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ABSTRACT
The analysis of gut microbiota using fecal samples provides a non-invasive approach to
understand the complex interactions between host species and their intestinal bacterial
community. However, information on gut microbiota for wild endangered carnivores
is scarce. The goal of this study was to describe the gut microbiota of two leopard
subspecies, the Amur leopard (Panthera pardus orientalis) and North Chinese leopard
(Panthera pardus japonensis). Fecal samples from the Amur leopard (n= 8) and North
Chinese leopard (n= 13) were collected in Northeast Tiger and Leopard National
Park and Shanxi Tieqiaoshan Provincial Nature Reserve in China, respectively. The
gut microbiota of leopards was analyzed via high-throughput sequencing of the V3–V4
region of bacterial 16S rRNA gene using the Life Ion S5TM XL platform. A total of
1,413,825 clean reads representing 4,203 operational taxonomic units (OTUs) were
detected. For Amur leopard samples, Firmicutes (78.4%) was the dominant phylum,
followed byProteobacteria (9.6%) andActinobacteria (7.6%). And for theNorthChinese
leopard, Firmicutes (68.6%), Actinobacteria (11.6%) and Fusobacteria (6.4%) were the
most predominant phyla. Clostridiales was the most diverse bacterial order with 37.9%
for Amur leopard and 45.7% for North Chinese leopard. Based on the beta-diversity
analysis, no significant difference was found in the bacterial community composition
between the Amur leopard and North Chinese leopard samples. The current study
provides the initial data about the composition and structure of the gut microbiota
for wild Amur leopards and North Chinese leopards, and has laid the foundation for
further investigations of the health, dietary preferences and physiological regulation of
leopards.
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INTRODUCTION
Leopards (Panthera pardus) are currently the most widely distributed wild felids (Jacobson
et al., 2016), but they are confronted with worldwide population declines due to illegal
poaching, prey depletion, habitat fragmentation, and anthropogenic disturbances (Balme,
Slotow & Hunter, 2009; Hebblewhite et al., 2011; Kissui, 2008; Nowell & Jackson, 1996;
Packer et al., 2011; Stein et al., 2016; Sunquist & Sunquist, 2002). The International Union
for Conservation of Nature (IUCN) recognizes nine subspecies of leopards, including
the Amur leopard and the North Chinese leopard (Miththapala, Seidensticker & O’Brien,
1996;Uphyrkina et al., 2001). The Amur leopard has been classified as critically endangered
by IUCN since 1996 (Jackson & Nowell, 2008). Once patrolling from Northeast China
to southernmost portions of the Russian Far East and the Korean peninsula (Nowell &
Jackson, 1996), the Amur leopard is currently confined to the adjacent habitats in the Jilin
and Heilongjiang provinces in China and southwestern Primorsky Krai in Russia (Feng
et al., 2017; Hebblewhite et al., 2011). The North Chinese leopard originally distributed
North and Central China but lost as much as 98% of their historic range. An accurate
distribution area and population size still remain unclear due to the lack of empirical
investigation (Jacobson et al., 2016). Recently, the Cat Classification Task Force of the
IUCN Cat Specialist Group revised the taxonomy of leopards and included the North
Chinese leopard in Amur leopard on account of the obscure biogeographical barrier
between them (Kitchener et al., 2017), although North Chinese leopard was described as
the typical subspecies in North China since 1862 (Allen, 1938;Gray, 1862). Moreover, other
evidence based on molecular biology supporting this classification for the two leopards are
scarce, especially in North China.

Amur Leopard and North Chinese leopard are large-sized feline species and solitary
predators that play pivotal roles in the ecosystems where they occur. Many efforts have
been made to uncover their dietary habits, population genetic structure, and individual
identification for conservation purposes through non-invasive sampling of feces (Dutta
& Seidensticker, 2013; Dutta et al., 2012; Rodgers & Janečka, 2013; Yang et al., 2018). Gut
microbial diversity analyses based on leopard fecal samples should also be considered as an
important part of conservation efforts. In-depth understanding of the relationship between
host habitat and microbiota composition may be helpful for conservation efforts because
changes in the gut bacterial communities have been shown to affect host metabolism and
energy homeostasis (Musso, Gambino & Cassader, 2010).

The gut microbiota composition is an indicator of health condition for endangered wild
animals, since habitat degradationmay affect host health negatively via diet-associated shifts
in the gut microbiota (Amato et al., 2013). Dietary changes caused by human disturbance
and habitat degradation likely result in a decrease in microbiota diversity (Barelli et
al., 2015). Animal groups from habitat under increased anthropogenic pressure could
be distinguished by the comparison of gut bacterial communities (Gomez et al., 2015).
Therefore, changes in the gut microbiota species composition of endangered animals
might be used as an indicator of habitat degradation and fragmentation (Barelli et al.,
2015).
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Additionally, it has been shown that the detection of pathogenic bacteria is indicative
of severe infectious diseases in endangered species (Zhao et al., 2017), and fecal bacterial
composition could alter accordingly with gastrointestinal diseases in animals (Suchodolski
et al., 2012). Research has shown that the fecal bacterial species richness was decreased
and various bacterial taxa were altered in cats with diarrhea (Suchodolski et al., 2015).
Compared with healthy cats, cats with clinical signs of gastrointestinal tract disease had
significantly lower amount of microaerophilic bacteria (Johnston et al., 2001).

Residential gut bacteria are also able to serve as a natural barrier against invasive
pathogens (Gibson et al., 1995), and to facilitate the function of the immune system
(Maynard et al., 2012; Round & Mazmanian, 2009). Specific compositions of the gut
microbiota are associated with variations in the host diet, phylogeny, and physiological
status (Benson et al., 2010; De et al., 2010; Nelson et al., 2013; Sommer & Bäckhed, 2013).
Characterization of gut bacterial communities is important in understanding the
mechanisms of host–microorganism interactions (Nicholson et al., 2012). Thus, the gut
microbiota analysis is fundamental and of paramount importance to the conservation of
endangered species. Potentially, the studies of the gut microbiota could be an assistant tool
for understanding the phylogenetic relationship of leopard subspecies in the future.

Here, we characterized and compared the fecal bacterial communities of the Amur
leopard and North Chinese leopard via high-throughput sequencing targeting the V3–V4
hypervariable region of the bacterial 16S rRNA gene, and provide the first benchmark of
gut bacterial diversity in Amur and North Chinese leopard that potentially contribute to
further conservation research.

MATERIALS AND METHODS
Sample collection
Opportunistic fecal sampling occurred in the period fromDecember 2016 toMarch 2017 in
the two distribution areas from the leopards. A total of eight (O1-O8) fecal samples of the
Amur leopard were obtained from the Northeast Tiger and Leopard National Park located
in the Heilongjiang and Jilin provinces of China (E129◦05′–131◦18′, N42◦37′–44◦10′). This
distribution area of the Amur leopard is characterized by a monsoon climate with cold and
windy winters, the main vegetation types are mixed broad-leaved forests and secondary
Mongolian oak (Quercus mongolica Fisch. ex Ledeb) forest (Tian et al., 2015). A total of
13 fecal samples (J1-J13) of the North Chinese leopard were collected from Tieqiaoshan
Provincial Nature Reserve in Shanxi province (E111◦25′–114◦17′, N36◦39′–38◦06′). This
region belongs to the warm temperate continental climate with little snow in winter
and dry wind in spring, and the vegetation forms are temperate deciduous broad-leaved
forests (Zheng et al., 2009). Field experiments were approved by the Forestry Department of
Jilin Province, State Forestry Administration and Forestry Department of Shanxi Province.

All fecal samples were collected simultaneously by several groups of our team in different
sites. We designed line transects that leopards regularly used based on camera trapping
data and sent trained members in field soon after snowfall to collect feces above snow layer
where leopard footprint traces were present. Each line transect has been revisited more

Han et al. (2019), PeerJ, DOI 10.7717/peerj.6684 3/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.6684


than once at a three day interval, only newly-excreted feces after previous inspection were
collected with the sterile tools. The low environmental temperature below 0 ◦C contributed
to the preservation of gut microbes in the fecal samples. Samples were stored in special ice
boxes under −20 ◦C during in-field study and finally stored under −80 ◦C in laboratory
for further experiments.

DNA extraction
Total bacterial genomic DNAwas extracted from fecal samples using QIAamp R© Stool Mini
Kit (Qiagen, Hilden, Germany) following the manufacturer’s protocol. DNA quantity and
quality were examined using NanoDropTM One (Thermo Fisher Scientific, Waltham, MA,
USA) according to the manufacturer’s instruction.

Bacterial 16S rRNA genes amplification and sequencing
The V3–V4 hypervariable region of the 16S rRNA gene was amplified using primers 341F
(5′-CCTAYGGGRBGCASCAG-3′) and 806R (5′-GGACTACNNGGGTATCTAAT-3′).
PCR amplifications were conducted in a total volume of 50 µL mixture containing 6 µL of
the template DNA, 25 µL of 2×Taq PCR Master Mix (0.1 U/µL; KHBE, China), 2 µL of
each primer (10 µM) and 15 µL ddH2O. The reaction system was then subjected to 1 cycle
of initial denaturation at 95 ◦C for 3 min, followed by 25 cycles at 95 ◦C for 30 s, annealing
at 55 ◦C for 30 s and extension at 72 ◦C for 30 s, and a final cycle at 72 ◦C for 5 min. Stained
with SYBR R© Safe DNA Gel Stain (Invitrogen, Carlsbad, CA, USA), the PCR products were
assessed using electrophoresis in 2% agarose gels and visualized under UV light. The PCR
products were purified using the GeneJET (Thermo Fisher Scientific, Waltham, MA, USA).

The sequencing libraries were generated using Ion Plus Fragment Library Kit 48 rxns
(Thermo Fisher Scientific, Waltham, MA, USA). DNA concentrations of PCR products
were quantified through Qubit and subjected to quality control procedures (Edgar et
al., 2011; Haas et al., 2011; Martin, 2011). High-throughput sequencing was performed
on a Life Ion S5TM XL (Thermo Fisher Scientific, Waltham, MA, USA) following the
manufacturer’s instructions.

The data set of our study is available in the Sequencing Read Archive (SRA) on NCBI
with accession numbers of SRP149194.

Sequence processing and data analysis
The original sequencing reads were trimmed using Cutadapt V1.9.1 (http://cutadapt.
readthedocs.io/en/stable/) (Martin, 2011). Raw reads were obtained after removing barcode
and primers. Chimeric sequences were checked and eliminated based on UCHIME
Algorithm (http://www.drive5.com/usearch/manual/uchime_algo.html) (Edgar et al.,
2011) and Gold database (http://drive5.com/uchime/uchime_download.html) in order to
generate clean reads.

For all samples, OTUs were generated from clean reads via Uparse v7.0.1001 software
(http://drive5.com/uparse/) with a 97% sequence identity cutoff value (Edgar, 2013). Using
Mothur (Schloss et al., 2009), representative sequences of the OTUs which were chosen
by the highest frequency of occurrence, were annotated against the SILVA SSUrRNA
database (http://www.arb-silva.de/) (Quast et al., 2013; Schloss et al., 2009; Wang et al.,
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2007) and aligned byMUSCLE (Version 3.8.31) (Edgar, 2004) to construct the phylogenetic
relationship between different OTUs.

Series of alpha-diversity indices including Observed species, Shannon, Simpson, Chao1,
ACE, andGoods coveragewere calculated and analyzed inQIIME (Version 1.9.1) (Caporaso
et al., 2010). The rarefaction curves and rank abundance curves were constructed in R
(Version 2.15.3). We applied Wilcoxon rank-sum test to identify discrepancies of gut
bacterial diversities between the Amur leopard and North Chinese leopard for each index
of alpha-diversity.

Using the QIIME pipeline (Version 1.9.1), beta-diversity was assessed by calculation of
Unifrac distances and subsequently visualized by principal component analysis (PCoA).
Phylogenetic trees were also built using UPGMA (unweighted pair-group method with
arithmetic mean). The principal component analysis (PCA), principal co-ordinate analysis
(PCoA) and non-metric multidimensional scaling (NMDS) were calculated using R
(version 2.15.3) (R Core Team, 2013) so as to evaluate the similarity and discrepancies of
bacterial communities among fecal samples based on weighted and unweighted distance
matrix. The Analysis of Similarities (ANOSIM) was also used to testify whether there was a
significant difference between two groups (Clarke, 1993). Beta-diversity was then subjected
to Wilcoxon rank-sum test.

RESULTS
Overall sequencing data
A total of 1,514,233 raw reads were yielded after high-throughput sequencing of all samples.
The data sets were then subjected to quality control procedures which resulted in 1,413,825
clean reads for the 21 samples analyzed. The total number of OTUs was 4,203 at a threshold
of 97% sequence identity for all samples.

Alpha-diversity indices including Observed species, Shannon, Simpson, Chao1, ACE
and Goods coverage are shown in Table 1. The rarefaction curves showed a pattern of
plateau formation (Fig. 1A), indicating that the microbial diversity present in each sample
was sufficiently quantified at this sequencing depth. We also analyzed the rank abundance
curves to evaluate the abundance and distribution of bacteria taxa (Fig. 1B).

Bacteria composition and relative abundance
Overall, we identified 28 phyla, 55 classes, 88 orders, 167 families and 344 genera of bacteria
in the gut microbiota community from 21 fecal samples of leopards.

For the Amur leopard, Firmicutes was the predominant phylum (78.4%) (Fig. 2).
Proteobacteria (9.6%), Actinobacteria (7.6%), Bacteroidetes (2.6%) and Fusobacteria (1.7%)
contributed also to the total composition. At the family level, Planococcaceae (30.1%),
Clostridiaceae 1 (17.2%) and Peptostreptococcaceae (14.5%) were the top 3 dominant
families. At the genus level, Sporosarcina was predominant with an abundance of 22.8%,
followed by Clostridium sensu stricto 1 (17.1%) and Peptoclostridium (10.2%).

For the North Chinese leopard, Firmicutes (68.6%) was the most predominant
phylum (Fig. 2), followed by Actinobacteria (11.6%), Fusobacteria (6.4%), Proteobacteria
(6.2%) and _Bacteroidetes _(6.0%). Clostridiaceae_1 (19.5%), Planococcaceae (16.2%)
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Table 1 Alpha-diversity of fecal microbiota in Amur leopard and North Chinese leopard feces.

Sample Observed
species

Shannon Simpson Chao1 ACE Goods
coverage

O1 226 3.205 0.788 248.521 258.106 0.999
O2 138 2.959 0.747 173.455 190.370 0.999
O3 85 0.683 0.146 108.400 117.380 0.999
O4 110 2.137 0.649 161.250 163.516 0.999
O5 125 1.704 0.433 144.077 157.104 0.999
O6 324 4.183 0.867 350.757 351.019 0.999
O7 159 3.875 0.85 173.040 181.306 0.999
O8 143 3.736 0.867 172.750 174.050 0.999
J1 282 3.489 0.666 294.364 289.486 1.000
J2 286 5.798 0.961 300.056 298.907 0.999
J3 167 4.412 0.855 194.273 195.119 0.999
J4 213 4.086 0.868 237.474 233.225 0.999
J5 150 3.871 0.888 170.036 178.518 0.999
J6 159 3.128 0.786 202.000 203.286 0.999
J7 161 2.563 0.722 246.550 234.682 0.998
J8 330 4.813 0.909 370.886 364.072 0.998
J9 125 3.454 0.854 151.400 160.056 0.999
J10 132 2.946 0.791 145.500 156.117 0.999
J11 122 4.169 0.919 139.105 146.006 0.999
J12 128 3.473 0.853 308.167 201.223 0.999
J13 122 1.395 0.333 157.286 164.553 0.999

and Lachnospiraceae (12.5%) were the three most predominant families. At the genus
level, Clostridium sensu stricto 1 (19.4%), Sporosarcina (9.5%) and Peptoclostridium (6.1%)
constituted the top three genera.

The clustered heatmap showed (Fig. 3A) that the gut bacterial distribution of the Amur
leopard and North Chinese leopard were relatively scattered. The unweighted pair-group
method with arithmetic means (UPGMA) (Fig. 3B) that display the similarities between
sample groups showed a similar result with the clustered heatmap.

Differences in community composition
The boxplots of alpha diversity were shown in Fig. 4A. Observed species and Shannon
diversity indices were tested for the significance of discrepancies between the two sample
groups (p = 0.447 and 0.210, respectively). The beta-diversity indices were presented in
Fig. 4B (p= 0.441 and 0.003, respectively), illustrating the discrepancies of gut bacterial
communities between different groups. The Analysis of Similarities (ANOSIM) showed the
significance level between different groups (R= 0.02, p= 0.335) (Fig. S1). The heatmap of
beta-diversity indices were also plotted in Fig. S2.

Non-metric multidimensional scaling (NMDS) displayed separation in gut microbiota
composition of the Amur and North Chinese leopard, and the stress value less than 0.2
could show the discrepancy between samples was 0.110 (Fig. 5A). The PCA plot (Fig. 5B)
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Figure 1 Rarefaction curves (A) and rank abundance curves (B). The x-axis of rarefaction curves indi-
cates the sequences number selected randomly from samples and the y-axis indicates the observed species
number (OTUs). The curves in (A) tend to be flat reflect that the sequencing data size is rational. In rank
abundance curves (B), the x-axis indicates the order number ranked by the OTUs abundance while y-
axis shows the relative abundance of OTUs. The higher the richness of the species, the larger the span of
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relative abundance respectively.

Full-size DOI: 10.7717/peerj.6684/fig-2

revealed that the samples from the two subspecies were basically clustered together. The
main components of the gut microbiota of the Amur leopard and North Chinese leopard
were similar with two exceptional samples from the North Chinese leopard. According
to the PCoA analysis (Figs. 5C and 5D), the fecal bacterial communities of Amur leopard
and North Chinese leopard were relatively scattered in every group. Overall, no significant
differences were found between the two sample species according to the results of PCoA,
PCA and NMDS.
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DISCUSSION
With the rapid development of high-throughput sequencing technology, there are
mounting studies focusing on the analysis of gut microbiota in different vertebrates.
Amur leopards and North Chinese leopards are endangered flagship species facing severe
survival predicament result from prey depletion, habitat fragmentation, and anthropogenic
disturbances. However, research effort on free-ranging leopards in China, especially for
North Chinese leopards are neglected (Jacobson et al., 2016). In this study, we characterized
and compared the gut microbiota of Amur leopards and North Chinese leopards for the
first time using high-throughput sequencing technology. The characterization of their gut
microbiota might be able to provide useful information for potential research and help us
evaluate the healthy condition of wild leopards in their natural habitat.

Five major bacterial phyla were observed including Firmicutes, Proteobacteria,
Actinobacteria, Bacteroidetes and Fusobacteria both in the Amur leopard and North Chinese
leopard samples, which is in accordance with the vertebrate gut microbial diversity
described by many other studies (Deng & Swanson, 2014; Ley et al., 2008; Ritchie, Steiner
& Suchodolski, 2008). Fecal samples of healthy cats are featured with similar phylum
composition with slightly different proportions (Barry et al., 2012). Based on our analysis,
no significant difference was found in the relative abundance of these five phyla between
the samples from the Amur leopard and North Chinese leopard.

Firmicutes was the most predominant phylum in both the Amur leopard and North
Chinese leopard and showed no significant difference between two groups (p= 0.210).
Previous researches have reported that Firmicutes is the most dominant phylum in feces of
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animals (Garcia-Mazcorro et al., 2012; Guan et al., 2017; Ritchie et al., 2010) and humans
(Arumugam et al., 2011). Same tendency was also found in feline species in the wild such
as leopard cats (Prionailurus bengalensis) (An et al., 2017) and snow leopards (Panthera
uncia) (Zhang et al., 2015). Some studies reported that the body fat storage influences the
gut bacterial composition in mice (Ley et al., 2005) and humans (Ley, Peterson & Gordon,
2006). A significantly greater proportion of Firmicutes and a significant reduction of
Bacteroideteswere observed in obese animals than in lean controls (Turnbaugh et al., 2006).
The tendency of an increase in Firmicutes and a decrease in Bacteroidetes was associated
with switching to the high fat diet (Hildebrandt et al., 2009; Tremaroli & Bäckhed, 2012).
We detected that the proportion of Firmicutes in Amur leopards was relatively greater
than in North Chinese leopards, and the proportion of Bacteroidetes in Amur leopards
was relatively lower which indicated that the weight of Amur leopard should be more
heavier. This might relate to the greater body fat storage of Amur leopards compare with
North Chinese leopards, since Amur leopards have larger body size and store more fat to
withstand severe cold in further north habitat (Wang et al., 2017). Unfortunately, the detail
information about wild North Chinese leopard is comparatively scarce.

Within the phylum Firmicutes, Zhang et al. (2015) found that Lachnospiraceae was the
most diverse family in the feces of snow leopards, which is consistent with a previous
report in wolves (Canis lupus) (Zhang & Chen, 2010). In our results, however, the most
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diverse family was Clostridiaceae 1 (19.5% in North Chinese leopard, 17.2% in Amur
leopard) within the order Clostridiales, and Lachnospiraceae constituted a relatively small
proportion in our sample set compared to snow leopards and wolves. Lachnospiraceae was
found in both human and mammal gut microbiota that relates to some diseases like colon
cancer (Meehan & Beiko, 2014), nonalcoholic fatty liver disease (NAFLD) (Shen et al.,
2017) and diabetes (Kameyama & Itoh, 2014). However, without sufficient support based
on other health monitoring methods including blood or apparatus test, the proportion
of Lachnospiraceae in the gut microbiota could only be a simple referential marker that
reflects health condition for wild animals.

Our results also indicated that Clostridium sensu stricto 1 was a predominant genus
in the gut microbiota of leopards. And Clostridium perfringens was a common bacterial
species for both the Amur leopard and North Chinese leopard. Lubbs et al. (2009) reported
that the gut microbiota of domestic cats is affected by the protein concentration in diets,
particularly, Clostridium populations increased as more protein was digested. The presence
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of C. perfringens was positively associated with protein intake in grizzly bears (Ursus
arctos) (Schwab et al., 2011) and cheetahs (Acinonyx jubatus) (Becker et al., 2014). To our
knowledge, leopards are highly carnivorous and consume mostly protein in their daily diet
(Martins et al., 2011). We speculate that the high proportions of Clostridium populations
might reflect the high-protein diet of leopards in our study. Interestingly, C. perfringens
might be potential pathogenic bacteria that cause diarrhea in dogs (Canis lupus familiaris)
and cats (Felis catus) (Suchodolski, 2011). However, C. perfringens was also detected in the
clinically healthy dogs and house cats (Handl et al., 2011; Queen, Marks & Farver, 2012).
C. perfringens should probably be considered as a common commensal in the intestine of
healthy feline (Becker et al., 2014).

The relationship between gut microbiota and gastrointestinal diseases including
inflammatory bowel disease (IBD), chronic enteropathies (CE), and acute diarrhea in
Carnivora are well- documented (Suchodolski, 2016). For examples, there are increases
in the proportions of bacterial genera belonging to Proteobacteria and decreases in
Fusobacteria, Bacteroidetes, and Firmicutes in canine IBD (Yasushi et al., 2015). And
an increase of Enterobacteriaceae along with decreased proportions of Bacteroidetes,
Faecalibacterium spp. and Turicibacter spp. were observed in cats with chronic diarrhea
(Suchodolski et al., 2015). It indicates that some gut microbiota dysbiosis, which caused by
disease processes, can be identified in fecal samples (Suchodolski, 2016).

Proteobacteria was another phylum in the gut microbiota of the leopards and was not
significantly different between two subspecies (p= 0.804). Proteobacteria was also detected
in other feline gut microbiota analysis based on different methods (Ozaki et al., 2009;
Ritchie, Steiner & Suchodolski, 2008). As the most predominant phylum in giant panda
(Ailuropoda melanoleuca), Proteobacteria play crucial role in degrading lignin, which is the
main ingredient of bamboo (Fang et al., 2012), and in catabolizing complicated compounds
in fodder (Evans et al., 2011). Proteobacteria was the most predominant phylum in the gut
microbiota of dogs in the obese groups while in the lean groups was Firmicutes (Park et al.,
2015), and the proportion of Proteobacteria was related with inflammatory bowel disorder
(IBD) and Clostridium difficile infection (Chang et al., 2008; Packey & Sartor, 2009) as well.
For many large mammals in the wild, noninvasive sampling such as collecting feces or hairs
are relatively feasible and effective method to obtain information, but the real-time living
situation and health condition of some wild species are still unclear, as well as the definite
function of different bacteria in host health.

The phylum Actinobacteria also contributed to the gut microbiota of the leopards and its
proportion was not significantly different between the two subspecies (p= 0.414). It was
identified to be the most predominant phylum in snow leopards (Zhang et al., 2015). In
contrast,Wu et al. (2017) reported that Actinobacteria constituted 0.53% of all gut bacteria
in wolves (Canis lupus). Handl et al. (2011) found that Actinobacteria constituted 7.3% of
all bacterial sequences in house cats, but was at a low abundance in dogs (1.8%). This result
in regard to dogs was in line with an analysis using 454 pyrosequencing (Middelbos et al.,
2010). There might be a different tendency in the abundance of Actinobacteria between
feline and canine species, or perhaps the abundance of Actinobacteria in the mammalian
gut is currently biased, because sequencing methodology without prior %G+C profiling
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might underestimate the proportion of high G+C bacteria including Actinobacteria (Harri
et al., 2009).

Bacteroidetes was another contributive phylum in the gut microbiota of the leopards
and showed no significant difference between groups (p= 0.707). Bacteroidetes ranks over
Firmicutes as the most predominant phylum in some cases, as shown in domestic cats
and dholes (Cuon alpinus) (Jacobson et al., 2016; Tun et al., 2012). The relative abundance
of Bacteroidetes varied significantly in different studies (Handl et al., 2011; Ritchie et al.,
2010). Within Bacteroidetes, the genus of Bacteroides contributed 1.1% and 3.2% to the
gut microbiota of the Amur leopard and North Chinese leopard, respectively. Bacteroides
species were reported that took part closely in the breakdown of complex molecules, such
as polysaccharides, also the biotransformation of bile acids (Lan et al., 2006; Reeves, Wang
& Salyers, 1997). Additionally, this crucial genus could inhibit some pathogenic micro-
organisms (like Escherichia coli, Klebsiella pneumonia) with other anaerobic bacteria, which
beneficial to host (Hentges, 1983; Van der Waaij, Berghuis-de Vries, 1971 & Lekkerkerk-Van
der Wees). Although the presence of Bacteroides in the gut microbiota might be beneficial to
the health condition of leopard to some extent, more feces samples should be collected for
further investigation with camera trap data and identified individual in the nature reserves
to prove the above inferences.

With regard to other phylum Fusobacteria detected in the feces of leopards, no significant
difference was found between samples from the two subspecies (p= 1.000). Research based
on pyrosequencing suggested that Fusobacteria were less abundant in domestic cats than
in domestic dogs (Garciamazcorro et al., 2011). This tendency might be analogous to the
relationship of gut microbiota observed in raccoon dogs (Nyctereutes procyonoides) and
leopard cats (An et al., 2017).

In summary, although the proportions of the five predominant bacterial phyla are
slightly different among the gut bacteria of the Amur leopard and North Chinese leopard,
no significant difference was found in phylum composition between the two subspecies.
Previous work has shown that the gut microbial community structure of species can vary in
different environments (Clayton et al., 2016), and respond to dietary alterations, including
the amount and type of dietary fiber or other bioactive food components (Turnbaugh et
al., 2008). The potential prey for the Amur leopard includes Siberian roe deer (Capreolus
pygarus), sika deer (Cervus nippon), wild boar (Sus scrofa) and Badger (Meles meles) in
the Northeast Tiger and Leopard National Park (Yang et al., 2018). However, sika deer
is not available for North Chinese leopard in Tieqiaoshan Provincial Nature Reserve
(Wu, Wan & Fang, 2004), which indicates that in addition to the relative different dietary
components and living environment, there are other influence factors play crucial roles for
the gut microbiota of wild leopard. We speculate that genetic factors might be responsible
for the same tendency in gut microbiota composition, after all the classification of this
two subspecies leopard is still controversial around the world due to the lack of efficient
evidence in molecular biology. At the genus level, however, the bacterial composition for
each fecal sample is individualized. Due to the principles of noninvasive sampling, there
may be some variables that cannot be measured easily, such as age, sex, real-time healthy
condition or dietary shift of wild leopards, which account for the individualized bacterial
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microbiota at genus level. More fecal or intestinal samples from wild leopards are required
for in-depth analysis of the gut bacterial community. The metabolic pathway of bacterial
species should also be taken into account to provide a more comprehensive insight into
the functional repertoire of the leopard gut microbiota. Although the implications of
changes in gut microbiota for human and other species have been shown in many studies,
the implications for wild animal conservation are still limited (Bahrndorff et al., 2016).
Other studies also suggested that microbiome and fitness of host could be influenced
by habitat fragmentation (Amato et al., 2013; Cheng et al., 2015). For instance, for these
rare endangered animals, captivity and reintroduction into the wild are the common
methods for their conservation. The gut microbiota of captive animals could be established
with excepted nutritional conditions by feeding special diets as the wild individual, and
reintroduction would have relative high success rate when captive animals facing uncertain
environment. It is necessary to figure out the relationship between habitat fragmentation
and gut microbiota, as well as the performance of diverse gut microbiota under different
conditions. In general, our study presents the characterization and comparison of the gut
microbiota for wild leopards, which might be able to provide a theoretical reference both
for free-ranging leopards and ex-situ conservation.

CONCLUSIONS
We first reported and compared the basic composition and structure of the fecal microbiota
between wild Amur leopard and North Chinse leopard. We observed that Firmicutes,
Proteobacteria and Actinobacteria were the three most predominant phyla in the gut
microbiota of both Amur leopard and North Chinese leopard. Although their living
environment and diet are relatively diverse, no significant difference was found in the main
composition and structure of the gut microbiota at phylum level. We speculate that the
same structure of fecal microbiota might result from genetic factors of leopard, the small
sample size or too much variability within the groups. In order to understand the gut
microbial ecology of Amur and North Chinese leopards, future research should focus on
within-individual variation in microbial community structure, and how gut microbiome
structure changes with seasonal shifts in temperature and diet. Furthermore, othermethods
including functional metagenomics of the gut microbiota, and whole genome sequencing
of leopards, integrated with behavioural data from infrared camera traps in the field will
be beneficial for leopard conservation.
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