x−min

max−min
(2)

Where x is the original value, y is the normalized result, and min
and max represent the minimum and maximum values of this
feature. Also, the feature value is scaled between 0 and 1.

Model Training
In this step, a total numbers of 3/4 of the positive and negative
samples were extracted as the training set. The grid search
and fivefold cross-validation method were used to train the
parameters (Zhang et al., 2009). The Radial Basis Function (RBF)
kernel function expressed as the following Equation (3) was used
to train the model. The RBF kernel function is a kind of kernel
function, which is used to map the linear indivisible problem in
the low dimension to a high dimension, thus making the problem
linearly separable. Let <w′, x′> be the inner product of the high-
dimensional space, x′ is the high-dimensional vector transformed
by x, w′ is the constant obtained by transforming the constant w
in the low-dimensional space, and there isK(w, x) lets g(x) = K(w,
x) + b be the same as f (x′) = <w′, x′> + b, and K(w, x) is the
kernel function. The RBF kernel function is a kernel function that
satisfies this condition.

K(x, x′) = exp

(
−
∣∣∣∣x− x′

∣∣∣∣2
2σ2

)
(3)

FIGURE 6 | Comparison of the M. oryzae sRNA species before and during
infection.
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FIGURE 7 | Counting statistics screened by the expression level and
expression growth rate of M. oryzae sRNA during rice infection. (A) Screening
by the expression level. (B) Screening by the expression growth rate.
(C) Screening by the two indicated conditions.

Target Gene Prediction
To identify M. oryzae sRNAs that may play a role in regulation of
rice growth and defense, rice mRNAs were used as the targets to
predict target genes for the 366 differentially expressed M. oryzae
sRNAs. In this step, the TAPIR, a target gene prediction tool (Xie
et al., 2012), was used. In the process of target gene prediction,
the input of the sRNA file must be a FASTA file and the bases in
the sRNA sequence should be A, U, G, and C; thus, the sequences
of these 366 sRNAs were extracted and the base T was converted
to U by a script. The sequence files were then converted to FASTA
files before target gene prediction by the TAPIR tool.

Selection of the Core Node
For each target gene predicted, its corresponding GeneID
was found in the mRNA file of rice. After de-duplicating
the found GeneIDs, a total number of 1,121 GeneIDs were
obtained. For the target rice genes, in order to know whether
they are differentially expressed, we added experiments. We
obtained the data of wild-type rice leaves 48 h after water
treatment and the data of wild-type rice leaves 48 h after
M. Oryzae infection from NCBI (Chujo et al., 2013), compared
the two sets of data and screened the target genes. Considering
that the infection time of the comparison data (48 h) is
shorter than the infection time of our sRNA data (72 h),
and the plant may produce some stress response due to self-
protection, we retained target genes with reduced expression
levels after infection and target genes with a slight increase
in expression levels (less than 0.2) after infection. A total
of 685 target genes were retained, and the proportion of
target genes with decreased expression was 69.3%. All the 685

GeneIDs were imported into the STRING database3 where 586
GeneIDs could be identified and the corresponding interaction
network was given. The obtained tabular data of the interaction
network from the STRING database (without retaining node
annotations) were shown in Supplementary Table S1, which
provides the two nodes corresponding to each edge of the
network, as well as the proteins corresponding to the nodes,
and the score of the relationship’s credibility between the nodes
(Supplementary Table S1).

Because of the huge number of nodes, it is difficult to locate
the obvious enrichment. Therefore, it is necessary to select the
core nodes of the network and to find the obvious enrichment
and pathways through the interaction network of the core nodes.
To reach this goal, the core nodes of the network were selected
through the following two key steps:

Step 1: To obtain the subgraph by the score of the
credibility through the relationship between the nodes in
the network. In the interaction network, the smaller the
score of the credibility of the relationship between nodes,
the less possibility of the interaction between the two
nodes. Therefore, the threshold of the score was set as
0.6, which means that if the score no less than 0.6, the
interaction between the corresponding nodes is authentic.
By following this criterium, only the edges with a score of
no less than 0.6 were selected. The graph composed of these
edges is a sub-graph with higher credibility in the entire
interaction network.
Step 2: To select the core nodes based on the degree of the
nodes. In an interaction network, the higher a node degree,
the more nodes it interacts with. Based on the subgraph
obtained in the first step, the degree of each node in the
subgraph was counted and sorted the nodes according to
the degree from large to small. Finally, a total of 50 nodes
were selected as core nodes.

RESULTS

The Core Node’s Regulation Network
In this research, the authors re-imported the GeneIDs of the
50 core nodes into the STRING database and the resultant
interaction network of these 50 core nodes was listed in
Supplementary Table S2. Because the p-value of the network
is 1.59e-8, the network was provided with high accuracy. In
the functional enrichment results of the network, there were
15 Biological Processes (GO), 5 Molecular Functions (GO),
5 Cellular Component (GO), 2 KEGG Pathways, 5 PFAM
Protein Domains, and 5 INTERPRO Protein Domains and
Features. We mainly analyzed the 15 Biological Processes
(GO) and 2 KEGG Pathways. Among all the results given,
the false discovery rate was less than 0.05. The BP and KEGG
enrichment results were shown in Supplementary Table
S3 and Table 2. In the 15 Biological Processes (GO), the
order of error detection was ranked from low to high. These

3https://version-10-5.string-db.Org/
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FIGURE 8 | Comparison of the expression levels of the four sRNAs with higher expression levels before and in infection.

FIGURE 9 | Comparison of the expression of the other 216 sRNAs before and in infection.

biological processes are the cellular protein modification process,
chromatin organization, organelle organization, chromosome
organization, cellular process, chromatin remodeling, chromatin
modification, phosphate-containing compound metabolic
process, primary metabolic process, cellular metabolic process,
defense response, organic substance metabolic process, response
to stimulus, the mitogen-activated protein kinase (MAPK)
cascade, and protein phosphorylation. Two KEGG pathways

are inositol phosphate metabolism and phosphatidylinositol
signaling system.

Regulatory Pathways Associated With
Rice Growth and Defense
In the 15 biological processes, the defense response, and the
stimulating response directly affect the ability of plants (here,
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TABLE 2 | The enriched KEGG Pathways.

Pathway ID No. Pathway description Observed gene count False discovery rate Matching proteins in your network (IDs)

562 Inositol phosphate metabolism 2 0.0418 LOC_Os05g03610.1, LOC_Os08g33200.1

4070 Phosphatidylinositol signaling system 2 0.0418 LOC_Os05g03610.1, LOC_Os08g33200.1

FIGURE 10 | Interaction network of the enriched genes in the biological
processes. Figures: GeneIDs.

rice) to cope with external unfavorable factors, thereby affecting
rice survival. When plants are stimulated by pathogenic bacterial
infection, injury, temperature, drought, salinity, permeability,
ultraviolet radiation, ozone, and reactive oxygen species, MAPK
is activated. After translation, it is regulated by phosphorylation
(Zhang and Klessig, 2001). Therefore, the MAPK cascade and
protein phosphorylation are also closely related to rice’s ability to
cope with factors of life-threatening in its growth environment.

For the top five GO biological processes, the gene sets
enriched in the pathways were imported into the DAVID
database and found the lower functional pathways corresponding
to the five pathways. The verification results show that there
are the biological processes for defense response and the
biological processes that positively regulate growth rate in the
lower regulatory pathways of these five pathways. In the lower
regulation of chromatin organization, organelle organization,
chromosome organization, and cellular processes, there are three
biological processes: response to temperature stimulation, cell
proliferation, and multicellular biological development. In other
words, the top five functional enrichments are closely related
to rice defense and growth. For the two KEGG Pathways,
inositol phosphate metabolism is closely related to biosensory
extracellular stimulation.

Nine biological processes related to rice defense response and
growth process and one KEGG pathway were found in our work.
Interestingly, the 9 biological process pathways already contain

FIGURE 11 | Interaction network of the 50 core nodes. The blue nodes
represent 11 genes enriched into 9 biological processes, and the green nodes
represent 2 genes enriched into one KEGG Pathway. The relationships among
these 13 nodes are represented by purple lines. The relationships among
these 13 nodes and other nodes are represented by the green lines.

all the genes that can be enriched into the 15 biological processes
in core nodes. Further analysis demonstrates that the enriched
genes display close interactions (Figure 10). These pathways may
be used to identify sRNA effectors that facilitate rice infection
by the pathogen.

Discovery of M. oryzae sRNAs as
Potential Effectors in the
Infection Process
Through the above 9 biological processes and one KEGG Pathway
related to rice growth and defense, the IDs of the proteins
enriched in these pathways can be found (Supplementary
Table S3 and Table 2). These proteins correspond to 13
genes in the core nodes (Supplementary Table S2), and
these genes also distribute in the 50 core nodes’ interaction
networks (Figure 11). From the results of target gene prediction,
14 M. oryzae sRNAs targeting these 13 rice genes were
found. These 14 sRNA sequences can be obtained in the
Magnaporthe Next-Gen Sequence sRNA database4 (Table 3 and

4https://mpss.danforthcenter.org/dbs/index.php?SITE=mg_sRNA
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TABLE 3 | The resultant 14 sRNA sequences in the Magnaporthe Next-Gen Sequence sRNA database (Clip version).

Sequence Len Sum Average Max Min (>0) LMg0 LMg72

TAGACTTTGATCTGAGCAA 19 1029 257 754 2 0 754

TGGCAAGTATAGGCCTGTA 19 1145 95 467 7 0 467

AGCCTGACGATGTCGTTGATGCT 23 627 314 610 17 0 610

TGGAAGCGTTAGGGGCTTTG 20 811 116 395 2 0 395

ACGATCTGCAGCGCTTTTCGT 21 3446 246 1293 2 0 1293

ACGATCTGCAGCGCTTTTCG 20 2254 225 1109 2 0 682

CAGGCGAGGGCGCTCTGCT 19 2108 192 627 2 214 574

GCACTTGGAAGCATGGGGCT 20 845 282 682 26 0 682

TAGCGGGGAACTGTGCATG 19 700 140 467 30 0 467

GGACATGGTTTTGGACGAA 19 1236 88 467 9 0 467

TACAAGGGACGAAGTGTCT 19 1349 104 646 2 0 646

AACCCGGAGGTCTCTGGA 18 2291 153 722 6 0 431

AGTGGTCGTAGACCGCCTGA 20 1933 161 1126 5 0 359

CAGGCAGTTGGACTTGACCT 20 889 296 539 28 322 539

Len, length (nt); Sum, the sum of abundance; Average, the average of abundance; Max, maximum abundance; Min (>0), minimum abundance; LMg0, the name of the
sample; LMg72, the name of the sample.

Supplementary Table S4). The comparison of the two columns
of LMg0 and LMg72 shows that these 14 sRNAs are actively
expressed at 72 h post infection, which further confirms our
viewpoint about these sRNAs may serve as effectors that facilitate
rice infection by the pathogen.

The SVM Model Prediction Results
We used the remaining 1/4 of the positive and negative samples as
the test set. The accuracy of the final model prediction reached as
high as 83%. The Receiver Operating Characteristic (ROC) curve
is shown in Figure 12. The further the curve is from the diagonal
line, the better the model performs. The value of the Area Under
the Curve (AUC) can evaluate the model intuitively, the larger the
value of AUC is, the better the model is at discriminating between
positives and negatives. It can be seen from the figure that the
curve is far from the diagonal line and the AUC value is 0.85. Thus
the model can be used to select the differentially expressed sRNAs
after obtaining the sRNAs mapped to the pathogen genome. The
selection of the differential-expressed sRNAs in other species of
fungal plant pathogens can also refer to this model.

DISCUSSION

The sRNAs Involved in the
Transboundary Regulation
Cumulated evidence indicates that transboundary regulations
of pathogens on the host plants exist (Shimizu et al., 2010;
Su et al., 2012). Based on the findings, the study assumes
that the pathogenic mechanism also exists during rice infection
by M. oryzae. However, little is known about whether sRNA
affects rice growth or defense. This study found that during rice
infection, although most of the M. oryzae sRNA disappeared,
some sRNA remained in the infected rice, and some were
upregulated. All the M. oryzae sRNAs existing in the rice tissue
have the potential to interact with the host rice. Based on the

FIGURE 12 | ROC Curve.

characteristics of sRNA inhibition of gene expression, only the
upregulated M. oryzae sRNAs in infection were considered in
this process. The sRNA transport and regulation between plants
and pathogens is bidirectional. After the pathogen invades plant,
the expression levels of some sRNAs in host plants increase,
conversely inhibiting the pathogen gene-expression to resist the
invasion by the pathogens (Cai et al., 2018b). In this work, the
study omitted the analysis on the roles of rice sRNA due to the
demand of more focused research on the pathogenic side. The
roles of M. oryzae sRNAs with decreased expression levels during
infection also need to be further investigated.

The Limitations of Target Gene
Prediction Software
For the M. oryzae sRNAs with increased expression level in
infection, the study predicted their target genes in rice and
directly analyzed the functional enrichments of these target
genes. The results in this study are based on the target gene
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prediction software, which may be affected by the algorithms in
the software. Therefore, the results obtained may be incomplete
because the data collected are based on only one target gene
prediction software. If multiple software packages for target gene
prediction are used for a comprehensive analysis, there may be
more results of target gene predictions. As the actual targeting
relationship in the organism is complicated, the prediction results
given by the software may not be accurate. The screening for
the actual target genes should give more credible results if the
prediction genes can be further validated via experimental data.

The Method of Selecting Core Nodes
After obtaining the interaction network of all the target genes,
the subgraphs were screened out based on the credibility score
of the relationship between the nodes and selected the core
nodes according to the degree of the nodes in the subgraph.
This method of screening the core nodes is simple, which
points to the need for more efficient or universal algorithms to
select the core nodes.

The Application of Machine
Learning Models
The authors trained the SVM model to predict differentially
expressed sRNAs. However, the predicted results of this model
are only sRNAs with significantly increased expression levels in
the infection. Although sRNAs with decreased expression levels
may also play an important role in the infection process, this
model does not apply to the down-regulated sRNAs. In addition,
there are multiple machine learning models; many of them are
suitable for classifying samples. It is not known which model can
achieve the best results. Different models can be used to predict
differentially expressed sRNAs, and their results can be compared
to determine which machine learning model can achieve the
best prediction.

The Significance of Finding
Effector sRNA
Using the method of high-throughput data presented in this
study, 14 M. oryzae sRNAs were identified, which may act as
effectors to silence rice genes and cause disease. The data used
in this work were experimentally validated and the authenticity
of these 14 sRNAs was confirmed in the Magnaporthe Next-
Gen Sequence sRNA database. However, since this study is based
on the hypothesis that a cross-kingdom RNAi mechanism exists
between M. oryzae and rice. This hypothesis requires further
biological experiments to verify. Because this mechanism may
exist during the infestation of other fungi on plants, this study lays
a foundation for the discovery of sRNA effectors in other fungi.
In addition, when various phytopathogenic fungi infect plants,

there is little known on whether a certain similarity exists among
their sRNA effectors. To clarify the similarities and functions of
the sRNA effectors from diverse fungal pathogens may constitute
an intriguing research direction. If the relationships among these
fungal sRNAs are determined, the discovery will provide an
important theoretical basis for new ideas on the prevention and
control of plant diseases.
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