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As semiautonomous driving systems are becoming prevalent in late model vehicles,
it is important to understand how such systems affect driver attention. This
study investigated whether measures from low-cost devices monitoring peripheral
physiological state were comparable to standard EEG in predicting lapses in attention to
system failures. Twenty-five participants were equipped with a low-fidelity eye-tracker
and heart rate monitor and with a high-fidelity NuAmps 32-channel quick-gel EEG
system and asked to detect the presence of potential system failure while engaged
in a fully autonomous lane changing driving task. To encourage participant attention
to the road and to assess engagement in the lane changing task, participants were
required to: (a) answer questions about that task; and (b) keep a running count of
the type and number of billboards presented throughout the driving task. Linear mixed
effects analyses were conducted to model the latency of responses reaction time (RT) to
automation signals using the physiological metrics and time period. Alpha-band activity
at the midline parietal region in conjunction with heart rate variability (HRV) was important
in modeling RT over time. Results suggest that current low-fidelity technologies are not
sensitive enough by themselves to reliably model RT to critical signals. However, that
HRV interacted with EEG to significantly model RT points to the importance of further
developing heart rate metrics for use in environments where it is not practical to use EEG.

Keywords: low-cost technology, attention, alpha-band, semiautonomous vehicles, eye-tracking,
electrocardiography

INTRODUCTION

Semiautonomous driving systems or ‘‘partial driving automation’’ (SAE Level 2; SAE International,
2016) are driver assistance systems that are increasingly available in passenger vehicles, with
conditional driving automation (SAE level 3) still largely under development. As recently pointed
out by Eriksson and Stanton (2017), SAE level 2 is commonly confused with highly automated
driving, when in fact the semiautonomous level requires drivers to monitor the automation. For
both SAE levels 2 and 3, drivers must be prepared to intervene when system limitations and failures
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occur. These systems are intended to be advanced driver
assistance systems (ADASs) and thus are not intended to
supplant the need for drivers to maintain vigilant attention and
intervene when necessary.

ADAS in passenger vehicles are urgently needed. Highway
fatalities in the US declined steadily for five decades but
increased more than 10% in the first 6 months of 2016 with
only a slight decline (0.8%) from that peak in 2017 (NHTSA’s
National Center for Statistics and Analysis, 2017). Overall,
the 2016 and 2017 fatality numbers are a troubling reversal
of decades of improvement in highway fatalities. Importantly,
an estimated 94% of fatal crashes are attributable to driver
error, with 41% of those errors being recognition errors
including inattention, internal and external distractions,
and inadequate surveillance (Singh, 2015). The advent of
semiautonomous systems in vehicles is already reducing crashes
by reducing driver error. Automatic emergency braking reduced
rear-end crashes by about 40% (Cicchino, 2017) and rear
cross-traffic alerts reduced backing crashes by about 32%
(Cicchino, 2018).

Despite the potential benefit for automation to reduce vehicle
crashes, automation can have unpredictable effects on drivers.
Increased vehicle automation changes how drivers pay attention
and tend to decrease situation awareness (Sarter et al., 1997;
Endsley, 2017). People use automation when they should not,
over-rely on automation, over-trust automation, and fail to
monitor automation closely (Parasuraman and Riley, 1997).
In a prior meta-analysis, a greater degree of automation was
found to be associated with reduced ability to recover from a
system failure (Onnasch et al., 2014). Importantly, increased
levels of vehicle automation shift the driver’s role from one
of active control to one of a supervisor of the automation
(van den Beukel et al., 2016). It is imperative to understand
how advanced vehicle automation affects the safety of drivers
and passengers.

Although ADASs do reduce crashes, they also have a
number of known operational limits. Misunderstanding or
over-trust in these systems may result in drivers failing to
monitor the automation and subsequently failing to detect
critical signals related to the system’s functionality (Parasuraman
and Manzey, 2010). There have been recent news reports of
fatal Tesla crashes that occurred when the automation failed
to detect obstacles during a period when the driver was not
monitoring the automation (CNBC, 2018). Current ADASs
are not designed to brake effectively during ‘‘cut-in,’’ ‘‘cut-
out,’’ or crossing-path scenarios. Pedestrian detection systems
do not detect all pedestrians, notably those carrying large
packages. These limits render driver inattention hazardous in
all partially automated SAE 2 vehicles. Now that most new
vehicles are equipped with some automation, it is important to
understand how drivers respond to signals indicating automation
disengagement. Inattentive drivers may require more urgent
warnings—warnings that could annoy or startle the attentive
driver. Therefore, warnings of automation faltering or failing
should be tailored to the driver’s attentional state to be
most effective. Further, there is increasing recognition that
under some conditions, safety considerations may require

automation to shut itself off to protect an inattentive driver.
Such systems would depend on non-invasive sensors able to
reliably detect driver attentional state. A major focus of the
current work is to understand the predictive capabilities of
non-invasive low-cost sensors, compared to well established but
expensive and relatively cumbersome methods such as multi-
channel EEG.

EEG obtained with standard EEG recording equipment has
been shown to be sensitive to attentional state and is often
considered the defacto physiological measure for attention.
Previous EEG studies using high-fidelity EEG systems, have
reported that alpha-band activity increases just before errors in
processing that stimuli (Mazaheri et al., 2009; O’Connell et al.,
2009; Brouwer et al., 2012; Ahn et al., 2016; Aghajani et al.,
2017; Zhang et al., 2017). Increased prestimulus alpha-band
has also been associated with mind wandering during driving
(Baldwin et al., 2017). Although EEG is well-established as
a measure of attention, it may not be practical for use in
vehicles insofar as real-time scalp recording and analysis of
alpha-band power would be needed. Portable EEG systems have
shown promise in their ability to monitor driver engagement
and drowsiness in a simulator study (Johnson et al., 2011).
Even though portable EEG systems may be capable in field
settings, they are expensive compared to other portable
physiological measuring systems, thereby adding to consumer
costs. Lower-cost technology systems exist for monitoring
driver state that are more robust and less cumbersome than
EEG and thus more likely to be adapted and installed into
vehicles. For example, the General Motors Cadillac 2018 and
2019 CT6 models offer a super cruise feature that includes an
infrared eye-tracking system which is used by the automation to
determine driver attention (Clerkin, 2017). Similarly, low-cost,
reliable heart rate monitors with signal quality comparable to
that produced by ZyphrTM and KardiaMobile, could potentially
be integrated into vehicles to record drivers’ heart electrical
activity (ECG). This raises the question of whether sufficient
classification sensitivity to the attentional state can be achieved
with low-fidelity, low-cost sensors such as heart-rate monitors
and eye-trackers?

An existing body of research has investigated the use of
metrics other than EEG to monitor operator state. For example,
metrics of cardiovascular activity have been used to assess
constructs such as mental workload, fatigue, and operator stress.
In general, both heart rate increases and heart rate variability
(HRV) decreases have been associated with increased mental
effort (Mulder, 1992; Wilson, 1992). For example, Stuiver et al.
(2014) found that 40 s periods of HRVwere sensitive to increased
effort expenditure due to driving in fog vs. clear visibility,
with fog-inducing decreased HRV. Mehler et al. (2012) found
that heart rate and skin conductance level increase as cognitive
demand increases. HRV has also been used to classify fatigue
during simulated driving (Patel et al., 2011). Metrics of HRV
have been found to index changes in mental effort over time
as participants adapt to a task and change task strategies and
performance criteria. Short periods of high HRV reflecting
primarily parasympathetic influences may, therefore, serve as
a sensitive index of fluctuations in task effort and temporarily
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lowered levels of effort on a trial by trial basis (Thayer et al.,
2012). HRV as a workload measure is generally most sensitive
in the mid-range, particularly around 0.10 Hz area (Mulder,
1992). The mid-range is most sensitive to the amount of
mental effort invested in the task, not task complexity, per se.
Hogervorst et al. (2014) directly compared three measures of
HRV used to index workload: (a) high-frequency HRVmeasured
in root mean square of successive differences (RMSSDs); (b)
the spectral power in the range 0.15–0.5 Hz of the ECG R
to R intervals; and (c) mid-frequency variability with spectral
power between 0.07 and 0.15 Hz of the ECG R to R intervals.
It should be noted that the third measure would be categorized
as low frequency according to the (Task Force of the European
Society of Cardiology the North American Society of Pacing
Electrophysiology, 1996). Hogervorst et al. (2014), found that,
apart from EEG, only respiration frequency and RMSSD
produced a significant classification of workload.

Metrics of eye movements have also shown promise in
recent years as indices of attention. Metrics obtained from eye
trackers, such as fixations, horizontal spread of fixations, and
gaze concentration have been used successfully to index attention
in several recent driving investigations. For example, Wang
et al. (2014) compared a number of different eye gaze metrics
and found that horizontal gaze concentration derived from the
standard deviation of horizontal gaze position was robust and
sensitive to changes to cognitive demand during driving on actual
roads. Research by Fridman et al. (2018) used in-vehicle video
recordings of eye movements in conjunction with either, Hidden
Markov Models or three-dimensional convolutional neural
network, to classify driver cognitive load during driving on an
actual highway. Likewise, in a simulated vehicle automation
task, Louw and Merat (2017) found horizontal gaze dispersion
to be sensitive to increased task demand stemming from
secondary task engagement. Dehais et al. (2011) and Zeeb et al.
(2015) found that gaze concentration was a sensitive index of
attentional focusing, found to predict the speed of ‘‘take-over’’
from automation.

Combinations of physiological measures have shown
particular promise. For example, combinations of EEG, eye-
tracking, and HRV have been used to: (a) classify operator
states (Hogervorst et al., 2014); (b) determine whether a driver
is on-task or mind wandering (Baldwin et al., 2017); and (c) to
successfully adapt automation to improve driver performance
(Wilson and Russell, 2003a,b). Hogervorst et al. (2014) provided
a partial comparison, reporting that EEG measures obtained
the highest classification accuracy compared to eye, heart,
and respiratory measures. When EEG was combined with eye
measures (pupil size and eyeblinks) there was not a significant
improvement over EEG alone as predictors of workload in an
n-back working memory task.

In light of evidence that RMSSD (Hogervorst et al., 2014) and
eye-gaze (Dehais et al., 2011; Wang et al., 2014) were both found
to be effective in predicting driver attentiveness, we hypothesized
that these twomeasures in combination and when obtained from
low-cost equipment could be as sensitive in predicting driver
performance in a simulator during automated driving as EEG
alpha-band, obtained from high-fidelity EEG equipment.

MATERIALS AND METHODS

Participants
Twenty-five participants were recruited through the George
Mason University undergraduate research pool, in exchange for
course credit. Participant requirements were to be above 18 years
of age, have normal or corrected to normal vision and hearing,
not currently taking psychoactive medications, and have a valid
United States driver’s license. Participants were also asked to not
wear heavy eye makeup the day of their scheduled appointment
or wear braids, wigs, or hair extensions as they affect contact
between EEG electrodes and the scalp. In order to increase
enrollment in the study, in addition to course credit, some
participants were given a $15.00 bonus upon completion of their
scheduled session. Table 1 provides an overview of participant
demographic information.

Materials
Simulated Drives
Five fully autonomous drives were programmed using a
low-fidelity desktop simulator containing Internet Screen
Assembler pro version 20 and Real Time Technologies Sim
Creator version 3.2 simulator software on aWindows 7 computer
with 64-bit operating system. Each of the drives was displayed on
a Dell Monitor with screen size measuring 52 cm in length and
32.5 cm in height with a screen resolution of 1,920× 1,200 pixels.
Each of the drives was programmed to complete an automated
lane changing task, adapted from Mattes (2003) and lasted
approximately 10 min in duration. The 10-min duration was due
to limitations in the Sim Creator software. During the drives,
participants were instructed to respond with serial button presses
every time the system indicated there was an automation failure.
System functionality was represented by right or left facing
arrows, appearing in the bottom right corner of the monitor that
varied in the gradient of the color red to green and appeared on
average every 13 s, with a jitter±2 s resulting in 4–5 lane changes
per minute. Arrow duration was 150 ms. System reliability was
indicated by the amount of red at the tip of the arrow. Arrows
representing reliable system functionality, Reliable Automation
Arrows (presented on 80% of trials) indicated the system was
operating normally (the base of the arrow was green with a
small amount of red at the tip). After the presentation of
a Reliable Automation Arrow, the vehicle would respond by
changing lanes correctly. Arrows indicating unreliable system
functionality, Unreliable Automation Arrows (presented on 20%
of trials or on 10 trials per drive) indicated that the system had
failed (the arrow tip was completely filled in with red). After the
presentation of the Unreliable Automation Arrow, the vehicle
would respond by making one of three possible lane changes. Of
the ten Unreliable Automation Arrows, on six of them the vehicle
would fail to make a lane change, for two of them the vehicle

TABLE 1 | Participant demographics.

Total participants 25 Female (12)

Age Range: 18–39 Mean: 22.6 (6.01 SD)
Driving experience (in months) Range: 6–270 Mean: 57.13 (60.75 SD)
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would respond by making an incorrect lane change (opposite of
where the Unreliable Automation Arrow was pointing), and for
two the vehicle would make a correct lane change. Participants
were told to respond with a button press if the arrow was an
Unreliable Automation Arrow then make a second button press
to indicate which type of lane change the vehicle made after the
presentation of the Unreliable Automation Arrow. Participants
were exposed to a total of 50 arrows per 10-min drive.

Two secondary tasks were administered to participants in
addition to the lane changing task. The point of these tasks was
to keep participants engaged in the driving task and discourage
participants from focusing their eyes on the icons in the interface.
During each of the time periods, participants were asked to:
(a) keep a running count of the number of Coca-Cola and
Northrop Grumman signs they encountered; and (b) answer
‘‘driver engagement’’ questions regarding the vehicle’s status
such as: speed changes, current lane position, or lane changes. In
each time period, there were 25 total billboards and three ‘‘driver
engagement’’ questions.

Questionnaires
Participants were administered a demographics questionnaire,
the Trust Between People and Automation (Jian et al., 2000),
Merritt (2011) Trust Scale Items, the Merritt (2011) scale based
on Liking Items, and the Propensity to Trust Scale Items
(Merritt et al., 2013).

EEG Recording
Each participant was equipped with a 40-channel NuAmps EEG
cap with silver/silver-chloride electrodes. Data were recorded
from a subset of electrodes: Fz, Cz, Pz, Oz, F1, F2, P1, P2, Ground
(at location AFz), A1 (the left mastoid, serving as the online
reference), and A2 (the right mastoid), as well as EOG electrodes
placed above and below the left eye as well as at the outer canthus
of both eyes. Data were collected at a sampling rate of 500 Hz
with an online high-pass filter of 0.1 Hz and an online low-pass
filter of 70 Hz.

Eye-Tracking
Gaze dispersion was recorded using the Pupil Pro headset
developed by Pupil Labs. This is a low-cost eye-tracker that
monitors the participant’s right pupil with a camera as well as
the environment with a head-mounted camera. The data was
recorded using Pupil Lab recording software. Sensor settings
for the cameras were as follow: the pupil camera was set to
640 × 480 with a frame rate of 120 fps maximum resolution and
the world camera was set 1,920× 1,080 with a frame rate of 30 fps
maximum resolution.

Heart Rate Monitor
A low-cost Zephyr BioPatch heart rate monitor was attached to
the participant using ECG electrodes in order to collect heart rate
activity during each of the time periods.

Lab-Streaming Layer
The lab-streaming layer (LSL) software library1 was used to
synchronize the timestamps through a network connection

1https://github.com/sccn/labstreaminglayer

between the driving simulation, as well as our physiological
devices: the eye-tracker and heart rate monitor.

Procedure
After providing written informed consent of a protocol approved
by George Mason University’s Human Subjects Institutional
Review Board, participants were introduced to the heart rate
monitor, eye-tracker, the EEG cap. Procedures were used to
lower impedance of the scalp EEG electrodes.

ECG Setup
Participants were handed the Zephyr Heart Rate Monitor and
asked to place it so that it was centered with their sternum so
the ECG electrodes could acquire heart rate activity at the fourth
intercostal space located at the left and right sternal border. Next,
the heart rate monitor was synced with the BioHarness software
on a nearby laptop computer.

EEG Setup
Next, participants were fitted with the Neuroscan 40 channel
EEG cap. Impedance was lowered to 5 k� or below by applying
electroconductivity gel between the electrodes and the scalp then
lightly abrading the scalp using a blunt needle (Luck, 2005). Next
participants were shown how excessive movement can introduce
noise into EEG waveforms and asked to remain as still in their
chair as possible for the duration of the experiment.

Eye-Tracking
We used the Pupil Pro headset to monitor eye movements and
gaze patterns for the duration of the drives. After placing the
headset on each participant, the pupil camera was adjusted to
better capture their pupil. Once the camera was able to accurately
track the participant’s pupil, they underwent a calibration process
in order to synchronize the pupil tracking camera with the world
facing camera via Pupil Pro software. This allowed us to track
the location of the display in order to convert the gaze position
to display coordinates. A confidence value is estimated for each
sample of eye data that ranges from 0 to 1 indicating a level of
certainty that the pupil was accurately identified for that sample.
Only samples with confidence at or above 0.8 were used for
further data analyses.

After setting up the participant with the physiological metrics,
participants were seated 75 cm away from the monitor. At
the start of the training drive, each participant was read
the instructions aloud and introduced to the controls on the
gear shift. Participants were instructed to immediately press
the button labeled as U as soon as they saw an Unreliable
Automation Arrow, then make a second button press indicating
the type of error that occurred (N =No lane change, I = Incorrect
lane change, and C = Correct lane change). Participants were
asked to only respond to the Unreliable Automation Arrows.
Participants were also instructed to pay attention to the images
on each of the billboards and count the number of times they
saw logos for Coca-Cola and Northrop Grumman as well as
answer the ‘‘Yes’’ or ‘‘No’’ driver engagement questions (DEQ;
e.g., ‘‘Speed increased after last arrow?,’’ ‘‘I am currently traveling
67mph?,’’ ‘‘I am currently in the far right lane?’’ presented during
each trial. Participants were allowed to complete the practice as
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many times as they needed to feel comfortable responding to the
task. After training, participants were then administered the five
time periods in counterbalanced order. After each time period
participants were asked to report the total number of Coca-Cola
and Northrop Grumman billboards to the experimenter. Upon
completion of the simulated driving session, participants were
administered the questionnaires.

Data Analysis
Heart Rate Variability (HRV)
Data collected from the driving simulator was synced in time
with the data collected from the Zephyr Heart Rate Monitor.
We sampled the heart rate data starting 10 s before the onset
of the Unreliable Automation Arrow until the presentation of
the arrow. As reported in Klinger (1978), shifts in thought
patterns can happen on average every 14 s. A maximum window
of 10 s was chosen for ECG activity as that would allow us
to maximize the number of sampled beats per second without
extending too far back to potentially sample HRV due to
the previous Automation Arrow. Based on previous work by
Hogervorst et al. (2014), HRV was the measure of interest
because it has been shown to be a robust classifier in identifying
low vs. high workload compared to spectrally defined medium
and high HRV. We calculated the ECG R-wave peak to peak
interval for each trial using the MATLAB wavelet toolbox, using
the maximum overlap discrete wavelet transform (MODWT).
The squared absolute value of the signal approximation was
calculated allowing for the use of an algorithm to identify R peaks
for further analysis. Mean R to R was calculated by averaging
the time between R peaks (meanRR). HRV was calculated using
the RMSSDs.

EEG Processing
EEG spectral data were processed using MATLAB with EEGLAB
toolbox version 12.0.2.4b (Delorme and Makeig, 2004). EEG
channels were mapped using the BESA file, a four shell DIPFIT
spherical model of the channel locations. Data were re-referenced
to the average of the two mastoid electrodes. Unreliable
Automation Arrows were labeled within the waveform of the
EEG data. Data were filtered at a high-pass filter of 1 Hz
cutoff and 2 Hz transition bandwidth, and a low-pass filter of
40 Hz and 10 Hz transition bandwidth. Data was decomposed
via independent component analysis (ICA), and components
representing blinks or eye movements were visually identified
and removed. Electrodes exceeding ±2 standard deviations
were identified as artifactual and rejected. Additionally, data
exceeding ±100 µV was rejected from the data to remove
artifacts caused by large movements or other noise. Data from
electrodes rejected due to artifacts that exceeded two standard
deviations were subjected to spherical interpolation. Dummy
markers were placed in the EEG data 1 s before each unreliable
signal event to the presentation of the arrow and the data were
epoched to those markers. The 1-s windowwas chosen to capture
the mental state of participants immediately prior to the onset
of the Unreliable Automation Arrow. Previous research on what
is termed ‘‘prestimulus alpha’’ have shown increases in alpha
spectral power, prior to a failure in detecting a signal, using a

time window of 800 ms to 1,000 ms prior to stimulus onset
(Busch et al., 2009;Mazaheri et al., 2009). Each epoch was linearly
detrended, and a hamming windowed Fourier transform was
used to convert the data from the time-domain to the frequency
domain, as implemented in the MATLAB function pwelch. The
data were then converted into decibel power using 10∗log10
(power) in order to get a better approximation of the normal
distribution. The FFT bin nearest to 10 Hz, here 9.76 Hz, was
used to analyze alpha activity at electrodes Pz, Cz, and Fz.

Eye-Tracking
Gaze dispersion data collected from the eye-tracker was synced
in time with each drive through LSL and sampled 3 s before each
onset of an Unreliable Automation Arrow to the presentation of
the arrow. This time window was selected in order to maximize
the number of sampled eye movements prior to the onset
of the Unreliable Automation Arrow while avoiding potential
contamination from eye movements that occurred due to the
billboard task. Horizontal and vertical gaze dispersion were
calculated by computing the standard deviation of a measure of
pixels over which the eyes moved for the X (horizontal) or Y
(vertical) dimension of the raw data identified with a confidence
value of 0.8 or higher. Horizontal and vertical gaze dispersion was
then transformed using the natural log of their values (lnX and
lnY, respectively) to approximate the normal distribution.

Behavioral Data
Responses to the presentation of the Unreliable Automation
Arrows and responses indicating the type of error (second button
presses) were extracted to assess changes in performance over
a time period during the experimental session. Participants
were instructed to immediately respond as soon as they saw an
Unreliable Automation Arrow. Due to high accuracy shown by
participants in identifying Unreliable Automation Arrows, the
latency of response to Unreliable Automation Arrows was the
measure of interest. We first calculated the grand mean for our
entire data set and standard deviation. We set all response times
higher than 2,600 ms to equal 2,600 ms. In order to get a better
idea of how well participants were able to distinguish between
critical events and reliable events, the A measure of sensitivity
was used. Since the measure of d’ is calculated by taking the
difference of hits and false alarms that have been converted
from probabilities into z-scores, the inclusion of a 1 or a 0 can
lead to a value that does not fall below the ROC curve. Use
of non-parametric sensitivity calculated using the A statistic, as
described in Zhang and Mueller (2005), eliminates the reliance
of converting probabilities to z-scores and obtains the measure
of sensitivity by calculating the average of the minimum-area
and maximum-area proper ROC curves as constrained by false
alarms and hits. Analysis of the accuracy of the second button
press that indicated the type of lane change the vehicle made
(incorrect, correct, or no lane change) were calculated for further
analysis in SPSS.

For the billboard task, the probability of hits and false alarms
was calculated for each 10 min time period of the drive. The
A statistic was calculated for further analysis in SPSS. For
the DEQs, accuracy was calculated by averaging the responses
of the questions for each 10 min episode of the drive. With
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the trust questionnaire data, statements identified as being
negative were reverse coded allowing us to average the scores for
further analyses.

RESULTS

Data were analyzed using SPSS and the R statistical package (R
Core Team, 2017). To assess how well participants were able
to discriminate between Unreliable Automation and Reliable
Automation Arrows, we calculated the A statistic for each
time period. To assess speed-accuracy tradeoff, a correlation
analysis was conducted comparing A to reaction time (RT) for
the discrimination task. That analysis produced a significant,
2-tailed, negative correlation (R2 = −0.50, p < 0.05), indicating
that participants did not slow their responses in order to achieve
higher accuracy scores. Since accuracy was at the ceiling for
participants, discrimination RT was the behavioral measure
of interest.

In order to model RT to Unreliable Automation Arrow over
the five time periods, linear-mixed effects models were carried
out. These models were constructed using the R package lme4
(Bates et al., 2012). We conducted interactive models of RT
to Unreliable Automation Arrow across the five time periods
for each measure (alpha-band × time period, HRV × time
period, meanRR × time period, lnX × time period). These
were random intercept and slope models. Participant and trial
(10 trials in each time period) were random factors. For each
variable, only time period significantly modeled RT (p < 0.05).
Only alpha-band interacted with the time period inmodeling RT.
A likelihood ratio test (LRT) comparing the interactive model
(alpha-band× time period) to a null additive model (alpha-band
+ time period) produced a significant Chi-square (X2

(1) = 5.251,
p = 0.0219), suggesting that the interaction was important in
modeling RT.

Linear-mixed effects models were also used to model
RT. An interactive model of RT was constructed with
alpha-band, meanRR, HRV, lnX, and time period as fixed
factors (Formula: RT ∼ 1 + (Pz Alpha+meanRR+HRV+
lnX+ TimePeriod)3 + (1|Participant)+ (1|Trial)). Participant
and trial (10) were random factors. That model produced
two significant interactions (AIC = 2727.7, BIC = 2873.3,
p < 0.05), indicating the likelihood of alpha-band × time
period (β = 0.04158) and alpha-band × HRV (β = −0.1588)
in modeling RT. As horizontal gaze dispersion (lnX) did not
contribute significantly to the model, lnX was dropped from
the model and a reduced model was fitted (Bolker et al.,
2009). The reduced LME was conducted to model RT using
alpha-band, meanRR, HRV, and time period as the fixed
factors (Formula: RT ∼1 + (Pz Alpha+meanRR+HRV+
TimePeriod)3 + (1|Participant)+ (1|Trial)). Interactions were
limited to two- and three-way. That model produced a
significant three-way interaction (AIC = 2713.2, BIC = 2803.5,
p < 0.05, marginal R2 = 0.02, conditional R2 = 0.42)
indicating the likelihood of alpha-band, HRV, and time period
(β = 0.03861) in modeling RT. The R2 values, calculated
and reported as described in Nakagawa et al. (2017), indicate
that 2% of the variance was explained by the fixed factors

alone while 42% of the variance was explained by random
effects included in the model. The model also produced a
significant two-way interaction of MeanRR × Time Period
(β = −0.03588, p < 0.05). A LRT comparing the interactive
model (alpha-band × meanRR × HRV × time period) with
an additive null model produced a significant Chi-square
(X2
(10) = 21.092, p = 0.021), indicating the interactions

were important in modeling RT. Since the only significant
three-way interaction involved alpha-band, HRV, and time
period, LRTs were conducted to test the interactions: (a)
alpha-band × HRV; (b) alpha-band × Time Period; and
(c) HRV × Time Period. The three LRT tests showed
that alpha-band × HRV (X2

(9) = 18.649, p = 0.0284) and
HRV × Time Period (X2

(9) = 19.228, p = 0.023) were
significant. The interaction of Alpha-band × Time Period
was not significant (X2

(9) = 15.809, p = 0.071). Considered
together, these results indicate that alpha-band, HRV, and
time period are important factors in modeling RT, with
meanRR a weaker factor. Figure 1 shows the changes for
the physiological measures over each time period. Figure 2
provides a visual comparison of alpha-band power andHRV over
time period.

Response to Lane Change Accuracy
Accuracy scores calculated from the second button presses
which identified the type of lane change made by the vehicle
were submitted to a repeated measures ANOVA to assess
the change in accuracy over time. There was no statistical
significance in the analysis of changes over time in accuracy of
deciding which type of lane change was made by the vehicle
(F(4,92) = 0.404, p = 0.806).

Billboard Task
Preliminary analyses of A sensitivity scores were calculated
looking at the changes in sensitivity to identifying the Northrup
Grumman and Coca Cola billboards over time. The A statistic
was calculated for the billboard task, as shown in Figure 3.
Due to high accuracy for the billboard responses and in the
absence of a hypothesis on an effect of the two billboard
types, A scores were collapsed across Northrup Grumman
and Coca Cola billboards. A repeated measures ANOVA was
conducted in SPSS looking at changes in A sensitivity scores
as a function of time. Statistical significance was not observed
(F(4,92) = 1.495, p = 0.210).

Driver Engagement Questions
Accuracy was calculated for each time period by averaging the
responses for the DEQs. As shown in Figure 4, participants
increased in accuracy in their responses to the questions
before showing a performance decrease at the third time
period and an increase in performance for the fourth and
fifth time period. A repeated measures ANOVA analyzed the
change in accuracy over time. Mauchly’s test of sphericity
indicated that the assumption of sphericity had not been
violated and therefore sphericity was assumed. There
was a marginal effect of time on accuracy of response
(F(4,96) = 2.353, p = 0.059).
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FIGURE 1 | (A) Reaction time (RT). (B) Alpha-band power. (C) Mean RR. (D) Heart rate variability (HRV) plotted over 10 min time periods. Error bars are standard
error of the mean. Alpha-band power, Mean RR, and HRV are important factors in modeling RT over time.

Trust Questionnaires
Five correlation analyses were conducted to assess the
relationship between our questionnaires (Trust Between
People and Automation, Merritt Trust Scale Items, Merritt
scale based on Liking Items, Propensity to Trust Scale Items),
physiological metrics selected based on the LME (alpha-band,
Mean RR, and HRV), and behavioral metrics (RT and A). Of
our five correlation analyses, there was a statistically significant
negative bivariate correlation between alpha-band activity at
midline parietal site Pz and the Merritt et al.’s (2013) Propensity
to Trust Scale Items (r =−0.430, p< 0.05).

DISCUSSION

We obtained partial support for our hypothesis. We found that
HRV interacted with alpha-band activity and time period to
model the speed of processing signals of automation unreliability.
Gaze dispersion did not model the speed of processing signals
of automation unreliability, either alone or in combination
with other measures. Mean RR (heart rate measured in R-R
intervals) did model RT in interaction with time period but not
in interaction with alpha-band or HRV. Our findings confirm

previous evidence that prestimulus alpha-band activity is the
most effective measure of mental processing (Hogervorst et al.,
2014) but extend that work in showing HRV increased the
predictive capability of parietal alpha-band. The readiness of the
brain to process signals of system unreliability was affected by the
combined effects of HRV and alpha-band activity. This evidence
that HRV modulates alpha-band activity with consequences
for automation signal processing argues for the importance of
developing heart rate metrics in operational environments where
EEG is not practical.

Regarding the time course, HRV initially increased over the
session of autonomous vehicle driving, but then decreased near
the end. Based on the existing HRV literature, the effect of
workload on HRV depends in part on the duration of the
workload demand. Mulder (1992) has argued that the cardiac
response to 5–10 min periods of increased workload reflects
preparation for fight-or-flight activation of the sympathetic
nervous system with increased HR and decreased HRV. In
contrast, a short-lasting increase in workload (25–30 s) was
reflected in short-lasting increases in heart rate and blood
pressure in combination with corresponding decreases in HRV
and blood pressure variability (Stuiver et al., 2012). For our task,
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FIGURE 2 | Plotted interaction of Pz Alpha and HRV across time period.
Error bars are standard error of the mean. Alpha power increases and HRV
decreases at Time Period 5.

the workload may have increased when Unreliable Automation
Arrow signals were presented. However, the present study
measured HRV prior to those unpredictable signals indicating
unreliable automation. Therefore we could not determine
whether those signals transiently increased workload. The
slowing of RT linearly over the session and the initial increase in
HRV during autonomous vehicle operation are consistent with
an interpretation that workload increased over the session.

HRV has previously been associated with emotional
regulation (Appelhans and Luecken, 2008). HRV has been
found to be higher in those people who were better able to
regulate their emotions in social interactions (Butler et al., 2006)
and in marital interactions (Smith et al., 2011). Our finding
that high-frequency HRV interacted with alpha-band to model
the speed of responding to unreliable signals points to a role
for individual differences in emotional response regulation
in processing automation signals. Further, in operational
environments, it might be interesting to determine whether very
low and low-frequency HRV also predicts RT of responding to
signals of automation reliability.

RT to the signals of unreliable automation slowed fairly
linearly over the 55-min drive. Use of RT to measure processing
of signals from automation during a simulated drive is very
relevant to the topic of real-world driving of vehicles equipped
with ADASs. In ADAS-equipped vehicles in the real world,
the driver receives frequent signals from various automation
systems [e.g., drowsy driving, lane departure, lane keeping, and
(more rarely) sensor failure warnings]. The slowing of RT to
automation signals over the simulated driving session could
suggest a vigilance decrement. However, the sensitivity index A
from the discrimination task did not change over the driving
session and accuracy of responses to the lane changing task was
high. Moreover, the driving session was interrupted briefly every
10 min or so (due to limitations of the software), which would
not be conducive to the development of a vigilance decrement.
Therefore, we do not interpret our findings of slowed RT as

FIGURE 3 | Changes in A sensitivity scores for the Billboard task across
time period. Error bars are standard error of the mean. Statistical significance
was not observed for A sensitivity scores across time period.

FIGURE 4 | Changes in accuracy scores of Driver Engagement Questions
(DEQ) across time period. Error bars are standard error of the means.
Marginal effect of time on response accuracy.

consistent with a vigilance decrement. Workload is another
possible explanation for slowing RT to signals of automation. The
decrease in accuracy on the DEQs between the second and third
time points, despite the high accuracy of the secondary billboard
task do suggest a slight increase in workload or possible depletion
of cognitive resources, such as that commonly found in vigilance
tasks. However, that result was marginally significant.

Alpha-band showed a more complex pattern than RT over
the session, with an overall increase in power over the driving
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session, interrupted by a temporary drop in power in the
4th time period. Other investigations of alpha-band activity
during vehicle operation have found increases in alpha-band
power over time. Simon et al. (2011) observed an increase in
alpha-band over a driving session between the first 20 min of
driving and the last 20 min. That was measured only in people
who claimed to be very fatigued. Craig et al. (2012) found
increases in alpha-band power at frontal, central, and posterior
regions over time as participants engaged in a monotonous
simulated driving task. A literature review by Lal and Craig
(2001) concluded that alpha band activity changed as drivers
become fatigued. Since we had participants engage in a fully
autonomous drive, it is possible that some became passively
fatigued or drowsy during the session. An attempt by the
participant to maintain engagement despite the passive nature
of monitoring the automation may partially explain the high
accuracy of detection of the Unreliable Automation Arrows.
Further, attention to a spatial location (Worden et al., 2000) and
to features (Snyder and Foxe, 2010) also modulates alpha-band
activity when participants are required to detect changes in the
spatial location or visual features of stimuli when they are actively
suppressing irrelevant stimuli. This has been observed over
dorsal areas when the color was cued but over ventral areas when
motion was cued (Snyder and Foxe, 2010). In the present study in
which participants were required to discriminate stimuli defined
by color, the modulation of alpha-band activity could, therefore,
reflect the anticipated need to discriminate based on color.

We speculate that the interaction between alpha-band, HRV,
and time period that was observed in the LME model may reflect
changed influences of workload and/or attention over time. The
increase in alpha-band activity from time period 4 to time period
5 may reflect lapses of attention to the arrow task during the last
time period. This is similar to previous findings from O’Connell
et al. (2009) in which they report increased alpha-band activity
prior to missing a target. As discussed above, the increase in
HRV may reflect the response to workload demands placed on
participants. This increase in workload in addition to reduced
attention may have affected participants’ response times to the
Unreliable Automation Arrows indicating that the automation
was in an unreliable state.

In contrast to previous work, we did not find that eye gaze
measures predicted RT to signals of an unreliable automation
state. Greater concentration of gaze (lower variance) has been
associated with a higher workload (Victor et al., 2005). He et al.
(2011) found that smaller horizontal gaze dispersion was an
indication of mind wandering. As horizontal gaze dispersion
did not contribute to modeling RT in the present study, we
speculate that the billboard task and DEQs forced participants
to maintain awareness of stimuli in the road environment and
thereby remain attentive to the driving task. Further, the problem
of ‘‘looking but not seeing’’ in driving may limit the usefulness
of gaze concentration as a monitor of driver attentional state in
the real world. In a real-world driving environment, operators
may be less likely to detect a signal if they are not familiar with
the automation. Further, in the current study, the reliability cue
was not continuous. Rather, it appeared and remained on for a
discrete amount of time (150ms). This familiarity and the sudden

onset of the cue likely heightened participants’ awareness of
the Unreliable Automation Arrows and could have contributed
to the high discrimination accuracy since participants were
expecting the arrows to appear. In future studies, it would be
useful to examine detection performance when changes were
more gradual in a continuous display.

The present study has several limitations. First, driving in
a simulator differs in a number of ways from on-road driving
and the present design was an automated lane-changing task
which did not require any active driving. Therefore, during the
simulated drive, participants did not need to respond to sudden
events common in everyday driving such as behavior of other
drivers or pedestrians. Participants only needed to complete the
tasks given to them. Further, the arrow task required participants
to frequently monitor the automation display which changed the
role of the driver from being an active participant to being a
monitor of the automation. Monitoring the automation display,
in conjunction with the secondary tasks, may have introduced
additional noise making horizontal gaze dispersion less sensitive
to operator state. We would note, however, that current SAE
2 vehicles do require the driver to monitor the automation
display frequently. A second limitation was the absence of a
measure of workload which makes it difficult to interpret the
slowing of RT over time periods of the simulated drive. Third,
the interruption of driving every 10 min makes the present study
more relevant to city driving than to highway driving. Fourth,
this study used a low-fidelity desk-top driving simulator. In
future work, a high fidelity motion-based simulator with better
automation capabilities allowing for longer automated drives will
be used. Fifth, it could be argued that the high accuracy of target
discrimination is a limitation. However, making the icons harder
to discriminate would not be consistent with real-world driving
demands which requires signals from an automation interface
to be easily discriminable. Moreover, the speed of responding to
those signals is an appropriate measure for driving performance.
Despite these limitations, the present study provides insight into
the feasibility of using portable, low-cost physiological measures
to assess driver state in operational environments, including
automated driving.

In sum, both EEG alpha-band and the interaction of HRV
with alpha-band successfully modeled drivers’ readiness to
respond to signals of automation unreliability. This suggests
that both those measures reflect the ability to attend to
important events during driving. Our results suggest that
cardiac metrics obtained from low-cost wearable sensors can
be further developed for in-vehicle monitoring of driver state.
Such monitoring could be used to tailor alerts or even turn off
the automation (as in certain General Motors models) if the
operator is judged to not be attending sufficiently to the road or
monitoring the automation.
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