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Abstract. An existing framework for the design of reflection gratings was reworked. It takes the astigmatic 

complex beam parameters and the orientations of the beam axes of the incident and reflected beams as input 

and synthesizes a grating, which transforms the incident beam into the reflected beam. This is done by 

decomposing the 3D problem into a series of 2D reflections of plane waves. The 2D grating profiles are 

optimized in parallel on multiple computers. Finally, the 3D grating is derived using a simplified 

interpolation scheme. 

1 Introduction 

When heating fusion plasmas at higher harmonics of the 

electron cyclotron frequency, the absorption efficiency 

can drop. This leads to a significant transmitted beam 

power hitting the wall at the high field side (HFS). To 

protect the wall and to use the remaining power, one 

method is to place a specialized reflector at the HFS, 

which directs the beam back into the plasma for a second 

heating pass [1]. The reflector needs to conform to the 

tiles at the HFS, which are often non-planar. The 

direction of the reflected beam is chosen such that the 

absorption of the second heating pass is maximized and 

the wall area at the LFS, which is hit after the second 

pass, contains no sensitive components. Additional 

requirements are a refocusing of the beam and 

polarization independence of the reflection 

characteristics. All these conditions can only be fulfilled 

with a grating. The design process involves the 

decomposition of the 3D field problem into a series of 

2D reflections of plane waves. After the 2D gratings are 

optimized, the final 3D grating is synthesized. 

2 Design process 

For the definition of the problem the astigmatic beam 

parameters of the incident and reflected Gaussian beams 

are required as well as the orientations of the beam axes. 

These are obtained by a series of beam tracing 

simulations using the TORBEAM code [2]. These runs 

are done for different typical heating scenarios and the 

most appropriate beam parameters are obtained by 

averaging [3]. Furthermore the basic shape of the 

reflector is needed. In the case of the high field side of a 

tokamak, it is a saddle-type shape defined by the 

curvature radii in the toroidal and poloidal directions. In 

local coordinates of the reflector, the shape is given in 

terms of the surface height z(x,y) and the orientation of 

the normal vector n(x,y). Using these parameters, we can 

calculate the local wave vectors kin(x,y) and kout(x,y). 

 

 
Fig. 1. Local k vectors and the resulting grating vectors (top 

view) 

 

 
Fig. 2 Local k vectors (side view)  

 
Figures 1 and 2 show the definition of the grating 

vectors. G1 is tangential to the surface and lies in the 

middle plane between kin and kout. G2 is perpendicular to 

the middle plane and defines the direction of the groove. 

Parallel to the groove we have a reflection according to 
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the reflection law (Fig. 1). Perpendicular to the groove 

we have the angles Θin and Θout, which, together with the 

diffraction order n, completely define one local 2D 

problem. 

From an arbitrary start point and by using the known 

grating period, we can obtain a discretized form of the 

groove layout by integrating G1 with a standard Runge-

Kutta method. An example is shown in Fig. 3. 

 

 
Fig. 3 Groove layout (red lines) and optimization points (green 

dots) for the 2D profiles 

We now define the points, for which 2D gratings will be 

optimized. The distance of two neighboring points along 

the grooves is defined by the differences of the angles 

Θin and Θout: 

 |∆���| + |∆���	| = 1° (1) 

Depending on the actual beam parameters, this can result 

in a large (≈1000) number of 2D profiles (green dots in 

Fig. 3). This number can be reduced by quantizing the 

values for Θin and Θout : If the angles are rounded e.g. to 

a resolution of 0.5°, a number of 2D gratings become 

identical and need to be optimized just once. Fig. 4 

shows the number of distinct profiles as a function of the 

angular resolution. While the actual numbers can change 

strongly depending on the actual beam configuration, the 

reduction rate is always significant. Earlier works [4] 

showed that angular errors of up to 1° are acceptable. 

The angular resolution is a simple parameter for finding 

a compromise of accuracy and optimization time. 

 
Fig. 4 Number of distinct profiles as a function of the angular 

resolution 

 

The optimization goal for the 2D profiles is a 

maximum power in the desired diffraction order and 

minimum phase difference between the polarizations. 

The cost function is defined in terms of an efficiency η: 
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This results ideally in a focused reflected beam, which 

has the same elliptical polarization as the incident beam. 

Non-zero power in other diffraction orders will result in 

stray radiation. A non-zero phase difference will make 

the grating birefringent. 

The profiles are modeled by Fourier series where the 

coefficients are the parameters for the optimizer. The 

DC-coefficient is not used for the optimization because it 

is not relevant for a plane wave reflection. Furthermore, 

a horizontal phase shift of the grating does not change 

the behavior because the BEM solver implicitly assumes 

an infinite periodicity of the 2D grating. Thus, we need 

only the cosine coefficient for the first order. The 

maximum order of coefficients is obtained from the 

wavelength and the sampling theorem. As a start value 

for the optimizer we use an Echelette grating. 

The 2D profiles can be optimized on different CPUs 

on different computers simultaneously, because they are 

independent problems. For each 2D grating ten 

optimizations are run with different seeds for the random 

number generator. For the presented example, 5 Intel 

Xeon servers and one desktop PC with a total of 184 

cores were running for 3 days. 

Fig. 5 shows examples for optimized 2D profiles. 

After the optimization the profiles are shifted such that 

the maximum value (z = 0) is located at the boundaries. 

This ensures that no discontinuities can occur between 

adjacent grooves.  
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Fig. 5 Optimized 2D profiles for different combinations of Θin 

and Θout  

 

The final grating is then calculated by interpolation 

of the 2D gratings. Fig. 6 shows the interpolation 

scheme. For a point (x,y) (cross in Fig. 6), we first 

identify the groove number.  

 

Fig. 6 Interpolation scheme for the final 3D grating. The cross 

is the point, for which the local z-coordinate is calculated. Note 

that in general the groove width is not constant. 

 
Then, we transform the mirror coordinates x and y to 

groove-local coordinates u and v. The coordinate u 

corresponds to the grating vector G1 and is normalized to 

the grating period. The coordinate v corresponds to the 

vector G2 and is in metric units. We can now obtain a 

local groove profile by linear interpolation of the two 

neighboring profiles. This interpolation is done for the 

Fourier coefficients along the coordinate v. Finally, the 

actual local z-coordinate of the grating is obtained with 

the interpolated Fourier coefficients and the u 

coordinate. 

This interpolation scheme ensures a smooth surface 

without any discontinuities. Since the actual 

interpolation is done in one dimension, the method is 

also quite simple. 

In summary, the reworked optimization framework 

has the following new features compared to the earlier 

code: 

• Generic coordinates for the beam parameters. The 

original code was tightly coupled to ASDEX-

Upgrade for the mirror positions and TORBEAM 

for the beam parameters. It was not directly usable 

in other environments. 

• Parallelized optimization of the 2D gratings 

• Adjustable angular resolution to reduce the number 

of distinct gratings. The original code worked with 

fixed 1° steps. 

• Simple 1D interpolation for the final grating. The 

original code used a generic triangulation and 

subsequent 2D interpolation. 

• New analysis- and visualization tools 

3 Results 

Fig. 7 shows the interpolated grating, which was 

designed for the ECRH system of ASDEX-Upgrade [5]. 

One can see the saddle type basic shape. The orientation 

and period of the grooves correspond to Fig. 3.  

Fig. 8 shows the efficiencies according to (2) of the 

2D profiles. One can see that the efficiency increases 

monotonically from left to right. In two regions however,  

it drops to lower values. The increasing behavior of the 

efficiency corresponds to the angles Θin and Θout (See 

Figs 9 and 10) where a steeper beam incidence results in 

better efficiencies. The abrupt drop of the efficiency is in 

agreement with Fig. 11, where the number of existing 

diffraction orders is plotted. If the number of orders 

increases, the optimization problem becomes more 

difficult, because it includes the suppression of all 

diffraction orders except the wanted one. Furthermore, 

Fig. 8 indirectly confirms the convergence of the 

optimizer. A poor convergence (i.e. when the optimizer 

gets stuck at sub-optimal results) would result in more 

noise in the efficiency plot. 

For cases, where several tiles are possible candidates 

for an ECRH reflector, a plot of the diffraction orders 

like in Fig. 11 can be helpful. It always corresponds to 

the final efficiency but can be calculated quickly before 

doing the actual optimization. 
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Fig. 7 Height profile (in mm) of the interpolated grating 

 

Fig. 8 Local (plane wave) efficiencies according to Eq. (2) of 

the grating 

 
Fig. 9 Distribution of Θin on the grating 

 
Fig. 10 Distribution of Θout on the grating 

 

Fig. 11 Numbers of existing diffraction orders on the grating 

4 Manufacturing  

The reflector was manufactured from graphite with a 

numerical milling machine. An important issue is the 

selection of the milling cutter. The shape of the milling 

cutter limits the difference of the maximum and 

minimum slope angles on the grating. Typically, 

cylindrical cutters are preferred due to their robustness. 

However, they allow a maximum angle difference of 

90°. The better choice is a dovetail cutter like in Fig. 12. 

It allows a maximum angle difference of e.g. 135°. 

 

 
Fig. 12. Dovetail milling cutter for a slope angle difference of 

135° in a typical groove profile. 

 

The maximum allowed slope angle difference can be 

passed as a parameter to the optimizer. An example for 
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the influence of this parameter on the achieved 

efficiency is shown in Fig. 13.  

 
Fig. 13 Efficiency of an optimized 2D grating as a function of 

the allowed slope angle difference 

 

One can see that for this example the limitation to 90° 

results in an efficiency below 70%, while for 135° it is 

above 95%. Also shown are the curves for different 

numbers of Fourier coefficients. According to the 

sampling theorem, 5 coefficients are sufficient for this 

example. We can see that increasing the number beyond 

5 does not lead to significant improvements, especially if 

the 135° cutter is used. Fig. 14 shows the reflector in the 

milling machine. 

 

 
Fig. 14. Reflector in the milling machine 

 

After milling, the reflector was coated with a thin 

tungsten layer (13–15 µm) to become compatible with 

the ASDEX-Upgrade requirements.  

5 Measurement  

To characterize the reflector experimentally, a 

measurement was done with a vector network analyzer 

and an x-y scanner, Fig. 15 shows the setup. The 

reflector is mounted on a goniometer, which allows to 

arbitrary rotate the reflector (see Fig. 16). The incident 

beam was generated by a lens horn which produces a 

circular Gaussian beam. It is slightly different from the 

astigmatic beam used for the optimization. The 

important parameter, however, is the phase front 

curvature on the mirror, which is comparable in both 

directions. 

 

 
Fig. 15 Experimental setup 

 

 
Fig. 16 Reflector mounted on a goniometer 

 

The measured fields are shown in Figs 17 – 20. We can 

see a slightly elliptical beam with an astigmatic phase, 

which is similar to the design value. Also important is 

the similarity between the two polarizations, which was 

an optimization goal.  

For a more detailed analysis it would be necessary to 

also measure the spurious fields due to unwanted 

diffraction orders. This would, however, require a field 

scan over a large solid angle, which is not possible with 

the current equipment. 

 

 
Fig. 17 Measured intensity for horizontal polarization 
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Fig. 18 Measured phase for horizontal polarization 

 

 
Fig. 19 Measured intensity for vertical polarization 

 

 
Fig. 20 Measured phase for vertical polarization 

Conclusions and outlook 

The optimization framework for specialized ECRH 

reflectors was reworked and improved. It is robust and 

can use an arbitrary number of computing nodes for the 

actual optimization with negligible overhead. The 

resulting surfaces have no discontinuities. The principal 

reflection characteristics as well as the polarization 

independence could be verified experimentally. 

The parameters needed for the optimizer are in 

generic reflector-local coordinates, which makes it 

usable for other experiments as well. The base shape of 

the mirror can be flat or saddle-type. It is, however, 

trivial to add other shapes. For W7-X for example, a 

convex shape might be advantageous.  

The described reflector is already coated with 

tungsten and built into ASDEX-Upgrade. It will be 

tested with high power during the next experimental 

campaign. 

For aiding future developments, a series of 3D full 

wave simulations of the whole reflector was started with 

promising results [6]. 
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