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Abstract. In power electronics applications, embedded mechatronic systems (MSs) must meet the severe
operating conditions and high levels of thermomechanical stress. The thermal fatigue of the solder joints remains
the main mechanism leading to the rupture and a malfunction of the complete MS. It is the main failure to which
the lifetime of embedded MS is often linked. Consequently, robust and inexpensive design optimization is needed
to increase the number of life cycles of solder joints. This paper proposes an application of metamodel-assisted
evolution strategy (MA-ES) which significantly reduces the computational cost of ES induced by the expensive
finite element simulation, which is the objective function in optimization problems. The proposed method aims
to couple the Kriging metamodel with the covariance matrix adaptation evolution strategy (CMA-ES). Kriging
metamodel is used to replace the finite element simulation in order to overcome the computational cost of fitness
function evaluations (finite element model). Kriging is used together with CMA-ES and sequentially updated
and its fidelity (quality) is measured according to its ability in ranking of the population through approximate
ranking procedure (ARP). The application of this method in the optimization of MS proves its efficiency and

ability to avoid the problem of computational cost.
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1 Introduction

At present, embedded mechatronic systems (MSs) are
growing strongly. They play an important role in many
areas. For example, the health field with innovative
technology, the automotive industry, aeronautics, etc.
The reliability assessment of these systems remains a major
challenge. However, the failures of these systems are often
caused by many extreme solicitations of thermal (temper-
ature variation), and mechanical nature (shocks, vibra-
tion), etc. The most failures of mechatronic devices are
caused by solder joints fatigue. In order to satisfy the
reliability expectations, the component must be reliably
optimized, the robustness of the solder joints should be
assessed and their connections must be validated.
Thermal cycling test is one of the most commonly used
reliability tests to assess thermo-mechanical reliability of
the solder joints. The purpose of this test is to investigate
the aptitude of solder joints to support mechanical stresses
which is a major failure mechanism that can lead to solder
joint fatigue failure [1-5]. The Thermo-mechanical stresses
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induced by alternating thermal cycles [6] are mainly
induced by thermal expansion mismatch of different
materials in assembly system. Therefore, significant stress
can lead to plastic deformation whose accumulation can
cause solder joint failure and consequently failure of the
complete system. To avoid operational failures and reduce
warranty costs, robust optimization and validation of
critical solder joints should be carried out in the design and
manufacturing process of mechatronic devices. The
robustness of this validation includes a design optimization
for the purpose to maximize the number of fatigue life cycle
of device assembly.

Generally, in the structural design optimization or
reliability-based design optimization (RBDO) [7,8], the
derivative-based algorithms are the most used methods for
RBDO [9], which require derivative computation. The
main advantage of those methods, over others, is that they
need a much smaller number of iterations to converge to an
optimum. Nevertheless, only convergence towards a local
minimum is guaranteed. The derivative-free algorithms,
which are based solely on original fitness function (FF), are
proved as powerful tools for global optimum research and
therefore are widely used in real word problem such as
engendering optimization. The evolution strategies (ESs)
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are one among powerful derivative-free algorithms, which
are a popular methods for black-box optimization, where
no expressions of so-called objective functions, are known
and no derivatives can be computed [10]. The use of ESs in
the real-life applications proves their power [11]. However,
the disadvantage of ES is the large number of FF
evaluations required to obtain a satisfying solution;
moreover, in engineering application such as MSs, the
evaluations of FF are carried out using expensive numerical
finite element analysis. Consequently, computational cost
produced by a large number of fitness evaluation remains
the main challenge in the application of ES.

Metamodel-assisted evolution strategies (MA-ESs)
were developed to overcome the expensive numerical finite
element simulations. The metamodel is trained to
approximate and to be used together with the expensive
original FF (finite element code). Various MA-ESs
techniques have been presented by several researchers
[12,13]. In MES, several metamodels, such as Kriging
metamodel, radial basis functions (RBF), support vector
machines (SVM), K-nearest neighbor method (KNN), and
artificial neural networks (ANN), can be used to approxi-
mate the original FF [14]. However, metamodel manage-
ment and selection, which depend principally on the
problem to be addressed, remain the two main issues in the
development and application of MES.

In this work, the Kriging-assisted CMAE-ES algorithm
is used to optimize the thermo-mechanical performance of
solder joints by maximizing the number of life cycles. The
rest of the document is structured as follows. In Section 2,
CMA-ES and Kriging metamodel, which are the principal
components of the algorithm, are shortly presented.
Section 3 designed to the management and quality measure
of metamodel. In Section 4, the Kriging-assisted CMA-ES
(KA-CMA-ES) algorithm using modified approximate
ranking procedure is discussed and the numerical tests
are provided to show its effectiveness. Section 5 is devoted
to the numerical simulation. At first, the numerical global
and local model are developed to simulate the thermo-
mechanical behavior of the solder joints [4], and the
Ansys™ finite element software is a tool used to modelize
and compute the inelastic train due to the thermal
variation. The viscoplastic behavior of the solder joints
is taken into account using Anand model. Secondly, the
KA-CMA-ES algorithm is applied to the global optimiza-
tion of the MSs, in order to optimize the thermo-
mechanical performance of solder joints by maximizing
the number of life cycles. In the 6th and the last section, the
paper closes with a short conclusion and perspective on
future work.

2 Optimization technics

2.1 Covariance matrix adaptation-evolution strategy
(CMA-ES)

At present, the CMA-ES is one of the best ESs in
derivative free optimization. It has become a standard for
continuous black box evolutionary optimization. The
correlated mutation operator adopted by CMA-ES makes
it a powerful optimization algorithm compared with other

algorithms that use isotropic mutation. CMA-ES is based
on parametrized multivariate normal distribution as a
distribution model of a candidate population. At each
generation of CMA-ES, A offspring candidates are
generated from p parent. In the next generation, the
new parent (u) is selected from the offspring candidates
(A) using a (A, p)-selection. The w best candidates are
selected according to their ranking based on the objective
function, CMA-ES (X, u) algorithm uses two techniques
namely the cumulative step size adaptation (CSA) and
the covariance matrix adaptation (CMA) respectively for
adapting the step-size and the covariance matrix.
Specifically, let N'(m¥, K¥) a multivariate Gaussian
distribution with m'? and K are its mean and
covariance matrix. In CMA-ES, the sequence of mean
ml9 represents the favorite solution at generation g or the
best estimate of the optimum. The covariance matrix K
at generation (g) is factorized in two parts: CY€ R™*"
and 6/ € R, where (Y represents a covariance matrix
(a definite positive matrix) and the o7 is a scalar factor to
control the step length of the iteration. Finally, the A
search points (individuals, offspring) are sampled through
the following equation:

29 =mY 4 cWN(0,C9) for k=1,....» (1)
with A>2 is the population size (number of offspring),
and N(0,C9) is a multivariate Gaussian distribution with
zero mean and covariance matrix C(g).

To define completely the iterative stochastic algo-
rithm of CMA-ES, the three terms denoted m',
o and ¥ need to be adapted at each generation.

After sampling process, the A offspring is evaluated and
ranked based on the objective function. Finally, the u best
individual is selected, and the mean m'9 is then updated by
taking the weighted mean of the u individuals

n
mlotl) — qumfﬂ) (2)
i=1

where (w;), ., , are the p strictly positive and normal-
ized weights, satisfying > %, = 1.

The second term to update is the step size o that uses
the so called evolution path py’ [15] for its accumulative
adaptation. The o computation is given as follow:

o) = ol9exp Co ﬂ -1 (3)
doe \ E(INV (0, D))

where E(]|IN(0,1)||) is the expectation of the Euclidean
norm of an N(0, I) distributed random vector, which is
approximated by:

E(|N(O7I)||):\/§F(n;1>/F(g)z\/ﬁ(1— L, 1 )

4n " 21n2
(4)
The last term to update is the covariance matrix C9 that

uses a combination of two mechanisms namely rank — one
update and rank — mu update. The update of covariance
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matrix is given as:

COY = (1 —¢; — ¢y + ¢18(he))CY

e Ve )T

u @) @\ (40D _ @\ T
| T m L, m
+ Cu;wt ( ) > ( o9 > (5)

where p&g)e R" is the covariance matrix evolution path
[15].

The remaining parameters for CMA-ES update are
given in [15].

2.2 Kriging metamodel

Kriging metamodel is a geostatistical technique to interpo-
late deterministic noise free data. The theory of Kriging has
been formalized by the mathematician Matheron [16], who
was inspired by the work of Krige [17], Kriging has
subsequently become a standard method for constructing
metamodels for computer experiments [18]. It is then used to
predict the value of an expensive FF (FE model). This
method is also known as Gaussian process regression.
Let y(z) be defined as a function of z, with z € Ryand y
is a vector of nobserved values of y(z) on D={ 2y, ..., 2, }, a
design of experiment (DOE) with dimension n* d. Kriging
assumes that the function y(z) is a realization of a Gaussian
process denoted by Y(z), which is given as:
Y(z) = h(z) + Z(z) (6)
where h(z) is the mean of the process, and Z(z) is a Gaussian
process with zero mean and covariance expressed by:

Cov(Z(x(i>),Z<x(j>)> ZGZR(a:(i),w(j)> for 4,j
=1,.,N (7)

with 0% is the variance of Gaussian process and R((x(i), x(j)) its
correlation function between any two samples 29 and 2.
The choice of the correlation function is an important
element of Kriging. Many covariance functions are
proposed in the literature [19], such as Matter, Gaussian,
exponential or spherical correlation functions. The Gauss-
ian correlation function is the most commonly used, this
last allows control of both the range of influence and the
smoothness of the approximation model:
2
] (8)

where d is the dimension of design space, 0i(k =1, 2, ..., d)
are unknown parameters of the correlation function,
z;” and :z:,(cj) respectively are the kth component of the
sampling point z; and ;.

For any new point z, the mean and variance of
prediction [18] can be respectively calculated by:

d

R(N, g;(ﬁ) — exp [Z — 0,

k=1

2 — g0

J(z) =" (x)B+r"(x)R'(y — HB) (9)

1—I"(z)R'r(x)

s*(x) = o® |rT (z)Rr(z) + I (0)R 1

(10)

where §(z) and s*(z) are respectively the estimated mean
value and variance of §(x), h'=[h], i =1, ..., k a set of
basis functions (e.g. polynomial functions), 8= (81, ..., Bi)
the associated regression coefficients, R is the correlation
matrix of D, and H the matrix corresponding to the values
of h'(D), and r(z) = [R(z, 1), ..., R(z, ;)] " is the vector of
correlation functions between the untried point z and the &
samples 2V, ..., 2P

The unknown model parameters can be determined
using likelihood estimates (MLEs) method [20].

3 Metamodel-assisted CMA evolution
strategy

In brief, a good stewardship of use of metamodel with
prudence to keep it in high quality during optimization
process is the main assets in the use of metamodel
with evolutionary strategies algorithms. In this section,
the management and quality of metamodel will be
discussed, and the elements of KA-CMA-ES will be
presented.

3.1 Metamodel management

In evolutionary computation, the use of metamodel to
approximate FF is not as simple as one may assume.
There are two main concerns behind using metamodel for
fitness evaluation. Firstly, the convergence of the
evolutionary algorithm to the global optimum of the
original FF should be ensured. Secondly, the computa-
tional cost of evolutionary algorithm, which is the
principal objectif of metamodel application, should be
reduced as much as possible [12,13]. One main issue to
replace the FF with a global metamodel is that is very
difficult to construct an accurate metamodel that can
efficiently approximate the original function, it could
happen that the evolution algorithm converges to a false
optimum [21]. Therefore, to avoid this problem, the
meta-model and the original FF are used side by side; it
means that in evolutionary computation the original FF
is used to evaluate all individuals in some generation
(controlled generation) or some of the individuals
(controlled individual) [13]. This technique is the main
issue of metamodel management, which is generally
divided into three main approaches. The first is the so-
called No FEwvolution control, where the metamodel is
assumed to be of high-fidelity and no individual or
generation is controlled, i.e., the original FF is not used
in evolutionary computation. The second is the Fized
FEvolution control, where the frequency of evolution
control is fixed. To be done, there are usually two
approaches, one is the individual-based control [12,22],
the second is generation-based control [12,22]. The last
approach is the so-called adaptive FEvolution control
where the evolution control stands on the quality of the
metamodel.



4 H. Hamdani et al.: Int. J. Simul. Multidisci. Des. Optim. 10, A3 (2019)

3.2 Metamodel quality measure

In addition to reduce the computational cost, the quality or
fidelity of metamodel is the main issue in the design and use of
metamodels for evolutionary computation. Hence, to measure
the fidelity of the metamodel with avoiding the computational
cost problem, it is not advisable to use a close quantitative
approximation to assess the quality of metamodel. Rather, in
evolutionary computation, to be faithful, the meta-model
should enable the evolutionary algorithm to select the best
individuals in terms of the original FF. In [23], several quality
measures have been introduced.

In CMA-ES, the evaluation of objective function is
performed in each individual of the generation, and the
progression of the algorithm is based on the rank of
individuals (rank-based selection), which is the only
information to get from the fitness evaluation. In this
direction, it is normal that the quality of metamodel is
measured according to its ability in ranking the population
[24, 25]. Fortunately, the approximate ranking procedure
[24], which can be classified among adaptive evolution
control mechanisms, is one of the best methods to control
metamodel quality by its ability in ranking the population
without using the exact ranking of the entire population.

In the original approximate ranking procedure, one
individual is chosen to be evaluated by original function in
eachiteration, then the metamodel is updated and the parent
set of individuals is chosen based on the updated metamodel.
This loop is stopped in the case where all individuals in the
generation have been re-evaluated or the parent set does not
change. Nevertheless in the case of high-dimensional or
multimodal problems, the population size A is large, the
amount of information added during each iteration can result
inunimportant changes, evenin the case of a metamodel with
poor ranking predictions. To overcome this deficiency,
Huang et al. [26] propose some modifications for the original
approximate ranking procedure.

The first modification is to select n;,;; = max (1, | 0.34 |)
individuals, instead only one, to be reevaluated by original
function to update the metamodel. Noticeably, more
information will be added by this change. The second
modification is that in the iteration loop of approximate
ranking procedure, the batch size n,=max(1, [1/10])
which is proportional to A is used.

The main objective of approximate ranking procedure is
to find out how many individuals to control in each
generation. However, the individuals are selected to be
evaluated by the original FF according to their approximate
fitness and then added to the training set 7, subsequently
this operation is repeated until the metamodel selection of
the parents stays unchanged in two successive iterations. In
Algorithm 1, ny is a batch of individuals suggested to be
evaluated in each iteration of approximate ranking proce-
dure. The used batch size is n,=| A/10] [27].

4 Proposed algorithm and numerical test
4.1 Proposed algorithm

In this study, the metamodel-assisted evolutionary
strategy uses the integration of Kriging metamodel in

Algorithm 1. Approximate Ranking Procedure [26].

given: (zback)z:l,m(-‘]),a(g),C@),t,& fx).
approximate: build f (z) based on training set 7 and
predictf(zg), k=1,...,A

rank and determine the parent set Py = {xl(-:gfl) M
select nyy, controlled individual based on criterion 1C’(xk)7
k=1, .., A

evaluate f (original function evaluation) of the ny;
selected individual and add to S ¢« t + Ny

for m=2 to (A— muy/ny) do
Approximate : build f(x) based on T and predict
f(:l?k), k:].,...,)\.
rank and determine the parent set P,, = {xif” }M
If Py 1 # P then !
(the parent set has changed)
select ny; controlled individual based on criterion
)y k=1, .., A and 2, € T)
evaluate fof n; individuals and add to S.t< ¢+ ny
else { (the parent set remains unchanged)}
(exit for loop)

end if
end for

Output: t, t, Ta (xk‘a Rk fk)zzl'

the CMA-ES algorithm with approximate ranking proce-
dure as a quality control method [25].

The chosen Kriging uses a Gaussian correlation
function and a quadratic basis function. Thus, to build
Kriging metamodel, there are n; required points, which are
a number of free parameters in quadratic basis function,
ny=p= %(n + 1)(n + 2). Consequently, the approximate
ranking procedure will be performed in case the number of
required points is assured, otherwise, the number of
points |7| in the training set is more or equal to ny.

The training data set 7 contain all previous evaluat-
ed points; however, it is not necessary to use all previous
evaluated point as training set, because the computa-
tional time to construct a metamodel increases consis-
tently with the number of training point |7 [28]. In the
Kriging-based CMA-ES algorithm, the main objective of
constructed metamodel is to predict fitness values of
the population of the current generation, so it is
reasonable to choose the current population as training
set. For CMA-ES algorithm, where multivariate normal
distribution is T used,2 the Mahalanobis distance
Aii = (.Z‘Z - m<9)) ((0(9)) C’("))_1 (mz - m(g)) is appropri-
ate to select training data set [29]. Mahalanobis
expression gives the distance between each evaluated
points and current distribution mean m'?, finally the
training set can be determined as follows:

T {(w:, f)eSIA2, < X)) (11)
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where S is an archive containing all previous evaluated
points, and x2(p) is the quantile function for probability p
of the chi-squared distribution with n degrees of freedom. It
could happen that |7] < ny even if the number of training
data |71 is more or equal to 7. In this case, the n;, required
points are selected from 7 by changing the quantile
function x2(p) by 7n,, the n;, smaller Mahalanobis distance
of all points in S. Consequently, the training set S can be
performed as:

T« {(z, HeSIA? < r?} (12)

where r? = max(x2(p),nx). Finally, the problem was
avoided and the metamodel-assisted CMA-ES can be
performed. The Kriging-assisted CMA-ES is provided in
Algorithm 2 .

4.2 Numerical test

To comprehensively evaluate an algorithm, experimental
studies are important to validate and compare the
suggested algorithm with other existing algorithms over
a good range of test functions. In [26], the proposed KA-
CMA-ES using pre-selection (PS), KA-CMA-ES using
ARP and fixed generation-based control (FGC) were
studied and compared to the CMA-ES algorithm to show
the efficiency of the proposed algorithm.

To evaluate proposed algorithm, the set of test functions
including many functions with different characteristics was
used. The test contains a set of 12 continuous functions,
which present a minimization problems defined as:

{min f(X), X =[xy, 29, ..., xp]"
st. XeS= [XLB,XUB]

where f(z) is the FF, § is the search domain which is
defined by its lower and upper bounds X;p€ Rp and
Xyp€ Rp, and D is the dimension of problem. For
handling the box constraints, the re-sampling method is
adopted, i.e. re-sampling any infeasible solution until it
becomes feasible.

The 12 test functions are listed in Table 1, in which fi—f;
are unimodal problems and fs—fi» are multimodal func-
tions. All the test functions have Zero as global optimum,
i.e. f(X") =0, which is located at X" = [0, 0, . excludmjg
Rosenbrock functlon whose optimum is at X = [1, 1,...
In the experiments, for fi—fs, the dimensionality of search
space is D=20; for fs—fi1, D=10, and f;5 has dimension
D=5. Each test function with each dimension can be
considered as an optimization problem.

The Figures 1-3 present the convergence graphs of
KA-CMA-ES algorithm and that of the standard CMA-ES
[26]. The improvement in performance of KA-CMA-ES is
clearly illustrated. The graphs present the median perfor-
mance of the 25 runs on each function. The convergence graphs
also indicate that KA-CMA-ES using ARP-EI converges more
quickly among the others. On the one hand, the proposed
KACMA-ES algorithm using ARP-EI outperforms the KA-
CMA-ES using PS and FGC. On the other hand, the efficiency
of the CMA-ES is well improved.

Algorithm 2. Kriging-assisted CMA-ES.

Initialize evolution path p§,°> =0, pg)) =0, the

covariance
matrix % = I, the step size o and the selection
parameters according to [15].

Initialize the mean vector m'”) to a random candidate

g<0
while Convergence criterion is not reached do
mgfﬂ) m¥ +cWN(0,C9) for k=1, ..., A
’T<—{(xl, ) e 8l|(z; —m»)"

((e)c)-1 (332 _ m(g)) < %)

if |7] < ni, then
& Original evaluation

1. <—f( “1) k=1, ., A

s=sof (.1},

(_{(mia fi)€|(xi — m(g)) ((G(g))20(g)>

else

-1 (ml . m(g))g ,,,2}

< Metamodel-based evaluation
Run approximate ranking according to Algorithm 1.

end if
mlot) — Zu lwlar(y)
P = (1= )P + /0o B = Coltagy (CL9)) Fmistom®

— Il
olotl) — 459 exp( (E(H(UI)H 1))

(g+1) _ (9
(6+1) _ (1 _ (9) _ m m
De - (1 Cc)pc + ha Cc(2 C(:)I'Leff O’(g)
CU = (1 ¢ — ey + e18(ho))C? + e1p ™ (pTI)T ..

T
o3 (0 (7~
" i=1 ¢ o9 o9

end while
return best candidate zj,.q

5 Numerical simulation
5.1 Modelization and finite element analysis

In this study, a 256 pin PQFP microcontroller placed on
printed circuit board (PCB) was analyzed [30]. The
component is soldered to the PCB through lead-free solder
named SAC305. The seals are soldered to the PCB by an
SAC305 solder joints. For reliability assessment, the solder
joints of the microcontroller are the critical elements
in the system. The finite element analysis is used to
quantify the lifetime of component. However, the calcula-
tion using the global model (see Fig. 4) of the card with the
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Table 1. Test functions for numerical studies.

Function Expression Research domain
Sphere fi(z) = Zil x? -5,5]”
D
Bent cigar fola) = 27 +10° Zi:Q @ [~100,100]”
Sum squares D .
f3(1:) = Zl 1(11“) [_10710]D
Schwefel 1.2
fila) = ZD:l (Zle z2)? [—100, 100}
Power Sum
D ; D
Fola) =Y fa Y [-1,1]
Schwefel Absolute D b D
Fole) = S0 il + 112, o] [~100, 100]
Rosenbrock
D 2 D
frla) =50 [100(302-+1 — 2?2 (- 1)2] [=5,5]
Ackley 32,39
1 D )
fs(x) = —20exp (—0.2\ D Zz:1 z?
1 D
—exp 521‘:1 cos(2mx;) | + 20 4 exp(1)
Levy [-1010]”
fo(z) = sin®(mz;) + ZD ! 1 +10sin®(z; + 1)]
+(zp — 1) [1+sin (J'rzZ + 1)]
Weierstrass
D-1 kmax D
fio(x) = Zl ) ( 1 [aFcos (27bF (z; + 05))]) [—0.5,0.5]
~D> " [a¥cos (27t (x; — 0.5))]  where a=0.5,b= 3, kmax = 20
Bohachevsky D1
fui(z) = Zi:l [27 + 227, — 0.3 cos 3nx; — 0.3 cos 3mz;41 + 0.7] [-15,15]
Rastrigin
[~5,5]"

fra(z) = 10D + Z (27 — 10 cos (272;)]
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Fig. 3. Convergence graphs of fo—fi;.
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Temperature cycling analysis for solder joints using finite element analysis

Fig. 4. Global model of the solder joints.

microcontroller [30] has a high computational cost. In that The local model based on the finite element technique of
sense, a 3D local model has been developed with the most the critical zone is developed, it is the solder joint most
critical solder joint, in order to decrease the computation stressed by thermal loading. The local submodel (Fig. 5) is
time (Fig. 5) [4]. composed of a FR4 PCB, an EPOXY resin component, a
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Fig. 5. Local model of the solder joints.

copper pin and an SAC305 solder. The boundary
conditions of symmetry are introduced in the modeling
and the model use the Anand model to take into account
the viscoplastic behavior of the solder [31]. All finite
element models of this study are developed with the finite
element simulation tool Ansys mechanical [32].

Accelerated thermal cycling, recommended by JEDEC
standards [6], is applied as thermal load in finite element
analysis. The temperature profile applied varies between
—40°C and 125 °C and 30 min for low dwell and high dwell
time. Devices for automotive applications are generally
tested in this temperature range. Figure 6 shows the
thermal cycle loading. In the FE calculation, the first step is
to simulate the reflow soldering process to take into
account the initial constraints. This process consists in
applying a temperature profile ranging from the melting
temperature of solder joint to the ambient temperature of
25°C in 150°C seconds. The second step consists of
applying three thermal cycles, between —40 °C and 125 °C,
as the loading condition for the finite element simulation.

In thermomechanical analysis, using the local model,
the solder joint material is assumed to have a viscoplastic
behavior. Several authors have studied the response of
lead-free solder joints (SnAgCu) and proposed equations to
model this response. One of the models developed is the
Anand model [33] which distinguishes elastic deformations
from inelastic deformations, and combines the creep and
the instantaneous plastic deformations [34]. However, the
Anand model expresses the material viscoplastic behavior
and its equation is defined as follow:

5, = Aexp( ) [sinn ()]

Bl

(13)

Temperature
(°c)
A

Melting Temperature
High dwell High dwell
s\
30 min
High ramp High ramp
15 °C/min
Low ramp
15 °C/min
x| N
Low dwdll "
1 1 "
. . . Time
0 : : " (min)

! !

! !

1 1

i i

1 30 min 1
-40 i Low dwell i

« k

One cycle

Fig. 6. Thermal cycle loading.

where &, is the inelastic strain rate, @) is the activation
energy, A is the pre-exponential factor (1/s), T is the
temperature, R is the universal gas constant, & stands for
the materials constant, and m is the strain rate sensitivity
of the stress. The internal variable s represents the
resistance to plastic deformation, and its evolution
equation defined as:

s={

a

s
1-=
S*

.sign(l - Si) }.ép; a>1 (14)
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Table 2. Parameters of Anand model [10].

Parameters Value Description
A (S™) 2.2310" Pre-exponential factor
Q/R (K) 8900 @ = activation energy
R = university energy
3 (Dimensionless) 6 Multiplier of stress
m (Dimensionless) 0.182 Strain rate sensitivity of stress
S (Dimensionless) 73.81 Coefficient for deformation resistance saturation value
n (Dimensionless) 0.018 Strain rate sensitivity of saturation value
ho (MPa) 3321.15 Hardening/softening constant
a (Dimensionless) 1.82 Strain rate sensitivity of hardening of softening
S0 (MPa) 39.09 Initial value of deformation resistance
Table 3. Material’s properties.
Material parameters SAC305 FR4 Epoxy Cu
resin
Young (GPa) 51.3 17 17 115
modulus
Poisson’s (Dimensionless) 0.3 0.3 0.2 0.31
ratio
Density (kg/m®) 740 180 180 8890
CTE (n m/K) 20 18 22 17
Shear (GPa) 19 2.4 7.4 44
modulus
where calculate the number cycles the system can resist before

gk @ ' 15
S _S(ZGXP<RT>) (15)
where hg represents the hardening/softening constant, a is
the strain rate sensitivity of hardening or softening, n
stands for the strain rate sensitivity for the saturation value
of deformation resistance, describes the saturation value
of s associated with a set of given temperature and strain
rate, and s is a coefficient.

Finally, for the Anand constitutive model, there are
nine parameters, A, Q/R, §, hg, & m, n, a and sy, which are
needed to identify the evolution of deformation resistance
in equation (15), and the strain rate in equation (14).
Table 2 presents the value of these materials constants for
solder joint (SnAg).

Table 3 shows the material properties of local model
used in this study.

5.2 Solder joint fatigue life prediction model

The prediction of solder joint fatigue requires a
combination of finite element methods with a thermal
fatigue model, which is usually obtained from experi-
mental data and accelerated tests. This model is used to

failure. There are many models for predicting solder joint
fatigue life that can be classified into four categories
(approach): stress-based approach, plastic deformation
and creep approach, energy-based approach, and dam-
age-based approach [35]. The Coffin-Manson fatigue
model, classified in the plastic deformation approach, is
the best and most commonly used approach. The number
of cycles Ny is expressed as a function of the inelastic
strain range, Ag;,, the fatigue ductility exponent «(0.73),
and the fatigue ductility coefficient 6(6 = 3.7) [36,37].
The form of Anand model used in the present analysis is
given by the following equation:

A&y N% =0 (16)

The inelastic strain range, Agy,, is calculated using a
nonlinear finite element simulation based on the Anand
model.

After the termination of the thermal cycles execution in
ANSYS™.

Figure 7 indicates that the strongly deformed areas of
component occurs in solder joint and the Figure 8 shows the
evolution of inelastic deformation in solder joint resulting
from thermal cycles execution.
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Fig. 7. Side view of plastic strain distribution in the solder joint at last loading thermal cycle.
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Fig. 9. Description of optimization parameters.

5.3 Formulation of the global optimization algorithm
for the solder joint

The design optimization problem for the solder joints aims
to maximize the number of fatigue cycles of the solder joint:

max N;({d})

st {{d}*" < {d} < {d}" 17

{d}={ hi, ho, h3} are the design variables (Fig. 9) which
represent three design parameters which have a major
impact on fatigue life of solder joint [4], {d}"* and {d} " are
respectively their lower and upper bound (Table 4) and Ny
is the number of fatigue cycles.

The number of fatigue cycles Nyis calculated through
the plastic deformation using the empirical Coffin—-Manson
model. In other words, maximizing N; amounts to
minimize the plastic deformation Ag;, of the solder joint
due to an active thermal load cycle. Consequently, in this
problem, the objective function represents the plastic
deformation Ag;, of the solder joint due to an active
thermal load cycle (Tab. 4).

min Ag;, ({d})

18
st. {d}"" < {d} < {}?” 0

The design optimization problem is carried out with
the KA-CMA-ES algorithm, implemented with Matlab”
(Fig. 10).

Table 5 shows the optimal and initial design calculated
by a simple CMA-ES algorithm and KA-CMA-ES, also the
results show that the objective function (inelastic strain
range Agy,) is minimized. Figure 11 shows the new design
and the new inelastic strain distribution after the
application of the design optimization procedure. The
maximum inelastic strain (SMX=0.08193) is more
smaller than the inelastic strain in the initial configuration

Table 4. Upper and lower limits of optimization variables.

Parameter Lower limit (d**)  Upper limit (d"?)
BRAS-EP (mm) 0.1 0.25

BRCH-L (mm) 0.5 1

BRCH-H (mm) 0.1 0.4

Table 5. Comparison between performance parameter for
CMA-ES and KA-CMA-ES.

Parameters Initials CMA-ES KA-CMA-ES
points

BRAS-EP (mm) 0.15 0.24 0.24

BRCH-L (mm) 0.7 0.83 0.83

BRCH-H (mm) 0.17 0.15 0.15

Agg 0.025 0.0135 0.0135

Ny 940 2185 2185

Number of simulations — 341 99

Simulations time (s) - 61380 17820

(SMX =0.13557). The typical convergence histories of
plastic deformation Ag;, are plotted in Figure 12. This plots
clearly indicate that the KA-CMA-ES converges more
quickly than standard CMA-ES and give same results.

6 Conclusion

Therobust design of complex MSs often induces an expensive
optimization problem. In this work, the performance of
CMA-ES has been used with the Kriging metamodel to
efficiently solve expensive mechatronic optimization prob-
lem. the virtual thermo-mechanical test was performed to
evaluate the reliability of solder joints of a mechatronic
device. The 3D FE model takes into account the non-
linearities properties of viscoplastic behavior of the solder
joints. This study illustrates the interest to use the
metamodeling techniques with CMA-ES, to increase the
reliability of solder joints of the mechatronic devices in order
to overcome the computational cost problem. For training
Kriging metamodel, the most relevant data are used as
training set. The approximate ranking procedure, which is a
reliable adaptive evolution control, was adopted to control
the fidelity of the metamodel during the KA-CMA-ES. The
application of this method in solder joints global optimiza-
tion shows its efficiency in reducing the number of finite
element simulations to reach an optimal design against the
standard CMA-ES method. As perspective we expect to
modify this algorithm to constrained optimization in order to
take into account the uncertainties.
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